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PREFACE TO THE THIRD EDITION

HAVE taken the opportunity afforded by the need for a new

edition to subject the whole work to a careful revision, and to

introduce a considerable amount of new matter. In Chapter I

I have inserted a theory of the lengths of circular arcs, and of

the areas of circular sectors, based upon arithmetic definitions

of their measures. Much of that part of the work which deals

with Analytical Trigonometry has been re-written. Proofs of the

transcendency of the numbers e and ir have been introduced into

Chapter xv. It is hoped that the proof there given of the

impossibility of
"
squaring the circle

"
will prove of interest

to many readers to whom a detailed discussion of this very

interesting result of modern Analysis has hitherto not been

readilv accessible.
w

E. W. HOBSON.

Christ's College, Cambridge,

October, 1911.

PREFACE TO THE FOURTH EDITION

In this edition a few errors in the text have been corrected.

E. W. HOBSON.

Christ's College, Cambridge,

December, 1917.



PREFACE TO THE FIRST EDITION

TN the present treatise, I have given an account, from the

-^ modern point of view, of the theory of the circular functions,

and also of such applications of these functions as have been

usually included in works on Plane Trigonometry. It is hoped

that the work will assist in informing and training students of

Mathematics who are intending to proceed considerably further in

the study of Analysis, and that, in view of the fulness with which

the more elementary parts of the subject have been treated, the

book will also be found useful by those whose range of reading is

to be more limited.

The definitions given in Chapter in, of the circular functions,

were employed by De Morgan in his suggestive work on Double

Algebra and Trigonometry, and appear to me to be those from

which the fundamental properties of the functions may be most

easily deduced in such a way that the proofs may be quite

general, in that they apply to angles of all magnitudes. It will

be seen that this method of treatment exhibits the formulae for

the sine and cosine of the sum of two angles, in the simplest

light, merely as the expression of the fact that the projection of

the hypothenuse of a right-angled triangle on any straight line in

its plane is equal to the sum of the projections of the sides on

the same line.

The theorems given in Chapter vii have usually been deferred

until a later stage, but as they are merely algebraical consequences

of the addition theorems, there seemed to be no reason why they

should be postponed
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A strict proof of the expansions of the sine and cosine of an

angle in powers of the circular measure has been given in

Chapter VIII ;
this is a case in which, in many of the text books

in use, the passage from a finite series to an infinite one is made

without any adequate investigation of the value of the remainder

after a finite number of terms, simplicity being thus attained at

the expense of rigour. It may perhaps be thought that, at this

stage, I might have proceeded to obtain the infinite product

formulae for the sine and cosine, and thus have rounded off the

theory of the functions of a real angle; for convenience of

arrangement, however, and in order that the geometrical appli-

cations might not be too long deferred, the investigation of these

formulae has been postponed until Chapter xvn.

As an account of the theory of logarithms of numbers is given

in all works on Algebra, it seemed unnecessary to repeat it here;

I have consequently assumed that the student possesses a know-

ledge of the nature and properties of logarithms, sufficient for

practical application to the solution of triangles by means of

logarithmic tables.

In Chapter xn, I have deliberately omitted to give any

account of the so-called Modern Geometry of the triangle, as it

would have been impossible to find space for anything like a

complete account of the numerous properties which have been

recently discovered
;
moreover many of the theorems would be

more appropriate to a treatise on Geometry than to one on

Trigonometry.

The second part of the book, which may be supposed to

commence at Chapter XIII, contains an exposition of the first

principles of the theory of complex quantities ; hitherto, the very

elements of this theory have not been easily accessible to the

English student, except recently in Prof. Chrystal's excellent

treatise on Algebra. The subject of Analytical Trigonometry
has been too frequently presented to the student in the state in

which it was left by Euler, before the researches of Cauchy, Abel,
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Gauss, and others, had placed the use of imaginary quantities

and especially the theory of infinite series and products, where

real or complex quantities are involved, on a firm scientific basis.

In the Chapter on the exponential theorem and logarithms,

I have ventured to introduce the term "generalized logarithm"

for the doubly infinite series of values of the logarithm of a

quantity.

I owe a deep debt of gratitude to Mr W. B. Allcock, Fellow

of Emmanuel College, and to Mr J. Greaves, Fellow of Christ's

College, for their great kindness in reading all the proofs; their

many suggestions and corrections have been an invaluable aid to

me. I have also to express my thanks to Mr H. G. Dawson,

Fellow of Christ's College, who has undertaken the laborious

task of verifying the examples. My acknowledgments are due

to Messrs A. and C. Black, who have most kindly placed at my

disposal the article "Trigonometry" which I wrote for the

Encyclopaedia Britannica.

During the preparation of the work, I have consulted a large

number of memoirs and treatises, especially German and French

ones. In cases where an investigation which appeared to be

private property has been given, I have indicated the source.

I need hardly say that I shall be very grateful for any

corrections or suggestions which I may receive from teachers

or students who use the work.

E. W HOBSON.

Christ's College, Cambridge,

March, 1891.
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CHAPTER I.

THE MEASUREMENT OF ANGULAR MAGNITUDE.

1. The primary object of the science of Plane Trigonometry
is to develope a method of solving plane triangles. A plane

triangle has three sides and three angles, and supposing the

magnitudes of any three of these six parts to be given, one at

least of the three given parts being a side, it is possible, under

certain limitations, to determine the magnitudes of the remaining
three parts; this is called solving the triangle. We shall find

that in order to attain this primary object of the science, it will be

necessary to introduce certain functions of an angular magnitude ;

and Plane Trigonometry, in the extended sense, will be under-

stood to include the investigation of all the properties of these

so-called circular functions and their application in analytical and

geometrical investigations not connected with the solution of

triangles.

The generation of an angle of any magnitude.

2. The angles considered in Euclidean Geometry are all less

than two right angles, but for the purposes of Trigonometry it is

necessary to extend the conception of angular magnitude so as to

include angles of all magnitudes, positive and negative. Let OA
be a fixed straight line, and let a straight line OP, initially coinci-

dent with OA, turn round the point in the counter-clockwise

direction, then as it turns, it generates the angle AOP; when OP
reaches the position OA', it has generated an angle equal to two

right angles, and we may suppose it to go on turning in the same

h. t. 1
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direction until it is again coincident with OA
;

it has then turned

through four right angles ;
we may then suppose OP to go on

turning in the same direction, and in fact, to make any number
of complete turns round : each time it makes a complete
revolution it describes four right angles, and if it stop in any

position OP. it will have generated an angle which may be of

any absolute magnitude, according to the position of P. We
shall make the convention that an angle so described is positive,

and that the angle described when OP turns in the opposite or

clockwise direction is negative. This convention is of course

perfectly arbitrary, we might, if we pleased, have taken the

clockwise direction for the positive one. In accordance with

our convention then, whenever OP makes a complete counter-

clockwise revolution, it has turned through four right angles

reckoned positive, and whenever it makes a complete clockwise

revolution, it has turned through four right angles taken negatively.

As an illustration of the generation of angles of any magnitude, we may
consider the angle generated by the large hand of a clock. Each hour, this

hand turns through four right angles, and preserves no record of the number
of turns it has made ; this, however, is done by the small hand, which only
turns through one-twelfth of four right angles in the hour, and thus enables

us to measure the angle turned through by the large hand in any time less

than twelve hours. In order that the angles generated by the large hand

may be positive, and that the initial position may agree with that in our

figure, we must suppose the hands to revolve in the opposite direction to that

in which they actually revolve in a clock, and to coincide at three o'clock

instead of at twelve o'clock.
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3. Supposing OP in the figure to be the final position of

the turning line, the angle it has described in turning from the

position OA to the position OP may be any one of an infinite

number of positive and negative angles, according to the number

and direction of the complete revolutions the turning line has

made, and any two of these angles differ by a positive or negative

multiple of four right angles. We shall call all these angles

bounded by the two lines OA, OP coterminal angles, and denote

them by {OA, OP); the arithmetically smallest of the angles

(OA, OP) is the Euclidean angle AOP, and all the others are

got by adding positive or negative multiples of four right angles

to the algebraical value of this.

The numerical measurement of angles.

4. Having now explained what is meant by an angle of any

positive or negative magnitude, the next step to be made, as

regards the measurement of angles, is to fix upon a system for

their numerical measurement. In order to do this, we must

decide upon a unit angle, which may be any arbitrarily chosen

angle of fixed magnitude ;
then all other angles will be measured

numerically by the ratios they bear to this unit angle. The

natural unit to take would be the right angle, but as the angles

of ordinary size would then be denoted by fractions less than

unity, it is more convenient to take a smaller angle as the unit.

The one in ordinary use is the degree, which is one ninetieth

part of a right angle. In order to avoid having to use fractions

of a degree, the degree is subdivided into sixty parts called

minutes, and the minute into sixty parts called seconds. Angles
.smaller than a second are denoted as decimals of a second,

the third, which would be the sixtieth part of a second, not

being used. An angle of d degrees is denoted by d°, an angle

of m minutes by m, and an angle of n seconds by n", thus

an angle d° m n" means an angle containing d degrees + m
(Jj ?/& 71

minutes + n seconds, and is equal to
y()

+ ^-^ + ^^-^
bf a right angle.

This system of numerical measurement of angles is called

the sexagesimal system. For example, the angle 23° 14' 56""4

23 14 56'4
denotes

90
+
90760

+
90 . 60760

° f a riSht anSle '

1—2
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It has been proposed to use the decimal system of measurement of angles.

In this system the right angle is divided into a hundred grades, the grade

into a hundred minutes, and the minute into a hundred seconds
;
an angle of

g grades, m minutes and n seconds is then written g% m ?j". For example,
the angle 13s 97

v

4""2 is equal to 13-97042 of a right angle. This system has

however never come into use, principally because it would be inconvenient in

turning time into grades of longitude, unless the day were divided differently

than it is at present. The day might, if the system of grades were adopted,

be divided into forty hours instead of twenty-four, and the hour into one

hundred minutes, thus involving an alteration in the chronometers ; one

of our present hours of time corresponds to a difference of 50/3 grades of

longitude, which being fractional is inconvenient.

It is an interesting fact that the division of four right angles into 360

parts was used by the Babylonians ;
there has been a good deal of speculation

as to the reason for their choice of this number of subdivisions.

The circular measurement of angles.

5. Although, for all purely practical purposes, the sexagesimal

system of numerical measurement of angles is universally used,

for theoretical purposes it is more convenient to take a different

unit angle. In any circle of centre 0, suppose AB to be an arc

whose length is equal to the radius of the circle
;
we shall shew

that the angle AOB is of constant magnitude independent of

the particular circle used
;

this angle is called the Radian or

unit of circular measure, and the magnitude of any other angle

is expressed by the ratio which it bears to this unit angle, this

ratio being called the circular measure of the angle.
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6. In order to shew that the Radian is a fixed angle, we shall

assume the following two theorems :

(a) In the same circle, the lengths of different arcs are to one

another in the same ratio as the angles which those arcs subtend

at the centre of the circle.

(b) The length of the whole circumference of a circle bears

to the diameter a ratio which is the same for all circles.

The theorem (a) is contained in Euclid, Book VI. Prop. 33, and

we shall give a proof of the theorem (6) at the end of the present

Chapter. From (a) it follows that

arc AB Z.AOB
circumference of the circle 4 right angles

'

Since the arc AB is equal to the radius of the circle, the first

of these ratios is, according to (b), the same in all circles, conse-

quently the angle AOB is of constant magnitude independent of

the particular circle used.

7. It will be shewn hereafter that the ratio of the circum-

ference of a circle to its diameter is an irrational number; that

is, we are unable to give any integers m and n such that m/n is

exactly equal to the ratio. We shall, in a later Chapter, give an

account of the various methods which have been employed to

calculate approximately the value of this ratio, which is usually
denoted by nr. At present it is sufficient to say that ir can only
be obtained in the form of an infinite non-recurring decimal, and
that its value to the first twenty places of decimals is

3-14159265358979323846.

For many purposes it will be sufficient to use the approximate value

22 • 355
3-14159. The ratios y= 3-i42857, ^= 3-1415929... may be used as approxi-

mate values of n, since they agree with the correct value of n to two and six

places of decimals respectively.

8. We have shewn that the radian is to four right angles
in the ratio of the radius to the circumference of a circle

;
the

2
radian is therefore -- x a right angle; remembering then that

7T

a right angle is 90°, and using the approximate value of it,

3141 5027, we obtain for the approximate value of the radian
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in degrees, 57°"2957796, or reducing the decimal of a degree to

minutes and seconds, 57° 17'44"*81.

The value of the radian has been calculated by Glaisher to 41 places of

decimals of a second 1
. The value of 1/n- has been obtained to 140 places of

decimals 2
.

9. The circular measure of a right angle is \tt, and that of

two right angles is it
;
and we can now find the circular measure

of an angle given in degrees, or vice versa
;

if d be the number of

degrees in an angle of which the circular measure is 6, we have

,
for each of these ratios expresses the ratio of the given180

lrrlo t.n t.wn riorlit n.ncrlps thus
180angle to two right angles ;

thus y-^ d is the circular measure of

"I Of)

an angle of d degrees, and is the number of degrees in an

angle whose circular measure is 6; if an angle is given in degrees,

minutes, and seconds, as d° m n", its circular measure is

(d + m/60 + n/3600) w/180.

The circular measure of 1° is -01745329..., of 1' is -0002908882..., and

that of 1" is -000004848137

10. The circular measure of the angle A0P, subtended at the

centre of a circle by the arc AP, is equal to —~ -„—.—-.-
, for' radius of. circle

AU . . . arc AP Z.A0P
this ratio is equal to j-^. or . ~ „ .n

arc AB <LA0B

The arc AP may be greater than the whole circumference and

may be measured either positively, or negatively, according to the

direction in which it is measured from the starting point A, so

that the circular measure of an angle of any magnitude is the

measure of the arc which subtends the angle, divided by the

radius of the circle. The length of an arc of a circle of radius r

is rd, where 6 is the circular measure of the angle the arc

subtends at the centre of the circle. The whole circumference

of the circle is therefore 27rr.

1 On the calculation of the value of the theoretical unit angle to a great number
of places. Quarterly Journal, Vol. iv.

2 See Grunert's Archiv, Vol. i., 1841.
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The length of a circular arc.

11. It has been assumed above that the length of a circular

arc is a definite conception, and that it is capable of numerical

measurement; this matter will be now investigated. The primary

notion of length is that of a linear interval, or finite portion of a

straight line : and the notion of the length of an arc of a curve, for

example of a circular arc, must be regarded as derivative. That

a given finite portion of a straight line has a length which can be

represented by a definite rational or irrational number, dependent

upon an assumed unit of length, will be here taken for granted.

In order to define the length of a circular arc AB, we proceed as

H-l

follows: Let a number of points of division A x ,
A 2 ,

... A^ of the

arc AB be assigned, and consider the unclosed polygon

AA^A 2 ... An^B\

the sum of the lengths of the sides AA l
+ A

1A,+ ... +A n_,B of

this polygon has a definite numerical value p y . Next let a new

polygon AA-! A,! ... A n>^B, where n'>n, be inscribed in the arc

A B, the greatest side of this polygon being less than the greatest

side of AA l
A 2 ...B; let the sum of the sides of this new unclosed

polygon be p2 . Proceeding further by successive subdivision of

the arc AB, we obtain a sequence of inscribed unclosed polygons

of which the lengths are denoted by the numbers pu pit ...p n ,
•••

of a sequence which may be continued indefinitely. In case the

number pn has a definite limit I, independent of the mode of the
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successive sub-divisions of the arc AB, that mode being subject

only to the condition that the greatest side of the unclosed polygon

corresponding to pn becomes indefinitely small as n is indefinitely

increased, then the arc AB is said to have the length I. In order

to shew that a circular arc has a length, it is necessary to shew

that this limit I exists, and this we proceed to do. It is clear

from the definition that, if ABC be an arc, then if AB, BC have

definite lengths, so also has AC; and that the length of ABC is

the sum of the lengths of the arcs AB, BC. It will therefore be

sufficient to shew that an arc which is less than a semicircle has a

definite length. In the first place we consider a particular

sequence of polygons such that the corners of each polygon are

also corners of all the subsequent polygons of the sequence.

Denoting by Ply P2 ,
... Pn ,

... the lengths of these unclosed

polygons, it can be shewn that

l i < -i 2 < * 3 >
• • • < -l n ,

. . .
;

for, by elementary geometry, it is seen that A rA r+1 is less than the

sum of the sides of an unclosed polygon which joins A r ,
Ar+1 .

Again all the numbers P1} P2 ,
... Pn ,

... are less than a fixed

number. For let TA, TB be the tangents at A, B the ends of

the arc, and draw A^, A 2 oc2> ... An^a,^ parallel to BT, and also

draw A
1^1 , A 2 ft.2 ,

.. An^ifin-! parallel to AT. We have then

AA
l <Aa1 + A l a 1 <AoL l + Tfi1 ,

and A X A, < c^cco + /3,/32 , &c;

hence A A, + A XA 2 + ... + A n_,B < AT+ BT,

therefore Pn < AT + BT.

In accordance with a fundamental principle in the theory of

limits, since the sequence Pu P2 ,
... Pn > ... of numbers is such that

each one is less than the next one, and such that all of them are

less than a fixed number, the sequence has a limit I, which is such

that, if « be an arbitrarily chosen positive number, as small as we

please, from and after some value nx of n, all the numbers Pn

differ from I by less than e.

To shew that if plf p2 , ... pn ,
... are the lengths of any se-

quence of unclosed polygons whatever joining A, B, not subject

to the condition that the corners of each polygon are also corners

of all the subsequent ones, but subject only to the condition that

the greatest side of the nth polygon decreases as n increases, and

has zero for its limit, we compare such a sequence with the special
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sequence considered above, and which has been shewn to have a

definite number I as the limit of the lengths of the polygons

Consider a polygon AA l
A 2 ... A r^B of the sequence whose lengths

are Plt P2 , ..., so far advanced that its length is greater 'than

l — e. An integer ri can be determined, such that, if n = ri, the

polygon Aafiy, ...k, ...B of which the length is pn has its greatest

side less than the least side of AA X
A, ... A r_xB and also less than

e/2?\ Some of the points a, @, 7, ... are then in each of the arcs

AAu A 1
A 2 , .... Let a, /3, 7 be in AA

l ;
then

Act + a/3 + £7 + yA 1 > AA X .

Using this and the similar inequalities -4jS + Se+ ... + kA > A 1
A 2 ,

we have by addition, and remembering that yA 1 , A^, ... are all

less than e/2r, pn + e > AA 1 + A 1A,+ ... + A r^B > I - e, there-

fore pn > I — 2e, provided n = ri. Next consider a polygon

AAiA»A 3

'

... B, of the sequence whose lengths are P1,P2,...,

so far advanced that the greatest side is less than the least side

of A'xfiy ... kB, and also less than e/2s, where 5 is the number of

sides in this latter polygon ;
as before we see that

pn <e + AAi+ A{A: + ...<l + e.

It has now been shewn that, if 11 = ri, pn lies between I + e and

I — 2e, and therefore differs from I by less than 2e. Since e is

arbitrarily chosen, and to each value of it there corresponds an

integer ri, it has been shewn that pn has the same limit I, when

n is indefinitely increased, as for the special sequence of polygons

first considered.

It has now been shewn that the length of a circular arc is

measured by a definite number, a unit of length being assumed.

The circumference C of the whole circle is itself given as the

limit of the perimeters of a sequence of inscribed closed polygons,

such that the greatest of the sides becomes indefinitely small as

the sequence proceeds.

That the lengths of different arcs of the same circle are to one

another as the angles subtended by those arcs at the centre of the

circle may now be established as in Euclid, Book VI. Prop. 33.

To prove that the circumferences of circles vary as their

diameters, let us consider two circles of which the diameters are

d and d'. If two similar polygons be inscribed in the circles, it

follows from the properties of similar rectilineal figures that the

perimeters of these polygons are to one another in the ratio of d
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to d'. The circumferences G and C of the circles may be taken

to be the limits of the perimeters pn , pn
'

of two sequences of

polygons such that the polygon corresponding to pn is for each

value of n similar to the polygon corresponding to pn'. Since

Pn ' Pn =d : d', it follows that the ratio of the limit of pn to that

of the limit of pn
'

is equal to the ratio of d : d'; and therefore

C:C' = d:d'

The area of a sector of a circle.

12. The area of the sector OAB of a circle, with centre 0,

bounded by the arc AB is defined to be the limit of the sum of

the areas of the triangles 0AA lt 0A l
A 2 ,

... 0A n_ x B, when the

number of sides of the polygon AA XA 2 ,
... B is increased indefi-

nitely and the greatest of its sides is diminished indefinitely, as

explained in § 11. It must be proved that this limit exists as a

definite number

Let q1} q2 ,...qn be the lengths of the perpendiculars from

on the sides AA J} A 1A 2} ... A n_xB\ then the sum of the areas of

the triangles is \{qx
. AA

y + q2 . A^A 2 + ... + qn .A n_1 B), and this

lies between ^ q . pn and \ q"pn \
where q' and q" are the greatest

and least of the numbers q1} q2 ,...qn ,
and pn is the sum of the

sides of the polygon. The limit of pn exists as the length of the

arc AB
;

also the two numbers q, q" have one and the same

limit, the radius of the circle, since they differ from this radius by
less than half the greatest side of the polygon. Therefore the

area of the sector is a definite number, equal to half the product
of the radius r of the circle, and the length rO of the arc AB;
where is the circular measure of the angle AOB. Thus area

A0B = \r-6. The whole circle is a sector of which the bounding
arc is the whole circumference

;
hence the area of the whole circle

is irr\

EXAMPLES ON CHAPTER L

i What must be the unit of measurement, that the numerical measure
of an angle may be equal to the difference between its numerical measures as

expressed in degrees and in circular measure ?

2. If the measures of the angles of a triangle referred to 1°, 100', 10000"

as units be in the proportion of ^,1,3, find the angles.
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3. Find the number of degrees in an angle of a regular polygon of n sides

(1) when it is convex, (2) when its periphery surrounds the inscribed circle m
times.

4. Two of the angles of a triangle are 52° 53' 51", 4le 22
x

50" respectively ;

find the third angle.

5. Find, to five decimal places, the arc which subtends an angle of 1° at

the centre of a circle whose radius is 4000 miles.

6. An angle is such that the difference of the reciprocals of the number

of grades and degrees in it is equal to its circular measure divided by 2tt ;

find the angle.

7. The angles of a plane quadrilateral are in a.p. and the difference of

the greatest and least is a right angle ;
find the number of degrees in each

angle and also the circular measure.

8. In each of two triangles the angles are in g.p. ;
the least angle of one

of them is three times the least angle in the other, and the sum of the

greatest angles is 240°
;

find the circular measure of the angles.

9. If an arc of 10 feet on a circle of eight feet diameter subtend at the

centre an angle 143° 14' 22", find the value of n to four decimal places.

10. Find two regular figures such that the number of degrees in an

angle of the one is to the number of degrees in an angle of the other as the

number of sides in the first is to the number of sides in the second.

11. ABC is a triangle such that, if each of its angles in succession be

taken as the unit of measurement, and the measures formed of the sums of

the other two, these measures are in a.p. Shew that the angles of the

triangle are in h.p. Also shew that only one of these angles can be greater

than § of a right angle.

12. Shew that there are eleven and only eleven pairs of regular polygons

which are such that the number of degrees in an angle of one of them is

equal to the number of grades in an angle of the other, and that there are

only four pairs in which these angles are expressed by integers.

13. The apparent angular diameter of the sun is half a degree. A planet

is seen to cross its disc in a straight line at a distance from its centre equal

to three-fifths of its radius. Prove that the angle subtended at the earth, by

the part of the planet's path projected on the sun, is 7J-/450.



CHAPTEE II.

THE MEASUREMENT OF LINES. PROJECTIONS.

13. If it is required to measure a given length along a given

straight line, supposed indefinitely prolonged in both directions,

starting from any assumed point, the question arises, in which

direction is the given length to be measured off. In order to avoid

ambiguity, Ave agree that to lengths measured along the straight

line in one direction a positive number shall be assigned, and

consequently in the other direction a negative number; it is

necessary then in such a straight line to assign the positive

direction. Suppose, in the figure, we agree that lines measured

A EC
from left to right shall be considered to have a positive measure

;

the length AB is then measured positively, and the length BA
negatively, or AB= — BA.

14. If G be any third point anywhere on the straight line, we

shall have AB = AG+GB, for example if, as in the figure, G lies

beyond B, the line CB is negative, and therefore its numerical

length is subtracted from that of AC. The sum of the measures

of the lengths of any number of such straight lines generated

by a point which starts at A and finishes its motion at B is

accordingly equal to that of AB.

15. When, as in Art. 2, an angle is generated by a straight
line OP turning from an initial position OA, we shall suppose
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that, whilst turning, the positive direction in the line OP remains

unaltered, thus the angle which has been generated in any position

of OP is the angle between the two positive directions of the

A B

bounding lines. It follows, that if AB, CD are the positive

directions in two straight lines, the angle between AB and DC
differs by two right angles from the angle between AB and CD,

for a line revolving from the position AB must turn through an

angle, in order to coincide with DC, 180° greater or less than the

angle it must turn through in order to coincide with CD.

If we consider all the coterminal angles bounded by AB and

CD, and by AB and DC, respectively, we shall have (AB, CD)
= (AB, DC) + 180°, the angles being all measured in degrees.

16. When a straight line moves parallel to itself, we shall

suppose its positive direction to be unaltered, so that if AB, CD
are non-intersecting straight lines, the angle between them is equal

to the angle between AB and a straight line drawn through A

parallel to CD. For ordinary geometrical purposes, the angle

between AB and CD is the smallest angle between AB and this

parallel, irrespective of sign.

Projections.

17. If from the extremities P, Q of any straight line PQ

perpendiculars PM, QN be drawn to any straight line AB, the

portion MN, with its proper sign, is called the projection of the

straight line PQ on the straight line AB. It should be noticed

that PQ and AB need not necessarily be in the same plane. The

projection of QP is NM, and has therefore the opposite sign to

that of PQ.
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If the points P and Q be joined by any broken line, such as

PpqrQ, the sum of the projections of Pp,pq, qr, rQ on AB is equal

to the projection of PQ on AB. For the sum of the projections

is Mm + mn + ns + sN, which is, according to Art. 14, equal to

MN. We obtain thus the fundamental property of projections.

The sum of the projections on any fixed straight line, of the parts

of any broken line joining two points P and Q, depends only upon
the positions ofP and Q, being independent of the manner in which

P and Q are joined.

A particular case of this proposition is the following :

The sum of the projections on any straight line, of the sides,

taken in order, of any closed polygon, is zero. If, in the above figure,

the points P and Q coincide, the broken line joining them becomes

a closed polygon, and since the projection of PQ is zero, the sum of

the projections of the sides, taken in order, of the polygon, is also

zero. The polygon is not necessarily plane, and may have any
number of re-entrant angles.

*



CHAPTER III.

THE CIRCULAR FUNCTIONS.

Definitions of the circular functions.

18. Having now explained the manner in which angular and

linear magnitudes are measured, we are in a position to define the

Circular Functions or Trigonometrical Ratios. Suppose an angle

AOP of any magnitude A, to be generated as in Art. 2, by the

revolution of OP from the initial position OA, remembering the

convention made as to the sign of angles. Let B'OB be drawn

perpendicular to A'OA
;
we suppose the positive directions in

A'OA and BOB to be from to A and to B respectively. We
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also remember the convention made in Art. 15, as to the positive
direction of the revolving line.

The ratio of the projection of OF on the initial line, to the length

OP, is called the cosine of the angle A, and is denoted by cos A.

The ratio of the projection of OF on the straight line OB which

makes an angle + 90° luith the initial line, to the length OP, is called

the sine of the angle A, and is denoted by sin A.

The ratio of the projection of OP on OB, to its projection on OA,
is called the tangent of the angle A, and is denoted by tan A.

The ratio of the projection of OP on OA, to its projection on OB,
is called the cotangent of the angle A, and is denoted by cot A.

The ratio of OP, to its projection on OA, is called the secant of
the angle A, and is denoted by sec A.

The ratio of OP, to its projection on OB, is called the cosecant of
the angle A, and is denoted by cosec A.

Thus we have

. OM A ON A ON
cos A =

Qp > sm4=^, tan4=^,
,

OM .OP . OP
cotA =m ,

SecA=m ,
cosec A=m .

When each of the lengths in the ratios is taken with its proper

sign, the sign of OP is always positive, but those of OM, ON are

each positive or negative according to the magnitude of the angle

A. It should be observed that MP is equal to, and of the same

sign as ON, so that

. . MP . MP . OM . OP
sinAs=

OP>
t&nA=

OM'
cotA==

IJP'
cosec

^=J/p-

In the figure, the angle A has four different magnitudes AOP1}

A0P>,, A0P3 ,
A0P4 , corresponding to the four positions P1} P2 ,

P3 , P* of P.

The projection of any positive or negative length A B, on a straight line

CD, is obtained by multiplying the length AB taken with its proper sign

by the cosine of the angle between the positive directions of the lines on

which AB and CD lie; the projection is thus given with its proper sign.

It should be observed that since OP, in the figure, always retains the

positive sign as it revolves from the position OA, when it coincides with OA'

it has the opposite sign to that of OA'.
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19. The six ratios defined above are the six Circular

Functions, called also Trigonometrical Ratios or Trigonometrical
Functions. Each of them depends only upon the magnitude of the

angle A, and not upon the absolute length of OP. This follows

from the property of similar triangles, that the ratios of the sides

are the same in all similar triangles, so that when OP is taken of

a different length, we have the same ratios as before for the same

angle. These six ratios are then functions of the angular magni-
tude A only ;

we may suppose A to be measured either in the

sexagesimal system or in circular measure. For convenience, we
shall in general use large letters A, B, G,... for angles measured in

degrees, minutes and seconds, and small letters a, /3, 0, (/>,...
for

angles measured in circular measure; so that, for example, sin J.

denotes the sine of the angle of which A is the measure in degrees,

minutes and seconds, and sin a is the sine of the angle of which

a is the circular measure. To these six circular functions two

others may be added, which are sometimes used, the versine written

versing, and the coversine written coversinJ.; these are defined

by the equations versin A = 1 — cos A, coversin A = 1 — sin A.

The versine and coversine are used very little in theoretical

investigations, but the versine occurs very frequently in the

formulae used in navigation.

20. In the case of an acute angle, the definitions of the

circular functions may be put into the following form. Let P

be any point in either of the bounding lines of the given angle ;

draw PN perpendicular to the other bounding line, we have then

H. T. 2
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the right-angled triangle PAN, of which the angle PAN is the

given one A.

Cos A is then defined as

side adjacent to A
hypothenuse

. . side opposite to A
sin A as

7
,

,

hypothenuse

. side opposite to A . side adjacent to A
tan A as —t—-—- —r-.—, . cot A as -^-

side adjacent to A '

. hypothenuse
sec A as ar —-

, cosec A as
side adjacent to A

side opposite to A '

hypothenuse
side opposite to A

'

21. Until recently, the circular functions of an angle were denned, not as

ratios, but as lengths having reference to arcs of a circle of specified size. If

PA be an arc of a given circle, let PN be drawn perpendicular to OA, and let

PT be the tangent at P; the line PN was defined to be the sine of the arc

PA, ON to be its cosine, F^its tangent, OT its secant, and AN its versine.

In this system the magnitudes of the sine, cosine, tangent, &c. depended not

only upon the angle POA, but also upon the radius of the circle, which had

therefore to be specified. The advantage of the present mode of definition of

the functions as ratios, is that they are independent of the radius of any

circle, and are therefore functions of an angular magnitude only. The sine

of an arc was first used by the Arabian Mathematician Al-Battani (878
—

918) ;

the Greek Mathematicians had used the chords PP' of the double arc, instead

of the sine PN of the arc PA.
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Relations between the circular functions.

22. Referring to the definitions of the circular functions,

we see at once that there are the following relations between

them,

(1) cos A sec A = 1, (3) tan A cot A = 1,

(2) sin A cosec A = \, (4) tan A = sin Afcos A )

cot A = cos A /sin A)
'

Expressed in words, the relations (1), (2), (3) assert the facts

that the secant, cosecant, and cotangent of an angle are the

reciprocals of the cosine, sine, and tangent of the angle re-

spectively ;
and relation (4) expresses the fact that the tangent of

an angle is the ratio of its sine to its cosine, or what, in virtue

of (3), comes to the same thing, that the cotangent of an angle is

the ratio of the cosine to the sine of the angle.

23. Referring to the figure in Art. 18, the square on OP is

by the Pythagoraean theorem, equal to the sum of the squares ot

its projections OM and MP, so that since the ratios of these pro-

jections to OP are the cosine and sine respectively of the angle

A, we have (cos -<4)
2 + (sin A)* — 1 or, as it is usually written,

cos2
J. + sin2A= 1. If we divide both sides of this equation by cos2A

and remember the relations (1) and (4), we have 1 + tan2J. = sec2J.
;

similarly if we divide both sides of the equation by sin2 A, and

remember the relations (2) and (4), we have 1 + cot
2A— cosec2

J..

Thus the three identities,

cos2A + sin2 A = 1
]

1 + tan2 A = secM I (5),

1 + cot2 A = cosec2A
J

are different forms of the same relation between the functions.

24. The five independent relations just obtained between

the six circular functions enable us to express any five of these

functions in terms of the sixth. The student should verify the

correctness of the following table, in which the meaning of x in

each column stands at the head of that column, and the value of

the expressions in each horizontal line, at the beginning.

2—2



20 THE CIRCULAR FUNCTIONS

sin A =

cos A

tan A =

cot A =

sec A =

cosec A

sin A = x
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Properties of the circular functions.

26. If the angles A OP, AOp be J. and — A respectively, we

see that OP and Op have equal projections OM, upon OA, but

that their projections ON, On, on OB, are of equal magnitude but

opposite sign, therefore

cos (— A) = cos -4, and sin(— A) = — sin^ (6);

it follows that tan (— A) = — tan A, cot (— A) = — cot A,

sec (—A)— sec A, cosec (— A)= — cosec-4.

If a function of a variable has its magnitude unaltered when

the sign of the variable is changed, that function is called an even

function, but if the function has the same numerical value as

before, but with opposite sign, then that function is called an

odd function
;
for instance x* is an even function of x, x3

is an

odd function of x, but x% + Xs
is neither even nor odd, since its

numerical value changes when the sign of x is changed. We see

then that the cosine and the secant of an angle are even functions,

and tlie sine, tangent, cotangent, and cosecant are odd functions.

The versine is an even function, but the coversine is neither even

nor odd.

27. The values of the circular functions of an angle depend

only upon the position of the bounding line OP, with reference

to the other bounding line OA, consequently all the coterminal
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angles (OA, OP) have the same circular functions, or in other

words, all the angles n . 360° + A, where n is any positive or

negative integer, have their circular functions the same as those

of A. If a be the circular measure of the angle which contains

A degrees, all the angles 2mr + a, in circular measure, have the

same circular functions. We have also, since all the angles

2mr — a have the same circular functions,

sin (2n7r
—

a)
= sin (— a)

= — sin a,

and cos (2rnr
—

a) = cos (— a)
= cos a.

The properties we have obtained are both included in the

equations
sin (2n7r + a)

= + sin a)

cos (2mr ± a)
= cos a J

.(6).

28. If the angle 180° - A or tt - a is bounded by OQ, then 0Q
makes the same angle with OA' as OP does with OA, and we see

that the projections of OP and OQ on OA are equal and of opposite

sign, and the projections of OP and OQ, on OB, are equal and of

the same sign, therefore sin {tt
—

a)
= sin a, and cos {ir

—
a)
= — cos a.

These equations hold whatever a may be, so that we can change a

into — a, and we have

sin {ir + a)
= sin (— a)

= — sin a

and cos {ir + a.)
= — cos (— a)

= — cos a.
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Thus we have the system of equations

sin {it ± a)
= + sin a)

cos (tt ± a) = — cos a
j

from these we obtain

tan {it ± a) = ± tan a (8).

Also sin (2?i + 1 it ± a)
= sin (ir ± a)

= + sin
a]

cos (2w 4- 1 7r + a)
= cos (tt ± a)

= — cos a\ (9).

tan (2n + 1 it ± a)
= tan (7r + a) = + tan a)

29. In the figure of Art. 28, the angle OP makes with OB' is

90° + A ;
therefore the cosine of the angle 90° + A or § tt + a is the

ratio of the projection of OP on OB' to OP
;
hence since the pro-

jection on OB' is equal with opposite sign to the projection on OB,

we have cos (\tt + a) = — sin a
; changing ^ it + a into a, we have

cos a = — sin (a
—

\tt), hence in virtue of (6) we have

cos a — sin(^7r
—

a).

In these equations we can, if Ave please, change the sign of a,

since a may be either positive or negative ;
we have then the

equations
sin (^7r ± a) = cos a \

cos (^7r ± a)
= + sin a I

QO).
tan {\ir ± a)

= + cot
a)

We have also, from (6) and (9),

sin (m + ^TT ± a)
= (- l)

w sin (£tt ± a),

cos (m + \tt ± a)
= (- l)

m cos (^tt ± a),

tan (m + ^tt ± a) =» tan (^ 7r + a),

hence

sin (m + \tt ± a)
= (— l)

m cos a
j

cos (ra + jw ± a) = + (- l)
m sin oc> (11).

tan (w + ^ 7r ± a) = + cot a i

The angle 7r — a is called the supplement of the angle o, and

the angle ^tt
— a is called the complement of a.

We have shewn that the sine of an angle is equal to the

sine of the supplementary angle, and the cosine of an angle is

equal, with opposite sign, to the cosine of its supplement ; also that

the sine of an angle is equal to the cosine of its complement, and the

cosine of an angle is equal to the sine of its complement.
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The formulae (6) to (11) enable us to find the circular functions

of an angle, when we know the values of the circular functions of

that angle between zero and ^tt, which differs from the given angle

by a multiple of %tt, or also when we know the circular functions

of the complement of this latter angle.

Periodicity of the circular functions.

30. When a function f(x) of a variable has the property

f{x) =f(x + k) for every value of x, k being a constant, the function

f(x) is called periodic; if moreover the quantity k is the least

constant for which the function has this property, then k is called

the period of the function.

It follows at once that iff(x)=f(x + k), then f{x) =f(x + n k),

where n is any positive or negative integer; if then we know

the values of the function for all values of x lying between two

values of x which differ by k, we know the values of the function

for all other values of x, the function having values which are a

mere repetition of its values in the interval for which they are

given.

The property (6), of sin a. and cos a, shews that these functions

are periodic functions of a, the period being 27r, or if the angle is

measured in degrees, sin A and cos A are periodic functions of A,

the period being 360°. The property (7) shews that ^these

functions are such that their values, for values of the angle

differing by half the complete period, are equal with opposite sign.

The property (8) shews that the tangent is periodic, the complete

period being ir, half the period of the sine and cosine. Obviously
the period of the secant or of the cosecant is 27r, and that of the

cotangent is it. It will be hereafter seen that the circular functions

derive their importance in analysis principally from their possession

of this property of periodicity.

Changes in the sign and magnitude of the circular functions.

31. We shall now trace the changes in the magnitude and

sign of the circular functions of an angle, as the angle increases

from zero to four right angles.

(1) To trace the changes in the value of the sine of an angle,
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we must observe the changes in magnitude and sign of the

projection ON, in the figure of Art. 18. When the angle A is zero,

OX is zero, and as A increases up to 90°, ON is positive and

increases until when A is 90°, ON is equal to OP, thus sin A is

positive and increases from to 1. As A increases from 90° to

180°, ON is positive and diminishes until when A is 180° it is

again zero, therefore sin A is positive and decreases from 1 to 0.

As A increases from 180° to 270°, ON is negative and increases

numerically, until when A is 270°, ON = — OP, hence sin .4 is

negative and changes from to — 1. As A increases from 270° to

360°, ON is negative and diminishes numerically, until when A
is 360

3
it is again zero, thus sin A is negative and changes from

- 1 to 0.

(2) In the case of the cosine, we must observe the changes in

magnitude and sign of the projection OM. We find that as A
increases from 0° to 90°, cos A is positive and diminishes from 1 to

0; as A increases from 90° to 180°, cos A is negative and changes
from to — 1

;
as A increases from 180° to 270°, cos A is negative

and changes from — 1 to 0; and as A increases from 270° to 360° :

cos .A is positive and increases from to 1.

(3) To trace the changes in the tangent of an angle, we must

consider the ratio of ON to OM
;
when the angle is zero, this ratio

is zero, and is positive and increasing as the angle increases from 0°

to 90°; when the angle is 90°, the projection OM is zero, and ON
is unity, hence tan 90° = oo

;
as i increases from 90° to 180°, the

tangent is negative and changes from — oo to 0. As i increases

from 180° to 270°, tan A is positive, since ON and OM are both

negative, and it increases until it again becomes infinite when
A = 270°. As A increases from 270° to 360°, the tangent is

negative and changes from — oo to 0. It will be observed that

tan A changes from + oo to — oo in passing through the value 90°,

and from — oo to + oo in passing through 270°; to explain this, it

is only necessary to remark that as a variable x changes sign by

passing through the value zero, its reciprocal 1/x changes sign in

passing through the value oo .

(4) The changes in the values of the cosecant, secant, and

cotangent of A may be deduced from the above, if we remember

that they are the reciprocals of the sine, cosine, and tangent,

respectively. Their values for A=0°, 90°, 180°, 270°, 360° are



26 THE CIRCULAR FUNCTIONS

given in the following table, which also includes the results

obtained above for the sine, cosine, and tangent.
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and cosec x, being the origin for cosec x, and 0' for sec x ;
the

ordinates at 0, A, B are asymptotes of this curve.



28 THE CIRCULAR FUNCTIONS

Example. Draw graphs of the following functions

(1 )
sin x+ cos x. (2) cos {it sin x) . cos (n cos x).

(3) ta?ix + secx. (4) sin («• cos x)/cos (ir sin x).

(5) sin2 x- 2 cos x. (6) si'« (Jn- + Jtt cos x).

Angles ivith one circular function the same.

33. We shall now find expressions for all the angles which

have one of their circular functions the same.

(1) If in the figure, A OP is a given angle, and PPt is drawn

parallel to OA, the angles (OA, OP) and (OA, OP^) are the only

angles which have their sine the same as that of AOP, for they
are the only angles for which the projection of the radius on OB
is equal to ON; these angles are 2mr + a and 2mr + tt — a, where a

is the circular measure of AOP, and n is any integer; they are

both included in the expression mir + (— l)
m

a, where m is any

positive or negative integer ;
this is therefore the expression for all

the angles whose sine is the same as that of a.

(2) Next draw PP2 parallel to OB, then the angles (OA, OP)
and (OA, 0P2 ) are the only angles which have the same cosine as

a, for they are the only angles for which the projection of OP on

OA is equal to 031; they are both included in the formula Innr ± a,

where m is any positive or negative integer.
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(3) If PO is produced to P3 ,
the angles (OA, OP), (OA, 0P3)

are the only ones which have the same tangent as a
;
these angles

are respectively 2nir + a and 2nv + tt + a, and are therefore both

included in the formula vnr + a, where in is any positive or

negative integer.

(4) Since angles which have the same cosecant have also the

same sine, we see that mir + (— l)
m a includes all the angles whose

cosecant is the same as that of a
;
also Imir ± a includes all angles

whose secant is the same as that of a, and mir 4- a includes all

angles whose cotangent is the same as that of or.

In every case zero is included as one value of m or n.

Determination of the circular functions of certain angles.

34. The values of the circular functions of a few important

angles can be obtained by simple geometrical means.

(1) The angle 45° or \ir is an acute angle in a right-angled
isosceles triangle, the sine and cosine of this angle are therefore

obviously equal to one another
;
and since the sum of their squares

is unity, each of them is equal to l/\/2 ;
the tangent of the angle

is therefore unity.

(2) Each of the angles of an equilateral triangle is 60° or £ it.

Let ABC he such a triangle; draw AD perpendicular to BC,
HD

then the cosine of the angle B is
-j-^ ,

and this is equal to \ ;
the

sine of the same angle is Vl —
\ = JV3. The complement of 60°
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is 30° or \tt, hence we have cos 30° = \ V3, and sin 30° = \, We
have also tan 60° = -A and tan 30° = 1/^3.

(3) Draw AE bisecting the angle DAB, then the angle DAE
is 15° or ^7r. We have by Euclid, Book VI. Prop. III.

DE_DA
EB

~
AB

DE V3

= W3,

therefore DB
DE V3

2 + V3'

and thence ^^ or tan 15° is equal to .

**"
'—^ or 2 — \/3.

DA. \/o y£ + \/ a)

From this we obtain

V6-V2
sin 15° = cos 15° =

V6 + V2
4

—"
4

'

We can, from these values, obtain the sine, cosine, and tangent of

75° or y^tt, the complementary angle. If we proceeded in the same

way, bisecting the angle DAE, we should obtain the tangent of

7° 30' or y^tt, and we might continue the process so as to obtain

the tangent of all angles of the form
7T

3.2*
where p is a positive

integer, but we shall hereafter obtain formulae by which the

functions of these angles may be successively calculated, thus

obviating the necessity of continuing the geometrical process.

By a similar geometrical method we might obtain the circular

functions of the angles of the form ir/Vf.

(4) Let ABC be a triangle in which each of the base angles
is double of the vertical angle A ;

the base angles are each 72°, or
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\tt, and the vertical angle is 36°, or \tt. If AB is divided at D so

that AB.BD = AD2
,
then it is shewn in Euclid, Book iv. Prop. x.

that AD = DC = CB. Draw AE perpendicular to BC. Denoting

the ratio of AD to AB by #, we have 1 — x = x2
,
and solving this

quadratic, we find x = ^(±^5 —
1); we must take the positive

root, hence^ = i(V5— 1), thus

cos 72° = sin 18° = 1^^ = 1(^5-1);
BC
AB

from this Ave obtain sin 72° = cos 18° = £ VlO + 2 ^/5.

AC
Also cos 36° = \ -t-j,

,
since DAC is an isosceles triangle,

therefore cos 36° = I {\'b + 1), hence sin 36° = £ VlO - 2 y/5.

Since 54° is the complement of 36°, we have therefore the

values of sin 54° and cos 54°.

In the following table the values we have obtained are collected

for reference. The functions in the first line refer to the angles

in the first column, and the functions in the last line to the angles

in the last column.
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Example. Find the sine and cosine of 120°, and of
— 576°.

We have 120°= 90°+ 30°, hence

sin 120° = cos 30° =^3, cos 120°= - sin 30°= -%.

Again - 576°= -
(3 . 180° + 36°), therefore

sin (-576°) = sin
( + 180° -36°)= sin 36°,

also cos - 576° = cos (180°
-

36°) = - cos 36°.

The inverse circular functions.

35. If y is a function f(x) of x, then x may also be regarded
as a function of y ;

this function of y is called the inverse function

of f(x), and is usually denoted by f~
l

(y) ;
thus x =f~

1

(y). If

f{x) is a periodic function, of period k, so that /(#)=/(# + mk),

where m is any positive or negative integer, the function /-1
(y)

will have an infinite number of values given by x + mk, where x is

any one value of /_1
(y) ;

such a function of y is called multiple-

valued, since it has not a single value for each value of the

variable y. We see therefore that, corresponding to a periodic

function f (x) =y, there is a multiple-valued inverse function f-1 (y)

tvhich lias an infinite number of values for any one value of y, these

values differing by multiples of the period off (x).

36. If there are two or more values of x, lying between and

k, for which f(x) has equal values, the multiplicity of values of

f"
1

(y) is still further increased, since it will have each of the

values of x for which f(x) = y, and the infinite series of values

obtained by adding multiples of k to each of these. For example,

suppose that there are two values x1} x2 ,
each lying between and

k, for which f(x) = y, then the inverse function/
-1

(y) has the two

sets of values x
1 + mk, x2 + nk.

37. In the case of the circular function sin x = y, the values

of the inverse function sin_1 y are nrr + (— l)
nxl ,

where x, is any
value of x for which sin x1

= y ;
in this case the complete period

of sin x is 2ir, and there are two values of x, say x^ and tt — xly lying

between and 2ir, for which sin x = y ;
thus the values of sin_1

2/
are

the two series of values n.2ir-!s-x1 and n.2ir + ir — xly both included

in mr+(—l)n x
1

.

In a similar manner, we see that the values of cos-1 y are in-

cluded in 2nrr ± x, where cos x = y.

The periods of the functions tan x, cot x are ir, only half
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those of sin x and cos a?, and there is only one value of x between

and 7r for which tan x or cot x has any given value
;
thus tan-1 y

has the values mr + x^ and cot-1 ?/ the values mr + xly where xx is

that value of x between and it, such that tan xx or cot xx
is equal

toy.

38. The numerically smallest quantity x which has the same

sign as y, and is such that sin x = y, is called the Principal Value

of sin-1
;?/;

a similar definition applies to the principal values of

tan-1
;?/,

cot-1
;?/,

cosec-1
;?/.

The numerically smallest positive value of x which is such

that cos x = y is called the Principal Value of cos-1 y ;
a similar

definition applies to sec-1 ?/.

Thus the principal values of sin-1
;?/,

tan-1 ?/, cot-1
;?/,

cosec-1 y
lie between the values + \ir, and the principal values of cos-1

;?/,

sec-1 y lie between and it. In some works, the principal values

of sin-1 y, cos-1 y, tan-1 y are denoted by Sin-1 y, Cos-1 y, Tan
-1
y ;

the general values are then given by

sin-1?/=??7r+(—l)
n Sin-1y,cos

-1
y=2n7r+Cos

-1
2/,tan

-1
2/=W7r+Tan

-1
y;

we shall however not use this notation. It must be remembered

that in many equations connecting these inverse functions it is

necessary to suppose that the functions have their principal values,

or at all events that the choice of values is restricted. For

example, in such an equation as sin-1 y + cos-1 y=\ir, the choice of

values of the inverse functions is restricted.

It should moreover be noticed that the functions cos-1 y, sin-1 y
have only been defined for values of y lying between + 1

; beyond
those limits of y, the functions have no meaning, so far as they
have been at present defined. The student should draw, as an

exercise, graphs of the various inverse circular functions.

In Continental works, the notation arc sin x, arc cos x, arc tan x

is used for sin-1 x, cos-1 x, tan-1 x.

EXAMPLES ON CHAPTER III.

1. Prove the identities

(i) tan A (1
- cot2

A) + cot A (1
- tan2 A

)
=

0,

(ii) (sin A + sec A )
2+ (cos A + cosec A

)
2=

(
1 + sec A cosec A

)
2

.

2. The sine of an angle is —^ ^ ;
find the other circular functions.

n. t. 3



34
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18. A pyramid has for base a square of side a; its vertex lies on a line

through the middle point of the base, perpendicular to it, and at a distance h

from it
; prove that the angle a between two lateral faces is given by

2h </2a
2 + 4A2

sin a = —
.

a1 + 4.h*

19. Two planes intersect at right angles in a line A B, and a third plane
cuts them in lines AD, AC; if the angles DAB, CAB be denoted by a, /3

respectively, prove that the angle BA makes with. the plane CAD is

tan a tan /3
tan

~ 1

Vtan2a+tan2
j8

20. Shew that, if OD be the diagonal of a rectangular parallelepiped, the

cosines of the angles between OD and the diagonals of the face of which

OA, OB are adjacent sides are respectively

AB 0A*~0W
OD and OD.AB •

21. Two circles, the sum of whose radii is a, are placed in the same

plane, with their centres at a distance 2a, and an endless string, quite

stretched, partly surrounds the circles, and crosses itself between them.

Shew that the length of the string is (^ir + 2 s/3)a.

22. Prove that

cos tan -1 sin cot -1

23. Illustrate graphically the change in sign and magnitude of the func-

tions 3 sin x+ 4 cos x, ex sin x, and sin (
—- sin x ) for all values of x.

W2 /

Shew that the equation 2x= (2n+ l) n versa:, where n is a positive integer,

has 2/1 + 3 real roots and no more, roughly indicating their localities.

3—2



CHAPTEE IV.

THE CIRCULAR FUNCTIONS OF TWO OR MORE ANGLES.

The addition and subtraction formulae for the sine and cosine.

39. We shall now find expressions for the circular functions

of the sum and of the difference of two angles, in terms of the

circular functions of those angles.

Suppose an angle A OB of any magnitude A, positive or

negative, to be generated by a straight line revolving round

from the initial position OA, our usual convention being made as

to the sign of the angle, and suppose further that an angle BOG of

any magnitude B is described by a line revolving from the initial

position OB; then the angle A00 is equal to A + B. In OC take

a point P, and draw PN perpendicular to OB.

According to the convention in Art. 15, the straight line ON
is positive or negative according as it is in OB, or in OB produced ;

also NP is positive when it is on the positive side of OB, revolving

counter-clockwise, and negative when on the other side. The

positive direction of the straight line on which NP lies makes

an angle ^1+90° with OA. We have ON= OP cos B, and

NP = OP sin B; for ON and NP are the projections of OP on

OB and on the line which makes an angle A + 90° with OA.

In fig. (1), each of the angles A, B is positive and less than

90°
;
in fig. (2), the angle A lies between 90° and 180°, and the

angle B also lies between 90° and 180°
;
in fig. (3), the angle A lies

between 180
9
and 270°, and the angle B is negative and lies

between - 90° and - 180° In figs. (1) and (2), NP is of positive

length, and in
fig. (3), NP is of negative length, since, in the last
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case, PN is the direction of a line making an angle A + 90° with

OA.

By the fundamental theorem in projections, given in Art. 17,

the projection of OP on OA is equal to the sum of the projections

of ON and NP on OA, or

OP cos (A+B) = ON cosA+NP cos (A + 90°)
= OP cos A cos B + OP sin B cos (A + 90°),

therefore cos (J. +B) = cosA cosB — sin A sin B (1).

If, instead of projecting the sides of the triangle ONP on OA,
Ave project them on a line making an angle + 90° with OA, we
have

OP sin (A+B)= ON sin A + NP sin (A + 90°)
= OP sin AcosB+ OP sin (4 + 90°) sin B,

therefore sin (A + B) = sh\A cos.S + cos.4 sin B (2).

The formulae (1) and (2) have thus been proved for angles of

all magnitudes, both positive and negative. The student should

draw the figure, for various magnitudes of the angles A and B, in

order to convince himself of the generality of the proof.

If we change B into —B, in each of the formulae (1) and (2),

we have
cos (A — B) = cos A cos (— B) — sin A sin (— B)

and sin {A— B) = sin A cos (— B) — cos A sin (— B),

hence cos (A — B) = cos A cos B + sin A sin B (3),

and sin (A — B) — sin A cos B — cos A sin B (4).

These formulae (3) and (4) would of course be obtained directly,

by describing the angle B in the figure in the negative direction,

so that the angle POA would be equal to A — B.

40. The formulae (1), (2), and (3), (4), are called the addition

and subtraction formulae respectively; either of the formulae (1)

and (2) may be at once deduced from the other; in (1) write

A + 90° for A, we have then

cos (90° + A + B) = cos (90° + A) cos B - sin (90° + A) sin B
or — sin (A + B) = — sin A cos B — cos A sin B

;

and changing the signs on both sides of this equation, we have the

formula (2) ;
in the same way, by writing A + 90° for A in (2), we

should obtain (1). It appears then that all these four fundamental

formulae are really contained in any one of them.



THE CIRCULAR FUNCTIONS OF TWO OR MORE ANGLES 39

41. The proof of the addition and subtraction formulae, given by Cauchy,

is as lollows:—"With O as centre describe a circle, and let the radii OP, OQ

make angles A, B, respectively, with OA ; join PQ, and draw PIT, QN per-

pendicular to OA, and QR parallel to 0A
y
then we have

P<P=QR*+RP*
= (OJV- OMf+{PM-QNf
= 0A 2

{(cos B- cos ^4)
2+ (sin A - sin B)

2
}

= 20A 2
(1
- cos A cos B - sin A sin B).

Let PS be drawn perpendicular to the diameter QQ
1

,
then

PQ2= QS . Qg = 20A (OA - OS)

= 20A 2
{l-cos(A-B)},

therefore cos (A — B)= cos A cos .5+ sin A sin B (3).

The other formulae may then be deduced; (1) by changing B into —
B,

(2) by changing B into 90° - B, (4) by changing B into 90°+ B.

42. Besides the two proofs which we have given of the

fundamental addition and subtraction formulae, both of which are

perfectly general, various other proofs have been given, some of

which are in the first instance only applicable to angles between

a limited range of values, and require extension in the cases of

angles whose magnitudes are beyond that range. We shall make

this extension in the case in which the formulae have been first

proved for values of A and B between 0° and 90°. Whatever

A and B are, it is always possible to find angles A' and i>", lying
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between 0° and 90°, such that A = m . 90° + A', B = n. 90° + B'
,

where m and n are positive or negative integers ;
we have then

cos (A+B) = cos (m + n 90° + A' + B') j

(1) if in and n are both even, we have

m+n
cos (A + B) = (- 1)

2 cos {A' + B')
m+n

= (- 1)
2

(cos A' cos B' - sin 4' sin 5'),

now cos A = (- 1)
2 cos A', sin A = (- 1)

2 sin 4',

with similar formulae for B,

hence cos (A + B) = cos J. cos B — sin J. sin B
;

(2) if m and ?i are both odd, we have

m-l m + 1

cosA=(-l) 2
cos(90

o + A') = (-l)~sinA',

sin A = (- 1)
2 sin (90° + 4') = (- 1)

a cos ^'

with similar formulae for B; hence as before we obtain, by sub-

stituting the values of cos A', cos B', sin A', sin 5', the formula

for cos {A + B) ;

(3) if i)i is odd and ?i is even,

m+n -1

cos {A+B) = (- l)

-"

2
""

cos (90° + A' + B')
m+M+ l

= (-1)
2 sin (A' + JB')

m+M+l
= (-1)

2
(sin A' cos 5' + cos A' sin 5'),

m + l n

now cosA=(— 1)
2 sin A', cosB = (— l)

2 cos B',
m - 1 «

sin A = (-l)~2~cosA', sin JB = (-l)
2 sin JB';

hence, substituting as before, we have the formula for cos (A + B).

The other formulae may be extended in the same manner.

43. The form in which the addition formulae were known in the

Greek Trigonometry
1
is Ptolemy's theorem given in Euclid, Bk. vi.

Prop, d; this theorem is, that if ABOD be a quadrilateral in-

scribed in a circle, AB .CD + AD .BC = AC.BD. Any chord

AB is the sine of half the angle which AB subtends at the centre

of the circle, the diameter of the circle being taken as unity, and

1 See the Article "
Ptolemy" in the Encijclopaedia Britannica, ninth Edition.
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this half angle is the angle subtended by the arc AB at the cir-

cumference. We shall shew that the formulae for sin (a + /3) and

cos (a + (3) are contained in Ptolemy's theorem.

(1) Let BD be a diameter of the circle, and ADB =
a,

BDC = p; then ABD = £ir-a, DBC = £w-£, AC = sin (a + /3),

AB = sin a, CD = cos /3; thus the theorem is equivalent to the

formula . , „ _ . _
sin (a + p)

— sm a cos p + cos a sin p.

(2) Let CD be a diameter of the circle, and BCD= a,ACD = p,

thus AB = sin (a
—

/3), and the theorem is equivalent to

sin (a
—

/3) + sin /3 cos a = cos /3 sin a.

(3) Let BD be a diameter of the circle, and ADB =
a,

CBD = /3, then ADC = %•* + a- /3, thus J. C= cos (a
-

£), and the

theorem is equivalent to

cos (<*
—

/?)
= cos a cos /3 + sin a sin /3.

(4) Let CD be a diameter of the circle, and BCD = a,

ADC = /3 ;
then BCA = a + /3

-
|tt, AB = - cos (a + £), and the

theorem is equivalent to

— cos (a + /3) + cos a cos ft = sin a sin /3.

Example. Employ Ptolemy's theorem to prove the following theorems:

sin a sin (/3
-

y) + sin /3 sm (y
-

a) + s»i y sin (a
-

/3)
= 0,

stVi (a -|- 0) WW O+ y )
=sm a sm y+ s»i /3 stri (a+ /3+ y) .

Formulae for the addition or subtraction of two sines or two

cosines.

44. We obtain at once from the addition and subtraction

formulae . . . „. . , . „. _ . , nsm (A+B) + sin (A - B) = 2 sm A cos B,

sin (A + B) - sin (A - B) = 2 cos ^4 sin 5,

cos (J. + B) + cos (^.
— B)= 2 cos .4 cos B,

cos ( J.
— B) - cos (/I 4- B) = 2 sin J. sin B,

\et A + B = C, A — B = D
;
we obtain then, since A = £ (C + D),

B=\{C - D), the formulae

sin C + sin D = 2 sin \ (C + D) cos £ (0 - D) (5),

sin C- sin /) = 2cosHC+#)sinW-£) (6),

cos C + cos 2) = 2 cos | (C + Z>) cos £ (C - D) . (7),

cosD-cosC = 2sin \{C + D) sin £(C - Z)) (8).
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These important formulae (5), (6), (7), (8) are the expressions
for the sum or difference of the sines or of the cosines of two

angles as products of two circular functions
; they may be ex-

pressed in words as follows :

The sum of the sines of two angles is equal to twice the product

of the sine of half the sum and the cosine of half the difference of
the angles.

The difference of the sines of two angles is equal to twice the

product of the cosine of half the sum and the sine of half the

difference of the angles.

The sum of the cosines of two angles is equal to twice the

product of the cosine of half the sum and the cosine of half the

difference of the angles.

The difference of the cosines of two angles is equal to twice the

product of the sine of half the sum and the sine of half the reversed

difference of the angles.

45. These formulae may be proved geometrically by the

method of projections.

A

Let BOA = G, COA=D, and let OB=OC; draw ON per-

pendicular to BC, then N is the middle point of BG, also

NOA = | (G + D), NOB = NOG = \{G-D).
The sum of the projections of OB, OC, on OA, is equal to the sum
of the projections of ON, NB, ON, NG, on OA, and, since the

projections of NB and NG are equal with opposite sign, this is

equal to twice the projection of ON; therefore

OB cos C + OG cos D = 20N cos \ (G + D),

and since ON = OB cos £ (C - D),
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we have the formula

cosC + cosD = 2cos^(C + D)cos^(C-D) (7).

If instead of projecting on OA we project on a straight line

perpendicular to OA, we have

OB sin C + OC sin D = 20N sin \ {C + D),

hence sin C + sin D = 2 sin \ (G + D) cos |((7
— D) (5).

Also the projection of 00 on OA is equal to the projection of

OB, together with twice the projection of BN, or

OC cos D = OB cos + 2BN sin \ (0 + D),

hence cosD- cos 0= 2 sin ±(C + D)sin% (C - D) (8),

and if we project on the line perpendicular to OA, we have

OC sin D = OB sin C-2BN cos ± (C + D)

or einC -sinD = 2sin±(C - D)cos±(C+ D) (6).

A curious method of multiplying numbers, by means of tables of sines,

was in use for about a century before the invention of logarithms. This

method depended on a use of the formula

sin A sin B= | {cos (A
- B) - cos {A + B)} ;

the angles A and B, whose sines, omitting the decimal point, are equal to the

numbers to be multiplied, can be found from a table of sines, and then

cos (A +B), cos (A
— B) can be found from the same table

;
half the difference

of these last gives the required product. This method was called Trpoo-BcKpai-

peats. An account of this method will be found in a paper by Glaisher, in

the Philosophical Magazine for 1878, entitled " On Multiplication by a Table

of single Entry."

Examples.

(1) Prove the identity

sin A sin (B - C) sin (B +C - A) + sin B sin (C
- A) sin (C +A- B)

+ sin C sin (A - B) sin (A+B - C) = 2 sin (B
-
C) sin (C

- A) sin (A - B) .

The second and third terms on the left-hand side may be written

£sin B {cos (B- 2/l)-cos (2C- B)} + £sin C{cos (C- 2B)- cos (2A - C)},

which is equal to

J {sin 2 (B - A) + sin 2A - sin 2C- sin 2 (B - C)}

+ % {sin2(C- B) + s\n2B -sin2A -sin2(C- Ayh
or £ (sin 2B - sin 2C) - \ sin 2 (B - C)+ J {sin 2 (B - A) - sin 2 (C- A)},

or sin (B - C) {£ cos (B+ C)- cos (5- £)+ £ cos (B+C- 2.1)},

which is equal to sin (B - C) {cos A cos (B+C— A) -cos(Z?-C)} ;

adding the term sin .4 sin(.#- C)nin(B+ C-A),
we have sin (B-C) {cos (B + C-2A)- cos (5- C)},

or 2 sin (Z?-C) sin (C- 4) sin (4 -tf).
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(2) Prove that

2 cosA sin (B - C) sin (B+C - A) = 2 sin (B - C) sin (C
- A) mm (

A - B).

This may be deduced from Ex. (1), by changing A, B, C into 90° -A,
90° - B, 90° - C respectively, or may be proved independently as in Ex. (1).

Prove the identities

(3) S«wAsm(B-C) = 0, 2 cos Asm(B-C) = 0.

(4) 2sm(B+C)am(B-C)=0J 2cos(B +C)sm(B-C) = 0.

(5) 2 sin B sin C sin (B
-
C) = - sin (B

- C) sin (C - A) sin (A - B),

2 cos B cos C cos (B - C) = - sin (B - C) sin (C - A) sin (A - B).

(6) Prove that if A+ B -f-C= tt
,

sin2 A= sin2 B + sin2 C — 2 sm B sm C cos A,

arco? cos2A= 1 — cos2 B — cos2 C — 2 cos A cos B cos C.

A large number of Trigonometrical identities are analogous to similar

Algebraical identities 1
. For example, the following algebraical identities

correspond to examples (1) to (5),

2a(b - c) (b + c-a) = 2 (b -c) (c -a) (a -b), to (1) and (2),

2a(6-c) = 0, to (3), 2 (b + c) (o-c) = 0, to (4),

2oc(&-c)=-(o-c)(c-a)(a-6), to (5).

We shall, in Chap, vn., give the theory of these correspondences.

Addition and subtraction formulae for the tangent and cotangent.

46. From the addition and subtraction formulae we may-

deduce formulae for the tangent or cotangent of the sum or

difference of two angles in terms of the tangents or cotangents
of those angles. Thus

. . „. sin (A ± B) sin A cos B ± cos A sin B
tan (A + B) = ; .

, ^ =
-. D _ —-.

—
.
—^ ,

cos (A + B) cos A cos B + sin A sin B
hence dividing the numerator and the denominator of the fraction

by cos A cos B,
sin A sin B

, . _. cos A ~
cos B

cos A cos B
thus we have the two formulae

,. „. tan A+ tan B
tan (A+B) = =- .

T
.. -^ (9),v

1 - tan A tan B v "

, . „. tan A — tan 5
tan (A - B) =—— -~

—^ (10).
1 + tan A tan B

1 A large number of these correspondences are given by M. Gehn, in Mathesis,

Vol. n.
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In a similar manner we obtain the formulae

L / A T1X cot -4 cot B — 1 ., , .

«*(^+*>- cotA+cotB (U) -

i. / a m cot A cot B + 1 /n
.

cot(A-B)= mtB _ mtA (12).

The formulae (9), (10), (11), (12) are the addition and sub-

traction formulae for the tangent and cotangent.

Various formulae.

47. The following formulae may be deduced from the for-

mulae which we have obtained for two angles, and are frequently

useful in effecting transformations. The student should verify

each of them.

sin (A + B) sin (A - B) = sin2 A - sin2 B = cos2 B - cos2 A . . .(13),

cos (A + B) cos (A-B) = cos2 A - sin2 B = cos2 B - sin2 A . . .(14),

sin (A + B)cos(A - B) = sin J. cos A + sin B cos B (15),

cos(A + J5)sin (A
— B) = sin A cos A — sin B cos B (16),

sin (A 4- B) _ tan A + tan B
sm(A-B)~t&nA-tanB ( 17''

cos (A + 5) _ 1 — tan J. tan 5
cos (4 - JB)

~
1 + tan 4 tan 5 *> >'

n sin (^1 4 B)
tan 4 4 tan B = v ~

„ (19).cos .4 cos is
v J

From the formulae for the addition and subtraction of two

sines or cosines we obtain at once

sin A 4- sin B _ tan \ (A + B)
sin A - sinB

~~

tan ±(A-B)
'

''

sin A 4 sin 5
, D ,

.

—D = tan iM 4 J5) (21),
cos J. + cos 2?

2 \ - / \ />

sin A 4 sin Z? . . . m
.,

—
.- = cot £ (4 + 5) (22),cos £ — cos J.

^ v ' v '

cos

^4-
cos 1?

= _
cos Z? - cos A 2 v ' / a \ / \ /
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Examples.

(1) Prove the identity

1 — cos- A — cos2 B — cos2 C+ 2 cos A cos B cos C
= ±sin :k(A + B + C)sin±(-A + B + C)sin%(A-B + C)sin$(A+ B-C).

The expression on the left-hand side may be written

- cos2 A -cos (B+C) cos (B-C) + cos A {cos (B+ C) + cos(B-C)}.

which is equal to {eos A —cos (B+ C)} {cos (B — C) — cos A] ;

then, splitting each of these factors into two factors, we obtain the expression

on the right-hand side. If + A ±B±C is a multiple of 2tt, then

1 — cos2 A — cos2 B — cos2 C+ 2 cos A cos B cos C

is zero; this result is sometimes useful.

(2) Prove that

1 - cos2 A — cos2 B — cos2 C — 2 cosA cos B cos C
= -4cos|(A+ B+ C)cosi(-A + B + C)cosJ(A-B+ C)cos£(A + B-C).

This may be deduced from (1), or proved independently.

(3) Prove that if A+B+C = nir,

sin 2A+ sin 2B + sin 2C =
(
— 1

)
n ~ 1 4 sin A sj'w B sm C.

We have

sin 2A +sin 2Z?+sin 2(7=2 sin .4 cos 4 +2 sin (nw-A) cos (B-C)
= 2sinA{(-l)

n cos(B+C)-(-l)n
cos(B-C)}

=( -l)"-
1 4 sin J sin B sin C.

(4) Prove that, under the same supposition as in Ex. (3),

1 + cos 2A +cos 2B+cos 2C = (
—

l)
n 4 cos A cos B cos C.

Prove the identities

(5) sin 3A=4 sw A sin (60° + A) sm (60°
-
A).

(6) cos 3A= 4 cos A cos (60° + A) cos (60°
-

A).

(7) sin A + sin B+ aim C — sin (A+B -f C)
= 4 sm \ (B + C) sin h (C + A) smi £ (A+ B).

(8) cosA+cos.S+ cosC + cos(A+B+ C)
= 4 cos £ (B+ C) cos $ (C + A) cos |(A + B).

(9) 2 sin 2A swi2 (B + C)
- sin 2A sm 2B sin 2C

= 2 sin (B+ C) sw (C +A) sin (A+ B).

(10) 2 cos 2A cos2 (B+ C) - cos 2A cos 2B cos 2C

=2cos(B + C)cos(C + A)cos(A+ B).

(11) 2 sin2 A sm
(
B+ C - A) - 2 sinA sin B st?i C

= sin (B + C - A) sin (C +A -
B) sin (

A +B - C).

(12) 2 cos2 A cos (B+C - A) - 2 cosA cos B cos C
= cos (B +C- A) cos(C+A-B) cos (A+ B-C).
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(9) and (10) correspond to the algebraical identity

2 2a (b + cf - 8abc= 2 (b + c) (c + a) (a + b) ;

(11) and (12) to the identity

2a?(b+c-a)-2abc= (b + c-a)(c + a-b)(a + b-c).

Addition formulae for three angles.

48. From the addition formulae (1) and (2) we may deduce

formulae for the circular functions of the sum of three angles in

terms of functions of those angles; we have

sin (A + B + G)

= sin (A + B) cos C + cos (4 + B) sin G
= (sin A cos B + cos A sin B) cos G + (cosA cosB— sinA smB) sinC,

and cos (A+B + C)

= cos(-4 +B) cos G— sin (A +B)s'mC
= (cos A cos B — sin A sin B) cos G— (sinA cosB+ cosA sin B) sin C,

hence we have

sin {A+B + C)

= sin A cos B cos C + sin B cos C cos A + sin G cos A cos 5
— sin A sin i? sin G (24),

cos (A+B + C)

= cos A cos 5 cos (7— cos A sin £ sin C — cos i? sin CsinA
— cos C sin A sin 5 (25).

The formulae (24), (25) may be written in the form

sin(A + £+C)
= cos A cos B cos C (tan A + tan B + tan G — tan J. tan B tan C),

cos (A+B + C)

= cos J. cos B cos (7(1
— tan 5 tan C — tan (7 tan A — tan .4 tan B);

hence by division we have the formula

tan (A+B + C)

tan A + tan B + tan C — tan A tan J5 tan G
1 — tan 2? tan G — tan (7 tan A — tan ^1 tan B ' '

We might obtain in a similar manner the formula

cot (A+B + C)

cot A cot 7? cot G — cot J. — cot B — cot (7

.(26).

CO) l',ru\ ('
\

r..t .. f/co| /I -f Cot /l COt A' - 1
.(27).
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Examples.

(1) Prove that tan (45° + A) - tan (45°
- A)=2 tan 2A.

(2) Prove that if A+ B + C= nir,

tan A+ tan B -+- tan C — tan A tan B tan C=
;

and if A+ B+ C = (2m+1)^,

tan B tan C + tan C tan A+ tan A tan B= 1 ;

and state the corresponding theorems for the cotangents.

Addition formulae for any number of angles.

49. It is obvious that we might now obtain formulae for the

circular functions of the sum of four angles, then of five angles,

and so on
;
we shall prove by induction that the formulae for the

sine and the cosine of the sum of n angles A 1} A 2 ...A n are

smiA^ A 2 + ... + A n )
= Sx

- S3 + S5
-

(28),

cos(A l +A 2 + ... + A n)
= S -S2 + Si

-
(29),

where Sr denotes the sum of the products of the sines of r of the

angles and the cosines of the remaining n — r angles, the r angles

being chosen from the n angles in every possible way, thus

5 = cos A x cos Ao ... cos A n

51
= sinA 1 cosA 2 ... cosA n + cos -4 ! sin J. .2 cos A 3 ... cos A n + ....

The formulae (28), (29) agree with the formulae (1), (2), and

(24), (25), for the cases n = 2, n = 3
; assuming the formulae to

hold for n angles, we shall shew that they hold for n + 1 angles ;

we have

sin (A, + A 2 + . . . + A n + A n+l )

= sin(^l 1 + ... + ^. n)cos^l ?l+1 + cos(^l 1 + ... + ^„)sin^l n+1

= cos An+1 fa - S3 + S5 . . .) + sin An+1 (S - S2 + S4 . . .),

now let Sr

'

denote the sum of the products of the sines of r of the

angles A x ,
A 2 ...A n+1 ,

and of the cosines of the remaining n + 1 — r

angles, the r angles being chosen from the n + 1 in every possible

way, then we have

Si = Si cos A n+l + #o sin A n+i ,

for in $jCOS-4 n+i there is in each term the sine of one of the

angles A 1} A 2 ... A n ,
and in each term of $ sin.4 n+1 there is only

sinu4 n+ i.
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Similarly

#3' = #3 cos A n+1 + £2 sin A n+,

S5

' = Sb cos A n+i + 84 sin A n+1

hence sin(A + ... + A n+1 )
= Sx

' - S8

'

+ S,' ....

We may similarly shew that

cos^ + ... + a„ +1 )
=

So'
- s: + s^ ...,

thus if the formulae (28), (29) hold for n angles, they also hold for

n + 1; and they have been shewn to hold for n = 2, 3, hence they
are true generally.

These formulae may be written in the form

sin (A x + A 2 + ... + A n)
= cos ^.j cos A 2 ... cos^^ — t3 + t5 ...),

cos (A , + A, + . . . + A n)
= cos A x cos A 2 . . . cos A n (1

- t2 + tt . . .),

where t,. denotes the sum of the products of tan A 1} tan A 2 . . . tan A n ,

taken r together ; hence by division we have

tan(A 1 + A 2 + ... + A n)
=

\

1

~l
s

^
t

;
-

(3°)'
J.
— Co 1 f4 • • '

which is the formula for the tangent of the sum of n angles, in

terms of the tangents of those angles.

The formula (30) may also be proved independently. Assuming it to hold
for n angles, we shall prove that it holds for n + 1

; we have

tan(A1+AM+... +.4)-
ta"(^i +^2+ - +^„) + tan A n + 1

m{h-h+h- ...)+ t&nA n + 1 (l-t2+ ti+ ... )

(1 -t2 + t
t -.. .)-tanJ n + 1 (<,-«3+ <6 -... )"

Now if tr
'

denote the sum of the products of the tangents of r of the n + 1

angles, we have then

*i'
=

*i + tan^l n + 1

h'= ti+ tita.nA Hi. l

t3
' = t3+ t

2 tar\A n + 1

hence tan (A, + A
2 + ... +A n ^)J±—^\+ tl>'~ "'

.

1 — 12 +ti — ...

since the formula (30) holds for « = 2, 3, it therefore holds for 77= 4, and
generally.

IT. T.
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Expression for a product of sines or of cosines as the sum

of sines or cosines.

50. We may obtain formulae which exhibit the product of

the sines or of the cosines of any number of angles as the sum
of sines or cosines of composite angles ;

we have

2 sin A l sin A 2
= cos (A x

— A.2)
— cos (A x + A 2).

2 2 sin^4
1 sinu4 2 sin A 3

— 2sin-4 3 cos(.<4 1
— A 2)

— 2 sin A 3 cos(A l + A»)

= sin (A x
- A, + A 3) + sin (- A 1 + A 2 + A 3)

+ sin (A.+A.2- A 3)
- sin (A 1 + A 2 + A 3)

= 2 sin (- A, + A.2 + A 3)
- sin (A x + A, + A 3).

2 3 sin A 1 sin A 2 sin A 3 sin A 4

= 2 sin (A l
— A 2 + A 3) sin A 4 + . . .

— 2 sin (A 1 + A 2 + A 3) sin A 4

= cos (A x
— A 2 + A 3

- A 4)
- cos (A 1

— A 2 + A 3 + A 4)

+ cos (- A 1 + A o + A 3
- A 4)

- cos (- A 1 -f- A, + A 3 + A 4)

+ cos( A 1 -\-A 2-A 3 -A 4)-cos( A 1 + A 2 -A 3 + A 4 )

-cos( A, + A 2 + A 3-A 4 ) + cos ( A
x + A 2 + A 3 + A 4)

= cos (A, + A 2 + A 3 + A 4 )
- 2 cos (A x + A 2 + A 3

- A 4)

+ £ 2 cos (A x + A 2 -A 3
- A 4 ).

Similarly

2 cos A x cos A 2
= cos (A x

— A 2) + cos {A x + A._).

22 cos J.j cos A 2 cos A 3

= 2 cos (A 4
— A 2) cos A 3 + 2 cos (J.j + /1 2) cos A 3

= cos (-A + A, + A 3) + cos (A x
— A 2 + A 3)

+ cos (A x + A 2
— A s ) + cos (A j + A 2 + A 3)

= 2 cos (- A x + A, + A 3 ) + cos (Ai + A 2 + A 3).

23 cos.4 1 cos J. 2 cos A 3 qos A 4

= 2 cos (- Ai + A 2 + A 3 + A 4) + £2 cos {A x + A 2
- A 3

- ^4 4)

+ cos(A } +A 2 + A 3 + A 4 ).

The general formulae for n angles are the following :

n

(-1)* 2"~ 1 sin^4 1
sin A 2 ... sin.4 n

= Cn-Cn_ l + Cn_2 -...+(-l)hchn (31)

when n is even,
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where C,,_r is the sum of the cosines of the sum of n — r of the

angles taken positively and the remaining r taken negatively, the

negative angles being taken in every combination
;
and when n is

odd

(- 1
)

2 2"- 1 sin A , sin A , . . . sin A n

=Dn -D^_1 + i)n_fl-...+(-l)"
r D

i ,n+1, (32),

where Dn_r denotes the sum of the sines of the sum of n — r of

the angles taken positively and the remaining r taken negatively ;

2«-i cos a i cos Ao... cos A n

= Cn + Cn-1 + Cn-2 +...+±Chn (33)

when n is even, and

2,!_1 cos A x cos Ao . . . cos A n

= Cn + CV, + ... + C${n+1) (34)

when n is odd.

These formulae (31), (32), (33), (34) have been proved above, in

the cases n = 2, 3, 4, and may now be proved generally by

induction; assume the formula (31) to hold for n, multiply it by
2ainAn+1) and replace any term 2Cn_,.sin^4,l+1 by a sum of sines,

we then obtain for the product
n

(— l)
2 2" sin A x sin A 2 ... sin A n sinA,l+1

the expression n

D'n+1 -D'n +...+(-lfD'h(n+2) ,

where D'r denotes the sum of the sines of the sum of r of the n + 1

angles taken positively and the remainder taken negatively; this is

what (32) becomes when n is changed into n + 1; proceed again in

a similar manner with this result, we then shew that the product

«+2

(-1)
a 2n+1 sinA ...sinAl+2

is equal to «+2

C"n+2 — G"n+1 +...+(— 1 )
J

^ G'\ (n+2) ,

where C"r refers to n + 2 angles ;
thus the formula (31 ) is proved

for the value n + 2, if we assume (31) and (32), for the value n;

similarly we may shew that (32) holds for n + 2; therefore as

these formulae have been proved for n = 3, 4, they hold generally.

The formulae (33), (34), for the products of a number of cosines,

may be proved in a similar manner.

4—2
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Example. Prove that for n angles a, /3, y, 5...

2 sin (n±/3±y±S±...) = 2n_1 sin a cos ft cos y cos 8...,

2 cos (a±P±y±8±...) = '2.
n ~ 1 cos a cos ft cos y cos d...,

where 2 implies summation extending to all possible arrangements of the signs

indicated in the n— 1 ambiguities.

Formulae for the circular functions of multiple angles.

51. If, in the addition formulae which we have obtained for

two and more angles, we suppose each angle equal to A, we obtain

the formulae

sin 2A = 2s\nA cos .4 (35),

cos 2A = cos2 J. - sin2 ^1 = 1-2 sin2 A = 2 cos2 A -
1...(36),

sin 3A = 3 sin A cos2 A — sin3
A,

or sin SA = 3 sin A - 4 sin3A (37),

cos 3-4 = cos3 ^4 — 3 cos A sin2
A,

or cos 3A = 4 cos3 A — 3 cos A (38),

n (n _ l)(n — 9)
sin 7?^l = rcsin-4cosn-^l ^f 'sin3ylcosu

-3 -4 + ...(39),

Yi (fi \ )

cos nA = coswA ^-—— sm" ^ cos'1-2 A

n(n-l)(n-2)(n-S) .
L

. M .

4- -i ^-j
—— '- sin4 A cos"-4 A - . . .(40).

These last formulae (39), (40) follow from (28), (29), since Sr

in Art. 49 contains as many terms as there are combinations of

n things taken r together, and becomes equal to

n(n — 1) ... (n — r + 1) . . „ .—i '-

}
' smr A cosn_r A.

rl

The formulae (39), (40) may also be written

» a ( ^ n(n-l)(n-2) i , . )
sin «il = cosn A \n tan ^ ~

f
; tan3 J + ...[• ,

I
* !

J

f n (i% — 1 )

cos nA= cosn A \ 1
- v

_
,

—- tan2 A
2!

«(n-l)(W -2)(B - 8)tan^_ |4!
)
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We find also, from (9), (26), and (30),

n . 2 tan A . . , .

im2A =
i^u«Z (41 >'

. 3 tan A — tan* A ....Un3A= IS** A <42>'

n tan A ^y tan3A + ...

tan nA = ^- (43).

1 ^——- tan2 J. 4- . . .

We have thus obtained formulae for the circular functions of

the multiples of an angle in terms of those of the angle itself.

It should be noticed that each of the sequences of numbers

sinJ, sin2^4, sin3.4

cos A, cos 2.4, cos ZA

is a recurring one ; for we have

sin (n+ l)A = 2cosA. sin nA — sin(w-l) A,

cos(?i+l) A =2 cos .4. cos nA -cos(n— I) A ;

thus each term of either sequence is obtained by multiplying the preceding
one by 2 cos .4, and then subtracting the term next but one preceding. By
this means the terms of the sequences may be successively calculated, if we
assume the formulae (35) and (36).

The scale of relation of either of the series

l+xsmA+.v2 s'm2A+ , l+.rcos.4+.r2 cos24-f-

is consequently 1 — 2x cosA + aP.

Expressions for the powers of a sine or cosine as sines or

cosines of multiple angles.

52. In order to obtain expressions for a power of the cosine

or sine of an angle, in terms of cosines or sines of multiples of

that angle, we must make all the angles equal to one another in

the formulae of Art. 50; we thus obtain the formulae

2 sin2 A = 1-cos 2A,

4 sin* A = 3 sin A - sin 3A,

8 sin4 A = cos 4A — 4 cos 2A + 3,

2 cos2
.4 = 1 + cos 2A,

4 cos3 A = 3 cos A + cos 3A
,

8 cos4 A = cos 4fA + 4 cos 2A + 3.
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- n(n-l)
(-1)

2 2n
-1 sinnA = cos nA - ncos(n-2)A +—^——-

cos(w-4) A - . . .

+ <- 1

^i^ki (44)

(n even),— n (n — 1 ^

(-1)
2 2n

-
1

sinM=sinw4-nsin(n-2).4+-^-^sin(?i-4)yl-...
2!

+ (-1)
2 w TYTT7

—
TT\7 sin ^ (45 )

£(w-l)! £(tc + 1)!

(n odd),

^j ^j — 1 \

271-1 cosn -4 = cos nA + ncos(n
— 2)A+ x - cos (n

—
4<)A + ...

+
^fJF: W

(w even),

2n_1 cos" A = cos n^l + n cos (w
-

2) A H ^——- cos (n--i) A + ...

n '

+ w -ix, i / iv ,
cos ^ (47)

£(w-l)!£(rc+l)!
(w odd).

The formulae (44), (45) may be deduced from (46), (47) by

writing 90° — A for A, or conversely.

Relations between inverse functions.

53. Corresponding to the addition formulae of this Chapter,
formulae involving the inverse circular functions may be found.

Thus in formulae (1) and (3), put cos .4 = a, cos B = b, then we

have
cos-1 a ± cos-1 b = cos~ ]

{ab + Vl — a? Vl — ¥\ ;

similarly from (2) and (4), we have

sin-1 a ± sin-1 b = sin-1 {a Vl - b2
± b Vl - a2

}.

From (9), (10), (11), and (12) we obtain

tan-1 a + tan-1 b = tan 1 = _ r ,
1 + ab

ab + 1
cot-1 a + cot-1 6 = cot-1 -p-

—
.

6 ± a

Again from (26) and (30), we have

tan-1 a + tan-1 b + tan-1
c = tan-1

(

- =— —7 ) ,

\1 — oc — ca — ab)
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_! (81
- S3 + Ss

tan-1 On + tan-1 a., + . . . + tan-1 a. = tan

where sr is the sum of the products of a^* ... an taken r together.

It should be observed that, in these formulae, the particular

values to be assigned to all except one of the inverse functions are

arbitrary, but the particular value of that one is determined when

the values of the others have been assigned. Moreover if in a

formula involving, for instance, three inverse functions, two of

them have their principal values, it is not necessarily the case

that the third has its principal value. For example, in the

formula

tan-1 a + tan-1 b = tan-1 (a + b)/(l
—

ab),

if tan-1 a, tan-3 b are both positive and have their principal

values, that is, values between and \tt, and if their sum is

greater than \tt, this sum is not the principal value of

tan-1 (a + 6)/(l
-

ab) ;

this principal value is an angle between and —
\ir, which has

the same tangent as the sum of tan-1 a and tan-1 b.

Geometrical proofs of formulae.

54. Direct Geometrical proofs may be given of many of the formulae of

this Chapter ;
we shall give three examples of such proofs. It should be re-

membered that such proofs often hold only for a limited range of the angles.

(1) To prove the formulae tan (A + B) = - _' —n .1 —
1 + tan A tan B

E C
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Let AB, CD be two chords of a circle at right angles, and let the angles

ADE, BDEbe denoted by A and B; since AE . EB= CE. ED, we have

AE±EB
ED _ AE±EB _ AB
AE EB~ ED+ EC

~
BE'

ED " ED

whence
tan A + tan B , .

.
_.

, - a i t?
= tan (A±B).

1 + tan A tan B

(2) To prove the formulae

sin 2A = 2 sin A cos A, cos 2.4 = cos2 .4 -sin2
.4.

'

Let AOA' be the diameter of a circle, and let PAA'=A, then rOA' = 2A
;

di'aw PN perpendicular to A A'.

PN
Then sm2A =~

,
now PN.AA'=2AAPA'=AP. PA',

., , . _. AP.A'P A A "2 sin A cos 4 .

therefore sin 24 = „-„— -
,
= 7^—7-77

= 2 sin .4 cos 4 ,

also cos 24

OP. A A' OP. A A'

ON AN2 - J'iV2 _ AP2 - A 'P 2

AA' 2
" = cos2 .4 -sin2 4.

OP 2.AA'.0P

(3) To prove the formulae

sin 3A =3 sin A -4 sin3
A, cos 3A =4 cos3 .4— 3 cos A.

Let CAB=ACB=A ; let 45 meet the tangent at C to the circle round the

triangle ABC in E; draw 2?Z) perpendicular to CE.
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The angle BED is 3A
,
or 1 80° - 3A . Now

AE LACE AC*
BE~ABCE~BC* 4 cos2 A ;

therefore

hence

and

-irn= 4 cos2 .4-1 = 3BE 4 sin2 A

sin 3J =

cos 3A = +

ZfZ) BD AB
,= 3 sin ^4 — 4 sin3

4,BE AB' BE
DEDCECDC BO_AC
BE

~
BE BE

~ BC BE AB
— cos A (4 cos

2 A -
1)
- 2 cos A = 4 cos3 J - 3 cos A.

The proofs in (1) and (3) were given by Mr Hart in the Messenger of

Mathematics, Vol. IV.

Examples.

Prove geometrically the formulae

.,. „ . 1 — cos 2X
(1) tan2 A = —

.K '
1 + cos 2A

(2) tan (45" + A) - tan (45°
- A)= 2 tan 2A.

(3) sin A sin B=sm2
£ (A+ B)

- sin2 £ (A
-

B).

(4) sin2 a+ swi 2
/3
= sin2 (a + /3)

— 2 »w a sin /3 cos (a+ /3).

i
m

,
'" — n 7r

(5) tan~ l to/t » =
. .

v n in+n 4

(6) cos2 A + co*2 1 ! + aw2 C + 2 cos A cos B cos C= 1
,
wAere A + B+ C= 1 80°.

(7) sin A + sin B-swC=4 sin \A sin £ B cos \ C, w-Aere A+ B + C = 1 80°.

(8) co*0=co«ec20+ co*20.

(9) cos 36° -tin 18°=$.
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EXAMPLES ON CHAPTER IV.

Prove the identities in Examples 1—15:

1. cos2 4+cos2
(120°+ 4) + cos2

(120°-4) = §.

2. (cos A + sin 4
)

4+ (cos A - sin 4
)
4= 3 - cos 4A .

3. sin 3A sin3 .4+ cos 3.4 cos3 A = cos3 2A.

4. 4 cos3 A sin 34+4 sin3 A cos 3A = 3 sin 44 .

5. sin 3 4+sin3
(120°+ 4)-sin3

(120°-4)= -f sin 34.

. sin A + sin 34 + sin 54+ sin 74
cos 4 + cos 34 + cos o4 + cos 74

7. 16 cos5 4 -cos 54 =5 cos 4 (1 + 2 cos 24).

8. cosec (m+«).rcosec??w; cosec nx — cot (in -\-n)x cot mx cot nx

= cot mx + cot ?u; — cot (to+ n) j?

9. 2 008 4(008 3.5-008 3(7)

= 4 (cos B - cos (7) (cos C— cos 4
) (cos 4 - cos 5) (cos 4 + cos 5+ cos (7).

10. 2 sin 4 (sin
2 5+ sin2

(7) sin (5 - (7)

=sin (B - C) sin (C- 4) sin (4 - 5) sin (4 + 5 + (7).

11. tan(4+60°)tan(4-60°) + tan4tan(4+60°) + tan(4-60°)tan4 = -3.

12. cot(4 + 60°)cot(4-60°)+cot4cot(4 + 60') +cot(4-60°)cot4=-3.
cos 34 cos 64 cos 94 cos 184

cos 4 cos 24 cos 34 cos 64

= 2 {cos 24 - cos 44 + cos 64 — cos 124}.

14 2 sin(J?+ (7+Z)-4)
sin (4 - B) sin (4 -C) sin (4 -Z>)

cos 44 cos 45
' 5 -

—
7~r-
—

7~a 7^—- 7~a 777 +
sin 4 sin (4 - B) sin (4 - C) sin B sin (5 - (7) sin (5 - 4 )

cos 4C"
+ -—

-;=—.
—

77^
—t^^—77=

—
f^-
= 8sin (4 + 5+ C) + cosec 4 cosec 5 cosec C.

sin (7sin((7— 4)sin ((7— 5)

If 4 +5+ (7=77, prove the relations in Examples 16—27 :

16. 2 tan 4 cot 5 cot (7=2 tan 4 -22 cot 4.

17. 2 cot 4 = cot 4 cot B cot (7+cosec 4 cosec B cosec (7.

18. 2 sin (B -C) cos3 4 = -sin (B -C) sin ((7- 4) sin (4 -5).

19. 2 (sin B+ sin (7) (cos (7+ cos 4) (cos 4 + cos 5)

= (sin5 + sin C) (sin (7+sin4)(sin4+sin5).

20. 2 sin 4 cos (4 - B) cos (4 - (7)
= 3 sin 4 sin5 sin (7+ sin 24 sin 25 sin 2(7.

21. 2 sin 25 sin 2(7=4 {sin
2 4 sin2 B sin2 (7+ cos2 4 cos2 B cos2 C

+ cos 4 cos 5 cos (7}.
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22. 2 cos 2A (tan B - tan (?)

= - 2 sin (5 - C) sin (C- J )
sin (J

- B) sec 4 sec B sec C.

23. 2 cos8A (sin25+ sin2C)= 2sinilsin5sinC.

24. 2 cos A sin 3J = (2
sin 2J} {§+ 2 cos 2A

}.

25. (sin .4 + sin B+ sin C) (
- sin 4 + sin B+ sin C) (sin J - sin B+ sin C)

(sin A + sin 5 — sin C)= 4 sin2 A sin2 i3 sin2 C.

26. sin 2 A cot ^4 1

sin2 B cotB 1

sin 2 C cotC 1

=0.

27. 2 cosec i? cosec Csec(B- C)

= sec (5 - C) sec (C- A) sec (4 - B) (3 + 8 cos A cos 5 cos C).

28. Prove that, if a+/3+y=£sr,

sin2 a+ sin2
/i+ sin 2

y+ 2 sin a sin (3 sin y= 1.

29. Prove that

__^ + I = L_
l + 2cos(i-7r + 0) l + 2cos(^7r-<9) 2 cos 0-1

30. Prove that

sin2
(^ + a) + sin2

(^ + /3)-2cos(a-/3)sin(^+ a)sin(^ + /3)

is independent of 6.

T „, „ n sin a cos a , ,, . Q. /n .,
31. If tan /3=-—^ o

.

t .,

—
,
shew that tan(a-/3) = (l

—
n) tana.

32. Iftan^> :

1 — n sin2 a
'

sin a sin . sin a sin $
, prove that tan 6= —7 —

COS # — COS a COS<£ + COSa"

33. If V2 cos J. = cos B+ cos3 .B, */2 sin J. = sin B - sin3
Z?,

prove that ± sin (J.
- B)= cos 25= J .

34. Prove that

cos3fl + cos_30 /C0S £ + C0S <£) cos (0+ <4)_(8in0+sin0)sin(0+ 0).
2 cos (#

—
0)

— 1

35. If 6 and
(f> satisfy the equation

sin 6 + sin <£
= V3 (cos <\>

— cos 0),

then will sin 3d + sin 3$= 0.

36. Prove that tan 70°= tan 20° + 2 tan 40° + 4 tan 10°.

cos4 a sin 4 a , ., cos4 /3 ,

sin4
.

37. If -TT +— -
u=l, then —^+-^-^=1.

cos2 # sin 2 # cos2 a sin* a

38. If cos(.4+5)sin(C+i))=cos(4-5)8in(C- JD),

then cot .4 cot i? cotC = cot D.

39. If a+/9+y=£jr, then

(cos a+sin a) (CQS |3 + sin /3) (cos y + sin y) = 2 (cos a cos /3 cos y + sin a sin £ sin y).
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40. If A+B+C=tt and cos A = cos B cos C,

then will cot B cot C= \ .

41. If 4 sin2 a sin2 8 sin2
y+ sin4 a + sin4 8+ sin4 y

— 2 sin 2 sin2 y
— 2 sin2 y sin2 a — 2 sin2 a sin2 /3

=
0,

shew that a±j3±y is a multiple of n.

42 If
tan (a + /3-y) = tany
tan (a

—
/3+ y) tan/3'

prove that sin 2a+ sin 2/3+ sin 2y= 0.

43. If sec a= sec /3 sec y+ tan /3 tany,

prove that

sec 8= sec y sec a+tany tan a and sec y= sec a sec /3 + tan a tan /3.

T „ sin 2 ^ cos ci — cos2 # sin d> sin 2 6 cos - cos2 d> sin #
44. If- —^ —- = -T- -^-

= cos(0 + d>),cos 6 tan a cos <p tan /3
v ir"

sin2 a cos /3
- cos2 a sin /3 sin2

/3 cos a - cos2 8 sin a .

then —?-r—-, = ——-— = cos (a+ 8).cos a tan 8 cos /3 tan
'

45. If .4, 5, C be positive angles such that A +B+ C=60°, prove that

sec A sec 5 sec C+ 22 tan 5 tan C= 2.

46. If

cos(fl+ /3)cos((9+ y) + l _ cos(fl + y)cos(<9+ q) + l _ cos (6 + a) cos (6+8) + 1

C0s(/3+ y) COs(y+ a) cos (a+ /3)
'

prove that cosec (/3
-

a) cosec (y
-

a) + cosec (y
-

/3) cosec (a
—

8)

+ cosec (a
—
y) cosec (8

-
y)
= 1.

47. Having given

sin4 + sin 4
<£
= 14sin2 #sin2 and sin 6 + sin

<f>
= sin j 7r,

prove that 2 sin 6= sin (£ ir±\ 7r)/sin -|-
n- or cos

( \ ir ± J 7r)/cos A tt.

48. If cos(J. + JB+ C) = cos^cos^cosC,
then 8 sin (5 + C) sin (C'+ J ) sin (A + B) + sin 24 sin 25 sin 2C=0.

49. If tan# + tan(£ + tan\^= -tan # tan tan
\/f
= tan (0+$ + >//),

then either two of the angles 0, (f>, ^ must be equal to mir + ^n, mr-\i7,
or else one of them and also the sum of the other two must be multiples
of IT.

50. If
*»(*» -?> cos {0

-
2a) +

Sin^ cos (5
-

2/3)
cos a cos /3

+ -——— cos {6
-
2y)

= sin (8
-

y) sin (y
-

a) sin (a
-

8),

prove that cos 6= cos a cos 8 cos y.

51. If
a, 0, y, S be any four angles and 2o-= a+ /3+ y + $, then

cos a cos cos y cos 8+ sin a sin /3 sin y sin 8

= COS {(T -a) COS (<r- 8) COS (<r
-

y) COS (<r
-

8)

+ sin (o--a) sin (<r
—
B) sin (cr-y) sin (<r-8).
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52. Prove that

tan
" 1 x= 2 tan

"
'
{cosec tan

~ 1 x- tan cot
" 1

x).

53. Prove that

2tan-^r+ 2tan-iy =sin-i{?^±4|l^l.
\(l+^)(l+r')J

54. Prove that

tan" >
{£ (cos 2a sec 2/3+ cos 2/3 sec 2a)}

= tan" 1
{tan

2
(a + ,3) tan

2
(a
-
£)} + tan- '

1.

55. Prove that

tan" 1 l+tau-^ + tan- 1 3= 7r = 2 (tan"
1 l + tan-^l+ tan- 1

-^).

56. If cos -1 .i'+ cos -1 y+cos' 1 z= ir,

then .r2 +^2+52+ 2xyz= 1.

57. If tan~ 1y=5tan~ 1
#, find y as an algebraical function of x; hence

shew that tan 18° is a root of the equation 5s4 - 10j2+ 1=0.

58. If 2cr= a+£ + y, shew that

_ j
/ 2 cos a COS /3 cos y \

\COS
2 a+ COS2

/3+ cos- y
- 1/

-tan- 1

[tano-tan(<r-a)tan((r- /3) tan (a-
-

y)]
= tan

-
' 1 .

59. Prove that

-- >/^g^-H--v/^^^-V^gS = tt.

60. Prove that the algebraical equivalent of the equation

sin
" *

,r + sin
"

1 y ± sin
"

1 z ± sin
~ 1 u = mr,

where n is an integer, is •

{4 (s
-
x) (s -y)(s- z) (s

-
u)
-
(xy+ zu) {xz +yu) (xu +yz)}

{4s(s-x-y)(s-x-z)(s-x-u)~ (zu
-
xy) (yu

-
xz) (yz

-
xu)} = 0,

where 2s=x+y + z+ u.

Solve the equations in Examples 61—75 •

61. sin + 2 cos = 1.

62. sin 50= 16 sin 5
0.

63. sin 70 - sin = sin 30.

64. tan 20= 8 cos2 - cot 0.

65. tan (45°+A )
= 3 tan (45° -A).

66. 2 sin (0 -0)= sin (0+0) = 1.

67. sec 40 -sec 20 = 2.

68. sin md + nin n0+ sin (m + n) 0=0.
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69. sin -J
1

+ s in H^ll Q = cos 0.

70. tan + sec 2(9 = 1.

71. 2 (sin
4 + cos4

(9)
= 1.

72. tan (9+ tan 3(9+ tan 5(9 = 0.

73. cot- 1 .r-cot- 1
(.r+ 2) = 15°.

i _1 .r+ 6cos 1
y= al

s _1 x— b sin _1 y= (3j

74. a sin -1 .?+ 6 cos 1

y= a]

a cos"

75. cosec 4a— cosec40 = cot 4a — cot 40.

76. Draw graphs of the functions (a) sin .r+ sin 2x, (b) cos 2.r/cos x.

77. Find all the solutions of the equation

a (sin
— cos a) = b (sin a — cos 0).

78. If mi be any integer, and A+B+C= it, shew that

sin 2m^4 +sin 2»iZ?+ sin 2mC=( — l)
m + 1 4 sin mA sin mB sin mf,

cos 2mA + cos 2mZ?+ cos 2mC={ — l)
m 4 cos jmJ cos mB cos hjC— 1.

79. Prove that xi+ 8xz + 4z2= 4#2
y,

where

.r= sin .4 + sin 5+ sin C, v/
= sin i?sin C+sin (7 sin .4 + sin A sin i?,

z=sin A sin 2? sin (7.

80. Prove that, if

1 — tan B tan C 1 — tan C tan .4 _ Q 1 - tan .4 tan B
Tos2 4

" +
cos2 B

~
cos2 C '

either tan J, tan C, tani? are in arithmetic progression, or A +B + C is an

integral multiple of n.

81. If cos .4 = cos sin
cf>,

ens Z> = cos
c/>

sin
i/r,

cos C= cos \^ sin 0, and

^ -1- J5+ C= 7r, prove that tan tan $ tan
\//-
= 1.

82. Solve the equations

4 (cos 30+ cos 40) (cos 30 + cos 0)
=

1,

4 (cos 30 + cos 50) (cos 60 + cos 70) = - 1 .



CHAPTER V.

THE CIRCULAR FUNCTIONS OF SUBMULTIPLE ANGLES.

Dimidiary Formulae.

55. If in the formula (36) of the last Chapter we write ^a
for A, we have

cos a = cos2

\a.
— sin2

\a = 2 cos2

^a — 1 = 1 — 2 sin2

\ a,

whence we have

1 -- cos a = 2 sin2

^a, 1 + cos a = 2 cos2

\ a ;

taking the square roots we obtain the following formulae for

cos \ a. and sin \ a, in terms of cos a,

sin ^a = ± v£ (1
— cos a), cos £a = ± V^ (1 + cos a) ;

dividing one of these expressions by the other, we have also

* a=± \/l
*.
— cos a

tan *<
4- cos a

These three formulae contain an ambiguity of sign ;
now if a is

given, the three functions sin^a, cos^a, tan^a have each a unique

value, and the true expressions for them can therefore contain no

ambiguity. The reason of the ambiguity in the three expressions

obtained above is that they give the values of sin £a, cos i a, tan
\ct,

not when a is given, but when cos a is given; now, as we have

proved in Art. 33, all the angles 2w7r + a, where n is an integer,

haw t he same cosine as a, hence formulae which give sin £a, cos \ct,

tin ^a, in terms of cos a, will give these functions for all the angles
included in the formula •|(2»7r + a), and not merely the values of

sin^oc, cos^a, tan^a themselves.
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To find the values which sin \ (2mr ± a) may have, we must

consider the two cases of an even and of an odd value of n; if n—lm

sin \ (4nnr ±a) = sin (+ -|a)
= + sin \%,

if n = 2m + 1

sin -1
(4ra7r + 2tt + a)

= sin (ir ± a) = + sin \ a
;

hence the values of sin^a and — sin^a are given by the formula

which expresses sin \a in terms of cos a. Similarly cos | {2nir + a)

and tan^(2n7r + a) can be shewn to have the values + cos^a,
+ tan^a, and thus the formulae which express cos^a, tanker, in

terms of cos a, will give the values of cos^a and —cosset, and of

tan £a and —tan \a, respectively. Thus the ambiguity of sign in

the three formulae is accounted for.

56. The ambiguity of sign in the three formulae we have

obtained may be illustrated geometrically.

If AOP =
a, and AOPl

= —
a, the two sets of coterminal angles

(OA, OP), (OA, OPi) are the only ones which have the same co-

sine as a
;
if QOq, Q'Oq be the bisectors of the angles A OP, AOPlf

respectively, the bisector of any of the angles (OA, OP) is OQ or Oq,

and of the angles (OA, 0P2) is OQ' or Oq' ;
hence the formulae for

sin | a, cos \<x, tan ^a, when cos a is given, will give the sine, cosine,

and tangent of all the four sets of coterminal angles (OA, OQ),

(OA, Oq), (OA, OQ'), (OA, Oq'). The sines of the angles in the

first and fourth sets are equal to sin ^a, and in the second and third

to — sin
-|cr ;

the cosines of the angles in the first and third sets are
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equal to cos £ or, and in the second and fourth to — cos^a; the

tangents of the angles in the first and second sets are equal to

tanker, and in the third and fourth to —tanker.

57. We shall now remove the ambiguities in the three

formulae of Art. 55. The function sin|a is positive or negative,

according as ^a lies between 2nir and (2n + l)7r, or between

(2n + 1) 7r and (2n + 2) ir, that is according as ot/27r lies between

2n and 2n + 1, or between 2n + 1 and 2n + 2
;
hence we have the

formula

sin \ ol = (- 1)p V|"(l
- cos a) (1),

where p is the positive or negative integer algebraically next less

than a/27r.

The function cos \ a is positive or negative, according as J a lies

between 2mr—^ r
rr and 2mr+ ^7r, or between 2mr+^7r and 2M7r+§7r,

that is according as £(a + 7r)/7r lies between 2w and 2n+l, or

between 2n + 1 and 2w + 2
;
hence

costa = (-l)9 v
/

i( 1 +cosa) (2),

where q is the integer algebraically next less than \ (o + 7r)/7r.

We have also

tanla =(-l)^y^^ (3);V 1 -f cos a.
v ' '

the number p — q is always either zero or + 1.

58. If we write |a for A in the formula (35) of the last

Chapter, we have
sin a = 2 sin £a cos ^a,

hence
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all these angles have the same tangent tan^a; this accounts for

the absence of ambiguity in the formulae (4).

59. We shall now obtain formulae for sin^a, cos^a, and

tan %a, in terms of sin a
;
we have

1 + sin a = 1 + 2 sin \ a cos ^a = (sin | a + cos h a)
2
,

also 1 — sin a = 1 — 2 sin ^ a cos ^ a = (sin ^ a
— cos \ a)\

hence sin \ a + cos £ a = + Vl + sin a,

sin^a— cos Ja= + Vl —sin a;

therefore sin ^a = -|{±Vl-fsina + Vl — sin a},

cos \a
=

% {± Vl + sin a + Vl - sin a}.

In each of the ambiguities either sign may be taken
;
we have,

therefore, four values of sin h a, and four values of cos \ot, in terms of

sin a. Formulae which express sin £a and cos ^a in terms of sin a

will give the sine and cosine respectively of all the angles included

in the formula \(mr-\-{—l)
n
a), for as we have shewn in Art. 33,

the sines of all the angles mr + (— l)
n a have the value sin a. To

find the sine and cosine of the angles % (mr + (— l)
n
a) we must

consider four cases.

(1) If w = 4m,

\ {nir + (- 1)" a) = 2nnr + \tx \

the sine and cosine of these angles are sin ^ a and cos \ a re-

spectively.

(2) If n = 4>m + 1,

\{nir + (- l)
n
a)
= 2mir + \it -\<x;

the sine and cosine of these angles are cos \ a and sin \ a re-

spectively.

(3) If n = 4m + 2,

\ (W7r + (- 1)" a)
= 2rrnr + it + |a ;

the sine and cosine of these angles are — sin \ a and — cos £ a

respectively.

(4) If n = 4m + 3,

\ (W7T + (- l)'
l

0) = (2«l + 1) 7T + \TT
- h0C J

the sine and cosine of these angles are — cos |a and -sin^a

respectively.
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Thus we obtain four values sin|a, cos^a,
—
sin^a,

—
cos^a, by

the formula which gives sin^a, and four values cos^oc, sin^a,
—

cos-^ot,
— sin ha, by the formula which gives cos|a.

The four sets of values of x and y which satisfy the equations

(x + y)
2 =l + sin a)

(x
—

y)
2 = 1 — sin aj

are x = sin h a = cosiax x = — sin \ a

It

x = — cos \ a

— sin^ay = cos-§a)~ y = sm$a)' y — ~ cos^aj
'

y-

60. As in the preceding case, the ambiguities in the formulae

of the last Article maybe illustrated geometrically. Let POA — a,

P10A = 7r — cc, then the angles which have the same sine as a are

D

the two sets of coterminal angles (OA, OP), (OA, 0P: ); hence if

QOq, Q'Oq be the bisectors of the angles A OP, A0Pu the four

sets of coterminal angles (OA, OQ), (OA, Oq), (OA, OQ), (OA, Oq)
will be the angles whose sine and cosine will be given by the

formulae which express sin^a, cos^a, when sin a is given. We
see that Q'0B = ^a, and Q'OA = \ (ir

—
a), hence the sines of these

four sets of coterminal angles are sin^a, —sin ha, cos^a,
—
cos^a,

and their cosines are cos|a,
—

cos^a, sin^a,
— sin^a; these are

the four values of sin^a, cos£a respectively which are given by
the two formulae.

61. We have

sin J« + cosJa= V2 [-^sin£a +
—

cos^aj

= v
/

2sin(ia + |-7r),

5—2
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and similarly
sin Ja — cos \a = \/2 sin (^a

—
Irr) ;

hence sin \ a + cos h a is positive or negative, according as =.
—hi

lies between 2n and 2w + l, or between 2w + 1 and 2?? + 2, and

sin^-a
— cos^a is positive or negative, according as = 1 lies be-

tween 2n and In + 1, or between In + 1 and 2n 4- 2
;
therefore

sin |a + cos £a = (- 1)^ Vl + sin a,

sin |a — cos |a = (— 1)? Vl — sin a,

where p is the positive or negative integer algebraically next less

than -—
\-l, and q is the integer algebraically next less than

-|; we have then the three formulae

sin la = i
{(- 1)*' Vf+ sin a + (- l)i Vl - sin a] (5),

cos ia = I {(- 1)* Vl + sin a - (- 1)9 Vl - sin
a] (6),

(- 1)p Vl + sin a + (- l)? Vl - sirTa
tania = -—'-—

.
—)— . (7).2

(-lyVl+sma-t-l^Vl-sma

62. To express sin \a, cos ^a, tan ^a in terms of tan a, we have

sin 2

|a = £(l
- cos a)

= ifl
* \

2
V + Vl + tan2 a)

'

_1

± VlHh tan2 *>

hence sinAa=+ /V /^(l— I
,- V 2

V + Vl + tan2 a/

cos ha= + a/A (1 H 7= J,-V '
V ±Vl + tan2

ec/

± Vl + tan2 a - 1
and consequently tan^a = ;

Lan a

each of these formulae contains ambiguities. We leave to the

student the discussion of these ambiguities, which should be

made as in the previous cases.

cos2

£a=£( 1 +
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It should be noticed that the values of tan \ a are the roots of

the quadratic equation in tan^a,

2 tan i a
tan a =

1 — tan2 ^ a
'

cos a =

hence also tan a =

obtained by replacing A by £a, in the formula (41) of the last

Chapter.

63. The functions sin a, cos a, tan a can be expressed without

ambiguity in terms of tan^a; for all the angles which have the

same tangent as ^a are included in the formula rnr + %a, and

2 (mr + ^a) or 2nir + a are angles which have all their circular

functions the same as those of a. To find the expressions, we

have
2 sin ^a cos ^a 2 tan \<x~

cos2

£a + sin2

£a l + tan2

-|a'

cos2

\<x
— sin2

\a _ 1 — tan2

-|a

cos2

-|-a + sin2

^a 1 + tan2

\o.

'

2 tan ia
— tan2

^a"

Examples.

(1) If 2cos8 = s/\-sin2d-\Jl + sin 20, shew that 6 must lie between

(8n+5)J
and (8n + 7)J,

where n is an integer.

coshA .sin AA .

(2) Prove that +- .

^
-=secA,

yl + sinA v I— sin A

the radicals denoting positive numbers, provided A lies between

(4n—£)jt and (4ii + £)tt,

where n is an integer. What are the signs in other cases ?

Vl — sin x + 1

(3 Prove that the four values of .
.

-—
; are

K ' J J
^/l+sinx-l

cot 4 x, tan \ (tt+ x),
- tan £x,

- cot \ (n+x).

(4) If sin 4A= a, shew that the four values of tan A are given by

1

[(l+a)i-l}{l+(l-a)*}.

(5) In the formula tan \A=-
~ ^ —

, prove thai the ambiguity of
iff /I A.

n may be replaced by (
-

l)
m

,
where m is the greatest integer in (A+ 90°)/180°.
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The circular functions of one-third of a given angle.

64. If we replace A, in the formulae (37), (38), (42) of the

last Chapter, by ^a, we obtain the three equations

sin a = 3 sin 4a — 4 sin3 A a (8),

cosa = 4 cos3

|a — 3 cos ^a (9),

3 tan la — tan 3 ia „_ Ntana= 3 —J-
(10);

1 — o tan ^ a

we have thus, in each case, a cubic equation for determining a

circular function of |a, in terms of one of a. Hence if sin a be

given, we obtain three distinct values of sin^a;- if cos a be

given, we obtain three distinct values of cos J a, and if tana be

given, we obtain three distinct values of tan^a.

(1) In the case of the formula (8), we have sin a given, and

thus we shall obtain for sin^a the values of the sines of one-third

of all the angles (OA, OP), (OA, OP^), which have the same sine

as a. Let the trisectors of the angles {OA, OP) be 0Qlt 0Q2 ,

0Q3 ,
so that Ql

0A = ^a, and QiQ.Qs is an equilateral triangle, and

&0^ = §7r + ia, Q3 0A = ±7r + ia;

the trisectors of the angles (OA, OPj) are 0qlt 0q„, 0q3 ,
where

qiq-2qz is an equilateral triangle, and q 1 OA = ^ (ir
—

a), so that

q20A = ir-±a, q3 0A = %Tr-ia.

We see at once that Q2 q x , Qxq2 , Q3 q3 are parallel to OA; the

sines of the two sets of coterminal angles (OA, 0Q X ), (OA, 0q 2)



THE CIRCULAR FUNCTIONS OF SUBMULTIPLE ANGLES 71

are sin^a, those of the sets (OA, 0Q2), (OA, 0q x ) are sin(§7r + ^a),

and those of (OA, 0Q3), (OA, 0q3) are sin(|7r + |a); therefore the

three roots of the cubic (8), in sin ^a, will be sin^a, sin (^7r
—

Act),

and — sin (+7r + £a).

(2) In the case of the formula (9), the angles which have the

same cosine as a are (OA, OP) and (OA, 0PX); let the trisectors

of the first set of angles be the three lines 0QX , OQ,, 0Q3 ,
where

Qx0A =
±ct, and Q^Qs is an equilateral triangle; the trisectors of

the second set of angles are 0q x , Oq,, 0q3 ,
where q x0A = — \a, and

q x q>q3 is an equilateral triangle ;
we see at once that Q x qi, Q«qi, and

Q3 q3 are perpendicular to OA. The cosines of the two sets of

angles (OA, 0Q X ), (OA, 0q x ) are cos ±a, those of the two sets

(OA, OQ.,), (OA, 0q2) are cos(§7r + ^a), and those of the two sets

(OA, 0Q3 ), (OA, 0q3) are cos (f 7r + £a) ;
therefore the three roots of

the cubic (9), in cos^a, are cos^a,
—
cos(^7r

—
|a) and —cos^v + ^a).

(3) In the case of the formula (10), the angles which have the

same tangent as a. are (OA, OP) and (OA, 0PX ). As before 0Qly

OQ.,, 0Q3 ,
in the figure on page 72, are the trisectors of the first

of angles; the trisectors of the second set are 0q x , Oq.,, 0q3 ,

where q x q.,q3 is an equilateral triangle, and q l
0A = ±

(ir + a); we

see that Qi0q2 , Q,0q3 , Qi0q x
are diameters of the circle. The

tangents of the sets (OA, 0Q X ), (OA, 0q2) are tan^a, of (OA,

OQ,), (OA, 0q3) are tan(£7r + £a), and of (OA, 0Q3 ), (OA, (>/,)

are tan (^tt + \ a), hence tan^-a,
— tan (.! tt — ^a), tan (.! ir+ la) arc

the roots of the cubic (10), in tan la.
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We may express the results of this article thus
;
the roots of

the cubic in as,

Sx - 4a;
3 = sin a, are sin £ <x, sin ^ (tt

—
a),

— sin ^ (ir + a),

those of the cubic

4a? — Sx = cos a, are cos 4a, — cos ^ (tt
-

a),
—

cos4(7r + a),

and those of the cubic

tan a (1
— Sx2

)
= Sx — x3

,
are tan i«, - tan ^(tt

—
a), tan £ (ir + a).

Determination of the circular functions of certain angles.

65. The formulae of this Chapter may be applied to the

determination of the circular functions of angles which are

submultiples of angles whose circular functions are known.

(1) We have sin ^7r = cos \it= l/\/2 ;

hence from the formulae (1) and (2), of Art. 57,

smW= W2-V2, cos !7T=W2 + V2,

in tVtt = | J2 - V2 + V2, cos -^tt
= £ n/2 + V2 + V2,sin

and proceeding in this way, we can calculate sin — ir and cos^ 7r.

(2) We have sin^7r= l/2, cos^7r = V3/2;

hence from formulae (5) and (6), we have

sin -J^TT
= J- (V6 - V2), cos ^tt = i (V6 + V2),

the values obtained for sin 15°, cos 15° in Art. 34; proceeding
in this way we calculate the sines and cosines of all the angles

7T

2"73"
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(3) We have sin ±tt = 2 sin fair cos -fair

and sin|7r= 2 sini7rcos|7r,

therefore sin ±ir sin |7r
= 4 sin

fair
cos i7r sin T̂ 7r cos j^tt ;

hence since sin \ir
= cos ^ir,

we have 4 cos ^tt sin x
1

o 7r== 1»

or sin ^7?-
—

sinj^7r
=

\,

that is cos ^tr
—

siny
1^ =

^,

also (cos l7r + sin -^tt)
2 = \ + 1 = f ;

therefore cos i7r + sin y^Tr
= i

\/5,

or sin T
1 7r = ^(V5-l), cos^7r

=
£ (V-5 + 1),

and hence cos -^w = | V 10 + 2 V5, sin ±tt = £ VlO -2^5;
these values agree with those given in Art. 34.

It should be noticed that, if a is any angle of which the sine

and cosine are known, then the sines and cosines of all angles of

the form ma/2
n

,
where m and n are positive integers, can be found

in a form which involves only the extraction of radicals
;
for we

have shewn how to find the functions of all angles of the form a/2'\

and when these are known, the formulae of the last Chapter enable

„ , . ma , ma
us to find siii-^- and cos =— .

66. We are now in a position to calculate the circular

functions of all angles differing by 3° or 7r/60, commencing at

3°. and going up to 90°

We have sin 3° = sin (18°- 15°)

= sin 18° cos 15° — cos 18° sin 15°

= TV(V6 + V2)(V5-l)-i(v/3-l)VF+75,

similarly cos 3° = £ (<y/3 + 1) V5 + V5 + TV (V6 - \/2) (V-5
-

1).

WT

e have also

6° = 36° - 30°, 9° = 45° - 30°, 12° = 30° - 18°,

21° = 36° -15°, 24° = 45° - 21
c

,
27° = 30° - 3°,

33° = 45° -12°, 39° = 45° -6°, 42° = 45° -3°;

hence we can calculate the sines and cosines of all the angles

3 ,6 ... up to 45°. It is then unnecessary to proceed farther, since

th" sine or cosine of an angle greater than 45° is the cosine or sine

of its complement, which is less than 45°. The results of the

calculation are given in the following table:
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sine

3°= e
1

7r



EXAMPLES. CHAPTER V 75

In this table, the sines of the angles 3°, 6°, ...up to 87° are given; the

cosines will be found by taking the sines of the complementary angles. The

values of the surds in the above expressions are given to 24 decimal places

in the Messenger of Math. A
r
ol. vi., by Mr P. Gray. In Hutton's tables the

values of these surds are given to 10 places of decimals. A complete table

giving the tangents, secants, and cosecants of these angles, with the denomi-

nators in a rationalized form, will be found in Gelin's Trigonometry.

EXAMPLES ON CHAPTER V.

Prove the relations in Examples 1—8, where A +B + C—lQ0c
:

tan kA 1 — cos A + cos 2?+ cos C
tan \C

~
1-cos C+cos.4 + cosB'

2. sm(A-B)sm(A-C)+sm(B-C)sm(B-A) +sm(C-A)sm(C-B)
= 2cosh{B-C)cos%(C-A)cosh(A-B)-2sin%AsmZBsm$C.

3. cos4 ^+cos4 |5 + cosH(7-r2cos^cos2 |5cosHC
+ 2 cos B cos2 i C cos2 \A + 2 cos CcosH A cos2 \B= 8 cosH A cos2 \B cos2

& G.

4. 2 sin3 .4 = 3 cos J .4 cos h B cos %C+ cos fA cos §2? cos § C.

5. 2 cosec A (1 + cot B cot C)

=cosec A cosec B cosec C {4 cos h(B-C) cos i(C- A) cos \(A-B)- 1}.

6. 2 cosec A (1
- cot B cot C)

= | sec | A sec | B sec i (7+ cosec A cosec Z? cosec C.

7. 2 sin 2/1 sin(Z?-C)

= 16 cos \A cos |.B cos £Csin |(2?- 0) sin £ (C- 4) sin £(J.
-
B).

conkA- sin£Z?+ sin \G _ l+tan^.4
'

cos |z?+ siiT^C'- sin | .4
~~

1 +tan £ 5

9. Prove the identity

sin \{B-C) sin \{C-A) sin $ (4
- B)

sin | (£ + C) sin $ (<7+ A )

+
sin | {A + A')

sin ^ (B
- C )

sin
| (C-A ) sin | (4- Z?)=Q+

siu | (Z?+ C) sin | (C+ 4) sin \ (A + B)

10. If .!+/?+C= 300°, and if

. (d-a)(b-c) n (d-b)(c-a) (d-c)(a-b)
C08il=

(d+ i)(6+ c)'
COSjB=

(rf+6)^+a)'
COS(7=

(^-+^F+/0

then tan£4+tan£.B+ tan^C'= ±1.

11. Prove that

cosec 2.r cosec ?/
— cosec 2y cosec #

tan \ {x + y) tan \ (:c
-
y)
=

cosec 2^ c08ec y+ cosec 2y cosec #
*
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12. Shew that if cot |a + cot k0= 2 cot 6, then

{1-2 sec 6 cos (a
-

6) +sec2
6} {1-2 sec 8 cos (0

-
6) + sec2

0} =tan
4
0.

13. If A + B + C+ Z)=360°, prove that

cos |J cosiZ)sin^siniC-cos|5cosiCsin|il siniZ)
= sin h{A + B) sin * (A + C) cos £ (.4 + D).

14. Prove that

sin 2 h{B- C) + sin2
£ ((7- ^l)+sin

2
£ (J -5)

+ icoal{B-C)cosh(C-A)cos\(A-B) = 2.

15. Prove that

=—
;

'—. r- -. r— J-*-
—

r = - tan h(y — z) tan i (z— x) tan h (x—y).
l+cos(y-z)+cos(z-x) + cos(x-y)

2 \ff / 2\ ^ "

16. Investigate what relation must hold between a, 0, y, in order that

cos a+cos/3+cosy=l+4sin |asin i/3 sin |y.

17. If A+B+C+B=360°, prove that

cos(Z? + C+Z>) + cos((7+Z) + .4) + cos(Z) + ;l + ZJ) + cos(;l + Z? + C)
= - 4 cos £ (.4 + B) cos i (4 + C) cos J (J + D).

18. If tan i0=tan3
i<£, and tan = 2 tan a,

shew that #+ $ = 2a.

,„ T „ . „ sin,ssin(s-0)sin (s
-
#) sin (s

-
>//)

.

19. If sin-'&> = —-
:
—

—or-i rVr-—,-,- — , prove that
4 cos- h 6 cos- £ 9 cos-^ £

tan2
^ a) = tan hs tan

|- (s
-

6) tan ^ («
— 0) tan |(s

—
v//'),

where 2s= + + \//.

20. If 4+Z*+C+Z) = 180', shew that

sin A + sin 5+sin C- sin Z)=4 cos \(A + D) cos £ (Z> + 19) cos | (C+D).

21. If a+/3+ y= 2n-, prove that

sin/3(l +2 cosy)+sin y (1 + 2 cos a) + sin a (1 + 2 cos/3)

=4sini(y-/3) sini(a-y) sin£(/8-a)
22. If 2s= a+ b+ c, prove that

cos | s cos ^ (s
—

a) cos £ (s
—

b) cos ^ (s
—

c)

+ sin is sin \ (s
—
a) sin |(s

-
ft) sin ^ (s

—
c)
= cos | a cos 1 6 cos \c.

23. Ifa+/3 + y= i7r, then

(1
- tan \a) (1

- tan 10) (
1 -taniy) _ sin a+ sin/3+sin y- 1

(1 + tania) (l+tan£/3)(l+tau iy)
~

cosa+cos/3+ cosy

24. Prove that if a+ /3+ y= 7r,

cos (0/3+ y- 2a)+cos (fy+ a - 2/3) + COS (§a+/3-2y)
= 4 cos | (5a

-
2/3

-
y) cos J (50

-
2y
-

a) cos £ (5y
- 2a - 0).

25. If cos2 6= cos a/cos /3, cos2 ^'= cosa'/cos/3,

and tan <9/tan #'= tan a tan a',

shew that tan ,\ a tan I a = ± tan J/3.
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26. If cos a = cos ft cos <£
= cosft' cos</>', and sin a= 2sin -A<£ sin -?y 0' ;

shew that + tan A a = tan Aft tan -h ft'.

27. If A+B + C=180°
y
and tan | A tan f5= tan \C ;

shew that

tan | J + tan f £+ tan f C= cot f J + cot §B+ cot f C.

28. If tan|(y+2)+ tani(s+ .r) + tan|(x+y)= 0,

prove that sin.r + sin ?/ + shi2 + 3 sin (.v+y+z)= 0.

29. Prove that

cosasin |(0+ a)sin| (ft
-

y) + cos ft sin | (#+ ft)sin^ (y-n)
+ cos y sin | (6 + y) sin J (a

-
ft)

= 2 sin A (ft
-
y) sin £ (y

-
a) sin A (a

-
ft) sin A (a +ft+ y + 6).

30. Solve the equations

tan ja + tan Aft = £1

tan a+ tan ft=f J

sin(</> + n)sin(0-a) sin (<ft+ft)sin (<ft-ft) _„ : ,, ,,,,
.

.

31. If — — = —— sm$(ft-n),

si„(^
+M

) -»(=|fi-M)
shew that cosHa + cos2

^ft-cos
2
0=A;.

32. If tan (| tt -f \ 6)
= tan5

(i tt + j <£)> prove that

Sinfl-58in$
(1+a

_
2sin^){1+j3

.
28^^,

and find a, ft.

33. If a + /34-y=7r, shew that

tan " !

(tan Aft tan ^y) + tan
-

1

(tan Ay tan Aa) + tan
- *

(tan A a tan Aft)

= tan
- 1 h +

8sin l asin^ sin
ly|

\ sin 2 a+ sin2
ft + sin2

yj
*

34. Prove that the sum of the three quantities

cos2 A y
- cos2

1 ft cos2 A a — cos2 A y
cos2

£ft cos2 ^y+ sin2 ^ft sin 2
Ay

'

cos2
|a cos2

Ay+ sin2 Aa sin 2
|y

'

lcos2
Aft- COS2 A a

cos2
1/3 cos2

A^a+ sin 2
£ft sin 2 Aa

is equal to their continued product.

'','>. Prove that

'"- '

<73 + y)
,

cos
\ (y+a) COB^(q+ft) _ 3 cos A (ft + y) cos

A, (y+ a) cos A (a +ft)

Cos A (ft -y) COS I (y- a) COS £ (a
-

ft) COS A (ft- y) cos
A, (y- a) COS A (a -ft)

cos a COS ft COS y
- cos (a + ft+ y)

COS \ (ft
-
y) cos £ (y

-
a) COS \ (a

-
ft)

"

36. Having given that

cos a + cos ft + cosy _ sin a-f sin ft + sin y

COS(a+ft+ y) 8in(a+ft+y)
'

prove that each fraction is equal to

COS (ft + y) + cos (y + a) + COS (a + ft),

and also to {tan a -tan A (ft + y)J-/{tan a+ tan£ (ft + y)}.



CHAPTER VI

VARIOUS THEOREMS.

67. In this Chapter, we give various examples of trans-

formations of expressions containing circular functions. Some
of the theorems given are of intrinsic interest, others are given on

account of the methods emploj^ed in proving them. Facility in the

manipulation of expressions involving circular functions can only
be obtained by much practice, but a careful study of the processes

we employ in various cases will very materially assist the student

in acquiring the power of dealing with this kind of symbols.

Identities and transformations.

68. Examples.

(1) Prove that

sin 2a sin (j3
-

y) + sin 2/3 sin (y
-

a) + sin
-2y sin (a

-
/3)

=
{sin (|3+ y) + sin (y+ a) + sin (a+ /3)} {sin (y

-
j3) + sin (a

-
y) + sin (/3

-
a)}.

The factors on the right-hand side of the equation are the sum and the

difference respectively of the two quantities sin y cos /3+ sin a cos y+ sin /3 cos a

and cosysin/3 + cos«siny+cos/3sina; hence the product of these factors is

equal to

(sin y cos /3 + sin a cos y+ sin /3 cos a)
2 -

(cos y sin /3+ cos a sin y + cos /3 sin a)
2

.

Now sin 2
y cos2

/3
— cos2

y sin2 = sin2 y
— sin2

/3, hence the algebraical sum of

the square terms is zero ; the product terms are equal to

2 sin a cos a (sin /3 cos y — cos (3 sin y) + 2 sin cos /3 (sin y cos a — cos y sin a)

+ 2 sin y cos y (sin a cos /3
— cos a sin /3),

and this is equal to

sin 2a sin (/3-y) + sin 2/3 sin (y-a)+ sin 2y sin (a-|S);

thus the identity

2 sin 2a sin (/3-y) = 2 sin (/3+ y) 2 sin (y-/3)
is proved.
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(2) In the last example, put ±ir+ a, £ »r+8, \^ + y, fora, /3, y, respectively;
we then obtain the identity

2 cos 2a sin Q3-y) = 2 cos (3+7)- 2 sin (y-8).

(3) Prove that-

's, sin3 a sin (8
— y)=— sin (a+8+ y) sin (8

—
y) sin (y

—
a) sin (a

—
8).

In this case, as in many others, we replace the quantities sin3 a, sin3
/3,

sin3
y, on the left-hand side of the equation, by the equivalent expressions in

sines of multiple angles ;
the expression on the left-hand side then becomes

1 2 sin a sin (8
—

y)
—
j 2 sin 3a sin (8

—
y)

or — IS sin 3a sin (8
—

y) in virtue of Ex. (3), Art. 45.

"We now replace the products of sines by the difference of cosines, the

expression then becomes

I {cos (3a
- 8 + y)

- COS (3a
-

/3+ y) + cos (3/3 + y
-

a)
- COS (3/3

-
y + a)

+ COS(3y + a-/3)-cos(3y-a+/3)},

and the algebraic sum of the first and last terms in the bracket is

2 sin 2 (y
—

a) sin (a + 8 + y) ;

taking the second and third terms, and the fourth and fifth together, in the

same way, the expression becomes

-|sin(a + /3+y)2sin2 (y-a)

or -sin (a + /3 + y)sin (/3-y) sin (y-a) sin (a -8)

in virtue of Ex. (3), Art. 47.

(4) Prove that

2 cos3 a sin (8
—

y)= cos (a + 8 + y) sin (8
—

y) sin (y
—

a) sin (a
—

8).

(5) Prove that

2 sin3 a sin3 (8
—
y)
= 3 sin a sin 8 sin y sin (8

—
y) sin (y

—
a) sin (a

—
8) ;

this follows from the fact that x+y+z is a factor of x3+y3 +z3 —
3xyz; put

x = sin a sin (8
-

y), y = sin /3 sin (y-a), s = sinysin(a-/3), then x+y+z=0.

(6) Prove that

sin (a + 8) sin (a
-
8) sin (y+ 8) sin (y

-
8) + sin (8+ y) sin (8

—
y) sin (a + 8) sin (a

-
8)

+ sin (y+ a) sin (y
—

a) sin (/3+ 8) sin (8
—

8)
= 0.

The expression
fx1 _

^2) (
s2 _ W2) + (^2

_
-2) (^2

_ w2) + (
22 _

^,2)
(y

2 _
^2)

vanishes identically; put #= sina, ?/
= sin/3, 3=siny, tt>=sin&,

then remembering that

sin 2 a — sin2 8 = sin (a + 8) sin (a
-

/3)

the theorem follows.

(7) /Vove that

2 (co« /3 cos y
- cos a) (cos y cos a — cos 8) (cos a cos 8 — cos y) -f sin

1 a s/?i
2
/3 sin

2
y

— sin 1 a (cos 8 cos y
— cos a)

2 — sin2 8 (cos ycosa
— cos /3)

2 — sin2
y (cos a cos (i

— cos y)"

=
(1
— cos2 a — cos2

8 — <-'OS
2
y + 2 COS a cos 8 COS y)\
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This follows from the known theorem that the square of the determinant

a h g

h b f

9 f c

is equal to 00 -f2
fg - ch fl

~
bg

fg — ch ca — g- gh
—
af

fh — bg gh — af ab — h2

put a=b=c=l, f=cosa, g= cos/3, A=cosy, then be—/2= siu2
a, ...,

expanding the determinant, the theorem follows.

(8) Prove that

cos 2a cot \ (y-a) cot J (a-/3) + cos 20 cot \ (a-0) cot A (0-y)
+ cos 2y cot A (0

-
y) cot \ (y

—
a)

= cos 2a + C0S 20+ COS 2y + 2 cos (0+y) + 2 cos (y+ a) + 2 cos (a+/3).

Replace each cotangent on the left-hand side, by means of the formula

cot A0= —:

—w~ )
then reduce the whole expression to the common denominator

sin 6 r

sin (0
—
y) sin (y

-
a) sin (a

—
0) ; the numerator becomes

2 cos 2a sin (0
-
y) {1 + cos (y

-
a)} {

1 + cos (a
-

/3)},

or 2 cos 2a sin (0
—

y) + 2 cos 2a sin (0
—

y) cos (y
—

a) cos (a
-
0)

+ 2 cos 2a sin (0
—

y) {cos (y
—

a) + cos (a
-

0)},

or {1+2 cos (0
—

y)} 2 cos 2a sin (0
—

y)
— i 2 cos 2a sin 2 (0 - y)

+ 2 cos 2a sin (0
—

y) cos (y-a) cos (a-0).

Now 1 + 2 COS (0
-

y)
- 4 cos 1

(0
-

y) COS J (y
-

a) COS |(a
-
0)

from Ex. 4, Art. 47,

and 2 cos 2a sin (0
—
y)
= 2 cos (0+ y) 2 sin (y

—
0)

= 4 sin \ (0-y) sin | (y-a) sin $ («-/3) 2 cos (0 + y).

Also 2 cos 2a sin 2 (0-y) = O,

and 2 cos 2a sin (0
—

y) cos (y
-

a) cos (a
—
0)= \ 2 cos 2a {sin 2 (0

-
y)

- sin 2 (y
-

a)
- sin 2 (a

-
0)}

= 1 2 cos 2a sin 2 (0
-
y)
-
\ 2 cos 2a 2 sin 2 (0

-
y),

which equals sin (0
-

y) sin (y
-

a) sin (a
-
0) 2 cos 2a,

hence the numerator of the whole expression is equal to

sin(0-y)sin (y-a) sin (a-0) {22 cos (0+ y) + 2 cos 2a};

therefore the expression is equal to 22 cos (0+y)+ 2 cos 2a.

(9) If

a+0+y= 7r, and to«|(0+ y-a) tan £ (y+ a-0) fcm | (a +0-y)= l,

prove that l+cos a + cos + cos y
= 0.

Squaring the given equation, we have

sin2 (*7r-£a) sin* (±,r-£0)sin2 (£*-£?)
= COs2(^-^a)cOS2

a7r-i0)cOS2(^-ly),
or (1

- sin a) (1
- sin 0) (1

- sin y)
=

(1 +sin a) (1 + sin 0) (1 + sin y) ,
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hence sin a+ sin /3 + sin y+ sin a sin /3 sin y= 0,

or 4 cos Ja cos £/3 cos^y+ sin a sin /3 sin y= 0;

hence 1 + 2 sin ^a sin |$sin ?ry
= 0,

also cos a + cos /3 + cosy — 1 = 4 sin |a sin £/3 sin ^y ;

therefore cosa+cos/3 + cosy+ l=0.

(10) Prove that if

tan \ (/3 + y
-

a) tan \ (y + a - /3) *cm £ (a + ,8
-

y)
=

1,

Me» SMi 2a +sm 2,3+ s«'?i 2y= 4 cos a cos /3 cos y.

We have

sin|(£+ y-a) sin ^ (y+ a-,8) sin \ (a + /3-y)
= cos£(/3+ y-a)cos^(y+ a-/3)cosi(a+ /3-y),

or {COS (8
-

a)
- COS y} sin | (a + j3

-
y)= {COS (/3

-
a) + COS y) COS £ (a+ /3

-
y),

which may be written

COS(f3-a)cos£(a+ /3-y+ j7r) + COSysin|(a+/3-y+|7r)= 0.

Now sin 2a + sin 2/3 + sin 2y- 4 cos a cos £ cosy is equal to

2 sin (a+ /3) cos (/3
-

a)
- 2 cos y {cos (8

-
a)+ cos (a+ /3)

- sin y},

or 2 cos (#- a) {sin (a+ /3)
- sin (in-

-
y)}

- 2 cosy {cos (0+ a)
- cos (|tt

-
y)},

which is equal to

2 sin | (a + /9 + y
-
^ tt) {cos (/3

-
a) COS |(a + /3

-
y + £ tt)

+ COSy sin |(a+/3-y + i7r)},ana this is equal to zero.

(11) Having given that

4 cos (y
-

z) cos (z
-

x) cos (x
-
y)= 1,

prove that

1 + 12 cos 2 (y-z) cos 2 (z
—

x) cos 2 (x-y)
= 4 cos 3 (y

-
z) cos 3 (z

-
x) cos 3 (x

-
y).

Let a=y-z, $=z-x, y = x-y, then a + /3+ y = 0,

hence 1 - cos2 a - cos2
/3
- cos 2

y + 2 cos a cos /3 cos y= 0,

therefore cos2 a+ cos2
/3+ cos2

y= § .

Now cos 3a cos 3/3 cos 3y= cos a cos /3 cos y (4 cos
2 a - 3) (4 cos

2
/3
-

3) (4 cos
2
y
-

3)
= £ (4

- 27 - 48 2 cos2
(S cos

2 y+ 36 2 cos2
a)

= £ (31 -48 2 cos2
/3 cos

2
y)

and cos 2a cos 2/3 cos 2y= (2 cos2 a - 1) (2 cos2 /3- 1) (2 cos2y- 1)
= (|-l+3-42cos2

/3cos
2
y)

= £-42cos2
/3cos

2
y,

hence 4 cos 3a cos 3/3 cos 3y
- 12 cos 2a cos 20cos2y = l.

(12) Having given

y
2 + z2 -2yzcos a _ z2+ x2 - 2zx cos /3 _ x2+ y

2 -
2xy cos y

«m2 a .v///-'/i . sYw^y

-
'

n. T. fi
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prove that one of the following sets of equations holds 1
,
2s denoting a+fi+ y ;

__*__ _ y = z

cos (s
-

a) cos (s
—

/3) cos (s
-
y)

'

x = y z

cos s cos (s
—
y) cos (s

-
fi)

'

x y z

cos (s
—
y) cos s cos (s

-
a)

'

x y z

cos (s
—

/3) cos (s
—

a) COS s
'

Let each of the equal fractions be denoted by k2
,
and put x= kcos0,

</
—

Icoscf), z= kcos\js, we have then

cos2
<j> + cos2

yfr
— 2 cos

<fi
cos

t|/-
cos a= 1 — COS2

a,

or (cos a — cos
cf>

cos \^)
2= sin 2

(p sin
2
\^,

whence cosa=cos($ + \//); similarly we can shew that cos/3= cos(\//'±#),

cosy= cos(0±<£), whence without loss of generality we can put a= $±\^,

/3
=

i//-±#, y = #±$. In order that these equations may be consistent, we
must take all the ambiguous signs to be positive, or else two of them"

negative and one positive. In the former case we find 8= s — a, $=« — /3,

-\^
=s-y; in the other cases we find the three sets of values

<9=y-s

$ =s

f=S-/3j

6= S-ft

(f)=a
— S

yjr
= S

thus one of the four given relations is always satisfied.

The solution of equations.

69. Examples.

(1) Solve the equation

sin 28 sec 46 + cos 26= cos 66.

This equation may be written

sin 28 sec 46+ cos 26- cos 66= 0,

or sin 26 sec 46 + 2 sin 46 sin 2(9= 0;

hence sin 20= 0, or sec 46 + 2 sin 40= 0,

that is sin 80 = - 1.

Hence the solutions are

0=$mir, 8=1 j«7r-(- l)
n
?[-

(2) /S'o/re £/;e equation
1

cos3 asecx+ sin3 a cosec x= 1
, /«>• x.

We may write the equation

cos3 a sin .r+ siu3 a cos a?=sin .r cos x,

1 This example is taken from Wolstcuholme's problems.
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or sin3 a cos x— cos a sin 2 a sin x= sin x (cos x - cos a),

hence sin2 a sin (a
-

A')
= sin x (cos #— cos a),

both sides are divisible by sin^(<i
—

x), rejecting this factor, we have

2 sin2 a cos h (a
—

-v) = 2 sin x sin i(a + #)=cos ^ (x — a)-cos^ (3.r+ a),

therefore cos ^ (3a?+ a)
= cos h (x

—
a) cos 2a,

or 2 cos I (3#+ a )
= cos i (

x+ 3a) + cos | (.r
-

5a),

which may be written

cos £ (3x+ a)
— cos ^ (x+ 3a) = cos | (#

-
5a)

— cos £ (3*+ a),

therefore sin \ (x
-

a) sin (x+ a)
= — sin

(an
-

a) sin \ (x+ 3a) ;

again rejecting the factor sin \ (x
—

a), we have

sin (x+ a) = - 2 cos J (#
-

a) sin \(x+Za)=- {sin (#+a)+sin 2a},

whence sin (x+ a)
= — sin a cos a.

The solutions are therefore

.r=2?i7r + a, and x=nn -a+(— l)'
l_1 sin _1 (sinacosa).

(3) Solve the equations

a sin (s

a sin (x+ y) + b sin (x
-
y) = 2n cos y

We have

a sin (x+ y)
- b sin (x

-
y) =2m cos xl

J

-j {a sin (# + y) + b sin (a?- y)}
2 -

% {a sin (x+y) - b sin (# -y)}
2

=4 (cos
2
y -cos2

x)= 4 sin (#+ ?/) sin (x-y).
sin ('^ *4~ 2/^

Let -:—7 ~{ = t, then < is given by the quadratic equation
§m(x-y)

TT . .... . , sin(.r+y) tan#+tan«
Using; < for either root of tins equation, we have t=—— .

'

;
= — —^,

sin (x
-
y) tan x - tan

_y

whence - = r
;
also dividing one of the given equations by the other,

tan y t — 1

we have - = - —
=- : and thence eliminating y by means of these two

ncosy at + b

equations and the relation sec2
y-ta,n

2
y=l, we have

%2 (at-b\ 2

m
from which we find

(at- by ft-iy. , .—
.

) sec2 a;- -—-} tan2
.r= l,

. f, n2
(at

-
b\

2
}
i (n2

(at
- by (t

- 1\ 2
)

-
*

ten *=
±{l

- -
2(^j } |-8^j

-
(<TIj }

,

which gives four values of tan x, two corresponding to each root of the

quadratic which determines t. Thus x is found, and then y is given by

tan y = = tan x.

6—2
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Eliminations.

70. Examples.

„, ,
cos3 8 sin3 8

(1) Eliminate 8 from the equations -—^
= -7—. 5-^.

= m.
v ' 2 cos (a- 38) sin (a

— 38)

sin 8 cos3 8+ cos 8 sin 3 8 sin 8 cos
"Wehave m= :

—
-, ^ — • , a a\ >

sin (a -20) sin (a -2(9)

whence — = sin a cot 28 - cos a.
2wi

cos4 8 - sin4 cos 28
Also ?w =

cos 8 cos (a
-
30)

- sin 8 sin (a
-
30) cos (a

-
20)

1

cos a+ sin a tan 20'

hence (zr- + cosa)( cos a
)
= sin2 a,

\2m J \m J

or 2m2 —\ = m cos a,

the result of the elimination.

(2) Shew that the result of eliminating 8 from the equations

cos 3(0 — a) _ cos 3 (0 + a — y) _ cos 3a

cos (0-/3)
""

cos(0+/3- 7 )

=
cos/3

is independent of ft.

8, y
-

8, and zero are independent values of x which satisfy the equation

COS 3 (x-a) _ cos 3a

cos (x
-

/3) cos /3

We have

cos 3.r cos 3a + sin 3,r sin 3a=k (cos x cos /3+ sin x sin /3),

where &=cos3a/cos/3 ; substituting for cos3.r, sin 3x their values in terms of

cos#, sin x respectively, then dividing throughout by cos3
#, we have the

following cubic in tana?
(
=

t),

cos 3a {4
- 3 (1 + t

2
)} + sin 3a {3t (1 + t

2
)
- 4t3}=k (cos + < sin /3) (1 + «

2
)

or *
3
(A sin /3 + sin 3a) + 1

2
(& cos /3+ 3 cos 3a) + * (£ sin /3

- 3 sin 3a)

+ k cos /3
— cos 3a= 0,

hence tan 0, and tan (y
-

0), are the roots of the quadratic

<
2
(£sin# + sin3a) + «(£cos/3+3cos3a)+ £sin/3-3sin3a=0;

.if /! . / /i\
^ cos /3 + 3 cos 3a

therefore tan + tan (7
-

0) =—, .

M'

: ,'
&sin/3+ sin 3a '

, ... ... ^ sin 8- 3 sin 3a
and tan tan (y - 0) = . . ^ =—-—

,' /cam 0+sin 3a

hence tan y =
~

(* °os /3 + 3 cos 3a) = _ 3a
' 4 sin 3a

or 7-3a= (2?-+ l)^7r,
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where r is any integer, thus the result of the elimination is independent
of 0.

(3) Eliminate 8 from the equations

xcosd y sin 8 , . . „ , „ . . A , . „ n.\+ J
.
— =1, xsin8-ycos8 = (&2 sin2 8 + b2 cos2

8)- .

a b

Square each of the equations, and put tan 8 — t, the equations become

'O-SHS+O-SH
*
2
(a

2 - ^2
)+ 2fcry+ (b

2 - y
2
)
= 0,

respectively, and we have to eliminate t from them.

Solving for f- and £, we have

t
2

t 1

,,,,/,
&

,

^~y2
N (6

2-^2
)
2

(a
2 -^2

)

2 ^(a*-**) 2xy(b
2 -y2

)

J
\ a2 ^ ab ) b2 a2 ab b2

Hence

or

hence —
|-

~- = a + b
a o

is the result of the elimination.

(4) Eliminate 6 from the equations

x sin 8 + ycos 8 = 2a sin 26, x cos 8-y sin 8= a cos 28.

Solving for x and y, we find

#=acos 8 (2
— cos 28), y = asin 8 (2 + cos 28)

or #=acos0(cos2 + 3sin2
#), y = asin 8 (3cos

2 + sin2
#),

therefore .r+y = a(cos 0+sin0)
3
, x-y= a(cos 8-sin8)

3
,

hence (a

and the result is

hence (x+y)$=a$(l +sin20), (x-y)%= a? (1 -sin 28)

(x+y)
3 + (x-y)* = 2a%.

Relations between roots of equations.

71. Examples.

(1) Consider the equation

a cos 8 + b sin 8= c.

Let a, /3 be distinct values of 8 which satisfy it, then

a cosa+ isin a= c,

acos|9+ &sin j3=c;
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a 6
therefore

siu id
- sin a cos a — cos /3 sin (/3

-
a)

'

hence tan |(/3+ a)
= 6/a,

and also -cos| (/3-a) = r sin£(|8 + a)
= -

cos£(/3+ a).

These relations may also be found as follows : put tan \6= t, then the

given equation may be written

a(l-t
2
)+2bt=c(l+t

2
)

or t
2
(c+a)-2bt + c-a=0.

The roots of this quadratic are tan %a, tan £0,

hence tan^atan^/3= -
,

c+ a

whence we obtain the relation fr^-—;
= -

.

cos \ (p+ a) a

26
Also tan ia+ tani/3= ,a J

c + a '

from which the other relation may be obtained.

(2) Consider the equation

a cos 20+ b sm 25+ c cos + d sin + e=O.

Let t= t&nhd, then the equation may be written as a biquadratic in
t,

t
i (a-c+ e) + fi(-4b+ 2d) + t

2 (-6a+ 2e) + t(4b + 2d) + (a+ c+ e)
= 0;

if tan \ X ,
tan \ 2 >

tan i #3 1
tan I #4

be the roots of this biquadratic, we have

, „ 46 -2d
, „ 3 . „ 2e-6a

2 tan £ 0i = , 2 tan A 5, tan £ 0o=— —
,a — c+ e

- l ~ ' a-c+ e

46 + 2d a+ c+e
Stan Id, tan i d<> tan -*#.,= —

, tan h 0, tan h 2 tan i 3 tan i #4
=—

,8 l " " z ° a-c+e z * - a—c+e

and from these relations symmetrical functions of the four tangents may be

calculated.

If 2s= l + 2+ 3+ t we have

2 tan \ 1
- 2 tan | #j tan £ 2 tan £ #3

1-2 tan ^ X
tan ^ 2+ tan ^ d

t
tan | #2 tan | 63 tan | #4

46- 2d+(46 4- 2d) 6

a-c + e-(2e — 6a) + a+ c+ e a

We leave it as an exercise for the student to prove the relations

a b —c —d e

coss sins 2cos(s-0,) 2sin(s-0!) 2 cos \ (0 v + 2 -03
-

t )

'

(3) If

sin a cos (a+ 0) tan 2a= sin /3 cos (/3+ 0) tan 2/3
= sin y cos (y + 0) tan 2y
= sin 8 cos (8 + 0) tan 28
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and no two of the angles a, /3, y, 8 differ by a multiple of it, shew that

a + fi+ y + 8 + 6 is a midtiple of tt.

Write each of the equal quantities equal to k, then a, /3, y, 8 are roots of

the equation
sin x cos {as+ 6) tan 2.*;= k

which may be written

2 tan2 x (cos 6
- sin 8 tan x)=k (1

- tan4
x),

2 sin 6 2 cos 6
hence 2 tan a=—-r

—
i 2 tan a tan ft

=—-.
—

,
2 tan a tan /3 tan y — 0,

and tan a tan /3 tan y tan 8= — 1
;

2 sin 6
therefore tan (a + /3+ y + 8)

= j
—

„ *
—

i
= - tan d,

tC— L COS c7
—

fC

hence a+fi+ y+8 + d is a multiple of it.

(4) If a, /3, y be unequal angles each less than 2tt, prove that the equations

cos (a+ 6) sec 2a= cos (6 +/3) sec 2/3 = cos {6 + y) sec 2y

cannot coexist unless

cos (P+y)+cos (y+ a)+ cos (a+ /3)
= 0.

Writing k for each of the equal quantities we have

cos a cos 6 — sin a sin 6 - k cos 2a = 0,

cos j3 cos 6 — sin /3 sin
- X- cos 2/3

=
0,

cos y cos 6 - sin y sin 6— k cos 2y = 0,

hence eliminating cos 0, sin #, wc have

2 cos 2a sin (/3-y)
=

or 2 cos (j8 +y) 2 sin (y
-

/3)
=

0, by Example (2), Art. 68,

hence 2 cos (/3+ y)
= unless 2 sin (y

-
/3)
=

0,

that is unless sin J (/3
-

y) sin £ (y
—

a) sin |(a
-
0)= 0.

This example may also be solved in a similar manner to Example (3).

Maxima and minima. Inequalities.

72. Examples.

(1) The greatest value of

a cos 6+ b tin 6 is \/a?+ b2
.

Put bja
= tan a, then b= \/«

2 + &2 sin a, a= \/a
2+ 62 cos a,

thus « cos + 6 sin = V«2+ 62 cos (#
— a

),

now cos (5 -a) always lies between +1, hence a cos d + b s\n d lies between

± \
raF+l?.

(2) If u= Va2 cos2 Q+ b2 «M&a #+ Va'" wi2 + b2 cos2 6, then u Iks bet ween

a + b emd \/2~(a"
2Tb2

).
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Let x=ai cos2 6+V sin2 6 = * (a
2 + 62

) + | (a
2 - 62

) cos 2d,

then u=Jx+\/ai+ bi -x,

v?=a2+ ft
2+ 2 Vi (a

1'+ &*)*
-

{£ («
2+ &2)

- *
}
8
,

hence m is greatest when x= \ (a
2
4- ft

2
),
or the greatest value of m is \/2 (a

2 + 62
) ;

also u is least when | (a
2+ ft

2
)
- x is greatest, that is when x is least, which will

be when cos20 = —
1, in which case x= b2

,
and then u— a-{-b; this therefore is

the least value of u.

(3) Shew that if 6 lies between and n, cot ^6 — cot 6>2.

We have

sin|0 3-4sin2
i<9 l+2cosJ,-<9

COti(9-COt0=- j-~—-r- = : -£-2—
=

.

*
,4 sin £0 sin sin 5 sin 5

hence cot
|-

— cot #= cosec 6+ cosec i
;

now cosec 8, cosec ^d are each never less than unity, if 8 lies between and rr,

hence cot j 8 — cot 8> 2.

(4) // Z/ie s?m o/ n angles, each positive and less than ^n, is given, shew

that the sum or the product of the sines of the angles is greatest when the angles

are all equal.

A similar theorem holds for the cosines.

Let a
1;

a
2

... a„ be the angles and s be their sum. Then we have

sin a r+ sin as
= 2 sin h(ar + as) cos % (ar

- ag),

now cos | (ar
- a4) is less than unity unless ar = as ,

hence

sin ar+ sin a3<2 sin^(ar -hos )

unless a r
= as . If any two of the angles a x ,

a2 ...as are unequal, we can

therefore increase 2 sin a by replacing each of those two angles by their

arithmetical mean, hence 2 sin a is greatest when all the angles are equal;
we have therefore 2sina^»?i sin s/n.

Again sin a r sin as
—
| {cos (a,.

—
a„)

- cos (ar+ ag)},

and this is less than ^ {1
— cos (<v+a8 )} or sin 2

^ (a r+ aa)

unless «,.
= a8 . Hence as before, if any two angles in the product sina

x ,

.si n «.,... sin a„ are unequal, we can make the product greater by replacing each

of those two angles by the arithmetic mean of the two; it follows that

sin (I,, sin <i L,... sin «„ is greatest when a
1
= a 2

= ... = a, l ,
or the greatest value of

the product is (sin s/n)
n

.

(5) Under the same condition as in the last example, shew that the sum of

the cosecants of the angles is least when the angles are all equal.

We have

cosec ar + cosec n,

\cos^(a r -a,)— cos £ (a r+at) cos h (a,.
-

a„) + COS ^ (a,. + as)J

'

hence for a given value of a r +a„, cosec a r + cosec o, has its least value when
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cos i (a r
- a8)

=
1, or when a r

= at . The reasoning is now similar to that in the

last example.

(6) Under the same conditions as in the last two examples, shew that the

.nan of the tangents or of the cotangents of the angles is least ivhen the angles

are all equal.

(7) Shew that if a+ /3+ y= n, cos a cos cos y > 1/8.

Porismatic systems of equations.

73. A system of equations is said to be porismatic
1 when the

equations are inconsistent unless the coefficients satisfy a certain

relation
;
when this relation is satisfied the equations have an

infinite number of solutions.

The system

acos^cosy+ 6sin/3siny + c + a'(sin/3-fsin-y)+&'(cos^+ cos y) + c
' sm

(/
3 + 'y)

=0
'

acosyCOSa-f osinysina + c+ a'(siny+ sina) + &'(cosy +cosa) + c'sin(y + a)=0,

acosacos/3 + 6sinasin/3 + c+ a'(sina+sin j3) + 6'(COSa+ cos
/
3) + c

'sm (a+ ^) ::=0
>

is a system of three porismatic equations.

Consider the equation

a cos a cos 6 + h sin a si n 8+ c+ a' (sin 6 + sin a) + b' (cos 6 + cos a) + c' sin (6 + a)= 0,

this is satisfied by 0=/3, and by 0=y. Write this as an equation in

tan h&= t, thus :

t- (
- a cos a + c+ a' sin a + b' cos a-b'-c' sin a)+ 2t (b sin a + a' + c' cos a)

+ (a cos a + c + a' s'm a+ b' + b' cos a+c sin a)
= 0.

From this equation we find

tan i/3 + tan ^ y, and tan i/3 tan | y,

, /^ v
2 (osin a + a' + c'cos a)

hence tan i (p+ y) =^ —
jr-
——

v-2VM /y 2 (a cos a+ 6 +c sin a)

Wc should find similarly
,

. . 6sin/3-f a'+ c' cos£
tan i (a+ y)

= „
,

,,
,

,
• Q ,- v " a cos + + c sin/3

we can now deduce the value of tan i(a — 0) ;
we find for the numerator the

value

I> sin + a' + c' cos 0) (a cos a+ b' + c' sin a)
-

(6 sin a+ a'+c' cos a)

(acos0+ o' + c'sin0)
or

2 sin i (a - 0) {(c'
2 -

aft) cos I (a
-
0) + (aV -

&&') cos £ (a + 0)

-(««'- 6V) sin i
(a + 0)},

1 See Proc. London Math. Soc. Vol. iv. "On systems of Porismatic equations"

by Wolstenholme.
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and for the denominator,

(6 sin a+ a'+ c' cos a) (6 sin /3 + a' + c' cos £)+ (a cos a+ 6' -fc' sin a)

(a cos #+ 6' + c' sin £)
or

(«
2 + c•'

2)cosacos^ + (6
2+ c'

2
)sin,lsin i3+(a'

2+&'2
)+ («'fe + ^'V)(sina+ sin^)

+ (aV + a 6') (cos a+ cos £) + (« + 6) d sin (a + /3) ;

dividing this fraction by sin | (n
-

#), we have this denominator equal to

(c"
2 - a 6) {1 4-cos (a

-
/3)} + (a'o'

-
66') (cos a+ cos /3)

-
(aa'

- 6V) (sin a+ sin 0),

hence

(a+ 6) {a cos a cos /3 + 6 sin a sin /3+ c+ a' (sin a -f sin j8) + 6' (cos a+ cos /3)

+ c'sin{a+ j3)}

is equal to c'
2 - a'2 - 6'2+ ca+ cb-ab.

Hence unless the condition

c'
2- a'2 - 6'

2+ ca + c6 - a6=

is satisfied, the system of equations cannot be satisfied except by equal values

of a, /3, y. When this condition is satisfied, any one equation can be deduced

from the other two.

The summation of series.

74. A large number of series involving circular functions can

be summed by the method of differences. The most important

example of the use of this method is the case of a series of sines

or cosines of numbers in Arithmetical Progression.

Let the series be

S = cos a + cos (a + fi) + cos (a + 2/3) + . . . + cos {a + (n
— 1 ) /?},

we have cos a =
2 ^ JL^ {sin (« + ££)- sin (a

-
{ £)},

cos (a + 0) = 2 gin i^
{sin (a + f /3)

- sin (a + * £)},

cos {a + (?i— l)/3}

"
2lhTp {

sin
(
a +^^) - sin

(«
+^ *)}

J

whence £ = \ cosec | /3
jsin

(a+
U ~

/3) -sin(a-|/9)i

/ n - 1 _\ . n/3 fl= cos( aH 9~ PJ
sm i^ cosec

i7 (X).
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In a similar manner we find

sin a + sin (a + /?) + sin (a + 2/3) + . . . + sin (a + (n
-

1) £}

. / n — 1 _\ . ??/3 /? /0 ,= sm fa + —y~ fi
J

sm
-y

cosec
2

'
''

The sum (2) may be deduced from (1) by changing a into a + ^7r.

In (1) change /3 into /3 + ir, we have then for the sum of the

series

cos a - cos (a + /9) + cos (a + 2/3)
-

. . . + (- l)"
-1 cos {a + (»

-
1) 0],

( n - 1 a\ n/3 /3 / n-l
fl
\ . «j8 £

cos
(
a + —o— /3j

cos
-£-

sec
^,

or sin a+— £1 sin
-y

sec
^

,

according as w is odd or even. The sum of the series

sin a - sin (a + /3) + sin (a + 2$) ...

can be found from (2) in a similar manner.

Examples.

(1) Prove that

sinx\ajsina= 2 {cos (n- 1) a+ cos (n- 3) a+ cos (n
—

5) a+ ...},

and find a similar expansion for cos na/cos a.

(2) *Swm *Ae series

COS2 a + cos2 (a+/3) + . . . +cos2
{a+ (n

-
1) j3}

.

We have

cos2 a=£ (1 +cos 2a), cos2
(a+ /3)=4 {1 +cos 2 (a+ £)} ...,

hence the sum required is

^ft+ ^cos {2a+(»-l)/3} sin »i/3 cosec 0.

The sum of any positive integral powers of the terms of the series (1) and

(2) may be found by a similar method.

(3) Sum the series cosec 2a + cosec 22 a + . . . + cosec 2n a.

We find cosec 2a= cot a - cot 2a, cosec 22 a— cot 2a - cot 2 2
a,

cosec 2n a = cot 2"
~

' a - cot 2" a,

hence the sum required is cot a - cot 2" a.

(4) Sum the series

3 sin x -sin 3x 3 sin 3x - sin 32 x 3 strc 3n
~ 1x-OTw3n x

co* 3x 3co«32 x 3»- 1 co*3»x~

We have tan 3"
" > jt - i tan 3nx

3 sin 3n
~

l x cos 3nx - cos 3n
~ * x sin 3n# _ 2 sin 3n-1 xcos3n.r- sin 2 . S"-1^

3 cos 3"
_ l x cos 3*x 3 cos 3"

~ lx cos 3* a-
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_2sin3
n-1

.z(cos3
na;-cos3n - :l

.r)_
- 8 sin3 3"

~ * x cos 3n
~ lx

3cos3n-1 .rcos3n .z 3cos3n-1 .rcos3n #

3 sin 3"1-1 x -sin 3".v= -2
3cos3n o,'

3sin.r-sin 3.r 3 /l
,

\
Whence ^3x~

" =
2 V3

tan to-tan
V '

3sin3.r-sin32
07 3/1 . n9 1 \

hence —x ^ = - hr* tan 3*x - - tan 3v
,

3 cos Vx 2 \3
2 3 /

- l x-$,n\3nx 3/1 . „ 1 „ ,
\

-i s— - = ^ o tan 3nx - -—
= tan 3n

~^
) ;- 1 cos 3" a; 2 \3'1 3n_1 /

3sin3n - 1#-sin3n# 3/1, „„ 1

~~3»

therefore the sum of the series is

|(glitan3»*-tanA

75. The sum of a series of either of the forms

u
x cos a + u, cos (a -f ft) + u3 cos (a + 2ft) + ... + un cos {a + (n

—
l)ft\,

Uj sin a + u., sin (a + ft) + u 3 sin (a + 2ft) + ... + un sin {a + (n
—

1) ft},

can be found, if ur is a rational integral function of r, of any-

positive integral degree s.

Let S = Mj cos a + w2 cos (a + /3) + . . . + i«n cos {« + (rc
—

1) ft},

then

2 cos /3 , S= ux {cos (a
-

ft) + cos (a + ft)} + u, {cos a + cos (a + 2ft)}

+ . .. + ur {cos (a + r - 2/3) + cos (a + r/3)}

+ . . . + un {cos [a. + n- 2ft) + cos (a + nft)},

whence

2 (1
— cos ft)S = (2mj

— m2) cos a + (2i< 2
—

w,
— w3) cos (a + /3) + . .

+ (2wr
— wr _!

— ur+1 ) cos (a+r- 1/3)

+ ... + (2m„_j
— wn_2

-
m„) cos (a + n — 2#)

+ (2wn
-

w„_i) cos (a + n — lft)
— u

t cos (a
—

ft)
— un cos (a + nft).

Now 2«r
— w r_j

— u r+1 is a rational integral function of r, of degree
s — 1, whence excluding the first and the three last terms, we have

a series of the same kind, but of which the coefficients are of lower

degree than in the given series. We again multiply by 1 — cos ft,

and proceed in this way s times
;
the series will then be reduced

to the form (1).
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Examples.

(1) Sum the series

cosa+ 2cos(a+p) + 3cos(a+ 2lS) + ...+T\cos{a + (n-l)p}.

We have iu this case 2u r
-

ii r _ l -ur + 1
=

0, 2u 1 -u 2=0, whence

2 (1
- cos j8) S= (

>i + 1
)
cos {a+ («

- 1 ) j8}
- cos (a

-
j8)

- n cos (a + nj3),

or £=£(n + l)cos{a + (ft-l)/3}/(l -cos/3)
-
1 cos (a -0)/(l

- cos j8)
-
£ n cos (a + «/3)/(l

- cos /3).

(2) aSmwi the series

cosa + 22
co5(a + /3)+ 32

cos(a + 2
i3) + ... + n2

cos{a+ (n-l) i3}.

This series will be reduced to the last one by multiplication by 2 (1
- cos £)•

76. The series

cos a + x cos (a + /3) + x- cos (a + 2/3) + . . . + xn~ l cos {a + (n - 1) /3),

sin a + # sin (a + /3) + x2 sin (a + 2/3) + . . . + a;'
1
" 1 sin {a + (n -1)0],

are recurring series of which the scale of relation is 1 — 2x cos /3 + x2
,

for we have

cos (a + r/3) + cos (a + r - 2/3)
= 2 cos /3 cos (a + r — 1 #),

and sin (a + r/3) + sin (a + r — 2/3)
= 2 cos /3 sin (a + r — 1/3).

The series can therefore be summed by the ordinary rule for

summing recurring series. If S denote the sum of the first series

we find

S(l-2x cos /3 + O
= cos a — x cos (a

-
/3)

— xn cos (a + ??/3) + xn+l cos {a + (n
—

1) /3}.

If # < 1, we find, by making n indefinitely great, the limiting
sum of the infinite series

cos a + x cos (a + /3) + x2 cos (a + 2/3) + . . .

, cos a — x cos (a
— 6) „ „ „ ,

to be — -
£ ^. Putting a = 0, we find

1 — zx cos p + x2 *

1 — x cos /3 , -

i
—s— —5— —= = 1 + x cos /3 + a-

2 cos 2/3 + ad inf.,1 — 2# cos p + x-

whence also

1 — x2

,
—

5- —5 r=l + 2a;cos/3 + 2«2
cos2/3 + ...ad inf. (3).

1 — 2x cos /3 -f- x2 v '

77. In some cases the sum of a series may be found by means
of a figure. We will take as an example the series (1) and (2) of

Art. 74. Let 0A
l ,
A

X
A 2} A 2A 3 ,

... A^An be equal chords of a
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circle, and let j3 be the angle between 0A X produced and A XA 2 ;

draw a straight line OX so that A l OX=a, then the inclinations

of 0A 1} A X
A 2 ,

... A^An, to OX, area, a + /3, a +2/3, ... a + (n-l)£,
and that of 04 n is a + ^(n — l)/3; also if D be the diameter of

the circle, we have

OA, = D sin ±/3, 0An = D sin i/i/3.

Now the sum of the projections of CMj, J.^.,, ... 4. n_a
J. n> on

OX, is

0A X cosa + A 1
A 2 cos(a + /3)+...+ A^An cos {a + (n

—
1) /3|,

or D sin ^/3 [cos a + cos (a + /3) + . . . + cos {a + (n
-

1) j3)\

and this must equal the projection of 0An which is

0A n cos (a + 1 (n
—

1) /3},

or Z) sin \n(3 cos {a + ^ (?i
—

1) /9}, therefore

cos a + cos (a + /3) + . . . + cos {a -f (n
—

1) /3}

= cos {a + -i
(;i
—

1) /3} sin
|-??/3

cosec i/3.

If we project on a straight line perpendicular to OX we

obtain the sum of the series of sines.

Examples.

(1) OA is a diameter of a circle, 0, P, Q... are points on the circumference
such that each angle PAO, QAP, RAQ... is a; AP, AQ, AR... meet the tangent
at in p, q, r.... Find by means of this figure the sum of the series

sec ma sec (m + 1) a +sec (m+ 1) a sec (iu+ 2) a+ ... to n terais.

(2) Prove geometrically, that if a, ft, y ... k be any number of angles,

sec a sec (a +/3) sin ft+ sec (a+ ft) sec (a+ft+ y) sin y

+ sec (a+ft + y) sec (a+ft+ y+ d) sin 8+ ...

= sec a sec (a+ ft + y + ... + k) sin (ft+y +... + *).

EXAMPLES ON CHAPTER VI.

1. Eliminate 8 from the equations

cos3 + acos#= &, sin3 8 + a sin 8~c.

2. Eliminate 8 from the equations

(a+ b) tan (8
-
0) = (a - b) tan (0+ <£), a cos 20 + b cos 2<9= c.



EXAMPLES. CHAPTER VI 95

3. Prove that

(a sin
(f> + b cos 0) (a sin ^+ b cos ^) sin (0

—
>//)

+ (a sin
y\r + b cos

>//) (a sin #+ b cos 0) sin (\^
—

6)

+ (a sin 6 + 6 cos 0) (a sin + 6 cos 0) sin (#
-
0)

+ (a
2 + 62

)sin(0-^sin(^-0)sin(0-0) = O;

and interpret the equation geometrically.

4. Keduce to its simplest form, and solve the equation

cos2 8 - cos2 a— 2 cos3 6 (cos 6 - cos a)
— 2 sin3

(sin
- sin a).

5. Prove that the sum of three acute angles A, B, C, which satisfy the

relation cos2 A + cos2 B+ cos2 (7=1, is less than 180°.

6. If A +B+C= 90°, shew that the least value of tanM + tan2B+ tan2 C
is unity.

7. Find 0, from the equations

sin + sin 0+sin a= cos #+ cos + cosa|
+ = 2a j

8. If A+B+ G= 180°, shew that 8 sin %A sin hB sin JC> 1.

Tf
x sin +y sin 0+2 sin ^ _ 4 sin 6 sin sin \^ + sin (0 + + ^)
.r cos 6+y cos + z cos ^ 4 cos 6 cos cos

\|^
— cos (0 + + \jr)

'

a?Mnfr(0 +^-fl)+ysiu£(^+ fl-0)+gsin$(fl + fl->fr)

prove that ^^ ,
(^ + ^_^)+y cos |(^+ 0-0)+ 2Cos \ (6+ cji-f)

4siu^(0 + ^-(9)siiU(^ + (9-0)siiU((9 +0-^) + sin|((9+ + ^)

~4cos|(0 + ^-<9)cos|(^+ <9-0)cos^((9 + 0-^)-cosi((9+0 + ^)'

^ t. i.u 2 sin 3a sin (/3
-

y) . , . . N
10. Prove that —g^-^J =sm(a+/3+y),

and generally, if n be any odd number,

2siii7iasin(/3-y) „ f . . Ql X1

2sin2 (Y-V =2{Sm(Pa + g/3 + ?
'

y)} '

where
jo, <?>

r are any odd numbers whose sum is n.

11. Having given

a2 cos acos/3 + a (sin a+ sin/3) + l=0,

a2 cos a cos y+ a (sin a + siny) + l =0,

prove that a2
cos£cosy+ a (sin/3+ sin y) + l=0;

,i, y being less than n.

12. If $i, 6-i are the two values of 6 which satisfy the equation

cos 6 cos sin 6 sin _
cos^a sin^a

shew that 6
{
and 2 being substituted for d, in this equation will satisfy it.
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13. If

a cos a cos /3+ b sin a sin /3
=

c, a cos /3 cos y + b sin /3 sin y= c,

a cos y cos 8+ 6 sin y sin 8= c, a cos $ cos e + b sin 8 sin e= c,

and a cos e cos a + 6 sin t sin a= c,

prove that ^ + ^ + ^
=

(1
+

1) Q +
I) (I

+
*)

f

the angles being all unequal and between and 2n.

14. If

sin(# + a)
= sin((£ + a)

= sin/3, and a sin (6 + $>) + b sin (0
—

(j>)=c,

prove that either

a sin (2a ± 2/3)
= —

c, or a sin 2a ± b sin 2/3
= a

15. If the equation

sin2n + 2
0/sin

2n a + cos2" + 2
0/cos

2n a= 1

hold when n=l, shew that it will hold when n is any positive integer.

16. Eliminate 6 from the equations

4 (cos a cos 6 + cos <£) (cos a sin + sin cp)

= 4 (cos a cos 0+cos *!/) (cos a sin + sin
>//)
= (cos $ - cos

>//) (sin <j>
— sin

>//•),

and prove that cos ($
—

\|/-)
=

I, or cos 2a.

tan y _ sin (x
—

a) , tany _sin(.r
—

2a)

tan /3 sin a tan 2/3 sin 2a '

,
. tan y sin x cos x

shew that . OQ = -—
tt- = 5 r^ .

sin 2/3 sin 2a cos 2a - cos 2/3

18. Prove that the system of equations

sin (2a
—

/3
—

y) _ sin (2/3 -y— a) _ sin (2y-a-/3)

COS(2a+ /3+ y)

~
cos"(2/3+ y+ a)

~
cos(2y+ a+ /3)

'

if a, /3, y be unequal and each less than n, is equivalent to the single equation

COs2(/3+ y)+ cos2 (y + o) + cos 2 (a+/3) = 0.

19. If #=2cos(/3-y)+cos(0+ a) + cos(0-a)
V

= 2cos(y-a) + cos(<9+/3) + cos(<9-/3)

= - 2 cos (a
-

/3)
- cos (0+ y)

- cos (6
-

y),

prove that .r=sin2
0, if the difference between any two of the angles a, /3, y

neither vanishes nor equals a multiple of n.

20. Ifvl+5 + C=180°andif

2 sin (2»+ 1) A sin (B- C)= 0,

n being an integer, then shew that

2siu(tt-l)J sin(ft + l)(/?-C) = 0.
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21. If coH(a + 0)(cosy-cos8) + cot£(a + y)(cosd-cos0)
+ cot £ (a -f 8) (cos

- COS y)
= 0,

and no two of the angles are equal, or differ by a multiple of 2tt, prove that

cot \ (0+ a) (cos y - cos 8) + cot h (0+ y) (cos 8 - cos a)

+ cot -|(0 + S) (cos a — cos y)
= 0.

20 If sinJa+ 0) sin(0+fl) = cos(a+fl) cos (0+ 4) = g
sin(a+ 0) sin (0+ 0) cos(a + #) cos (0+ 0)

'

shew that either a and differ by an odd multiple of | n, or and differ by
an even multiple of jr.

23. If acos(0 + ^) + &cos(0-\//) + c= O,

acos^ + fl) +6cos(\^-<9) +c= 0,

a cos (6 +(p)+ b cos(d - <f))+ c= 0,

and if #, 0, \^ are all unequal, shew that a2 - 62+ 26c= 0.

24 j f
CQs(q + + <9) _ COS (y+ a + <9)

sin (a +0) cos2
y sin (y+ a) cos2 0'

and 0, y are unequal, prove that each member will equal

cos(0+y+ 0)

and cot#=

sin(0+ y)cos
2 a'

sin (0 + y) sin (y+ a) sin (a + 0)

COS(0+ y)cos (y + a) COS (a+ 0) + sin2
(a+ + y)

*

25. If A, B, C be positive angles whose sum is 180°, prove that

cos J + cos 5+ cos C>1 and >3/2.

26. Solve the equation
64 sin7 <9 + sin 7(9= 0.

27. If 2s—x+y+ z, prove that

tan (s— ,r)+tan (s— y) + tan (s-z)-tans
4 sin /t-sin ?/sin 2

1 — cos2 x - cos2
y - cos2 2-2 cos x cosy cos 2

'

tan -1
(s-A-) + tan -1 («-y) + tan _1

(s-2)-tan
_1 s

= tan
- 1— 16^Z

(x
1+f+z*+4f-4 (if z- + s2 ^-

2+x*f)
'

0fl Tf cos 5 sind cos0 sin
*"• J-i 1

—
•
— —

1

—
-.

=
1,

COS a sin a cos a Sin a

cos cos <j> sin sin rf> , „
-o
—- + —>—- + 1 = 0.

cos^ a sin J a

2 sin a cos (d +<j>) =2 cos (0 -0) + cos2
n,

2 sin a cos
(<9 + yjr)

= 2 cos ty-O) + cos2
«,

2 sin a cos (0 + ^) = 2 cos
(</>

-
\p-) + cos2

a.

breve
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30. If cos (y-z)+cos(z-x) + cos (x— y) — —
3/2,

shew that

cos3 (.v+ 8) + cos3 (y+ 8) + cos3
(z+ 8)-3 cos (x -f 0) cos (y + 8) cos (2+ 8)

=
0,

for all values of 8.

sin ?'a sin(r + l)a sin(r+ 2)a
31. If

prove that

I m n

cos ra _cos(?'+l)a cos(r+2)a

2m*-l(l+ n) m(n-l) ?i(^+ «)
— 2/^ 2

32. Prove that the equations

( x+- )
sin a = l- + - + cos2

a,

(1\
Z X

V+ -) sin a= -H hcos2 a,
y) x z

(z + -
)
sina =-+^+ cos2 a,

are not independent, and that they are equivalent to

111
x+y+z=- i h -= — sin a.

x y z

33. Prove that

2cos(/3-y)cos(0 + /3)cos(0 + y) + 2cus(y-a)cos(<9+ y)cos(0+ a)

+ 2cos(a-/3)cos(0+ a)cos(0+/9)-cos2(0 + a)-cos2(0+ /3)-cos2(0-|-y)-l

is independent of 8, and exhibit its value as the product of cosines.

34. Prove that if a, /3, y, 3 be four solutions of the equation

tan(<9+!7r) = 3tan30,

no two of which have equal tangents, then

tan a + tan ($ + tan y + tan 8= 0,

tan 2a+ tan 2/3+ tan 2y+ tan 2S= 4/3.

35. If 6 tan (r + x)= 3 tan (r +y)= 2 tan (r+ 2),

shew that 3 sin2
(x -y) + 5 sin 2

(?/
-

z)
- 2 sin2

(z
—
x) =0.

36. Solve the equations

sin
~

l x- sin
~ ly= § 71-)

cos
~ 2 ^ - cos

~ l

y= \rc)'

37. Prove that the nth convergent to the continued fraction111 . (tan a+ spc a)
n - (tan a - sec oSn

is
2 tan a + 2 tan a + 2 tan a + (tan a 4- sec a)

n + J -
(tan a - sec a/'

T x
'

l= 4r)

38. Eliminate 8 from the equations

3a cos + a cos 38= 4r)

3a sin 8 -a sin 30 =
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_
q Tf

tan (0
-

a) _ tan
(<ft
—

a) _ tan (\^
-

a)

p q r '

prove that

p {q-rf cot (<£
-

•f) + q (r -p)
2 cot (^ - 0) + /• (jo

-
q)°- cot (0

-
<f>)
= 0.

40. Develop —-—
,—-

1 + a cos + 6 sin

in a series of the form

A +A t cos(0-a) + J 2 eos2(0-a) + ....

41. Solve the equation

tan 30 - tan 20 - tan = 0.

42. If

cos3 x+ cos3
y= cos 3a, sin3 #+ sin3

y= sin3a, and .r+y=2/3,

prove that 8 sin 3 3 (a+/3) = 27sin20sin2
4,3cos(3a+/3).

43. If a cos
(f> cos\j/ + b sin

(f>
sin

yj/
=

c,

a cos
yfr

cos 0+6 sin
\|/-

sin 6 — c,

a cos 8 cos + 6 sin 8 sin <£
=

c,

prove that bc + ca + ab=0, unless a= b= c.

44. Solve the equation

COS
" l

(x+ h) + COS
~~ J

.i'+COS
" J

(x
-

£)
=

1 7T.

45. Eliminate from the equations

a?y sin + 63#cos<£+ «6 (a
2 sin2 + 6) eos2 2

=O,

a# sec
<f>

-
by cosec

<f>
= a2— 62

.

46. Solve the equation

cos 5(9 + 5 cos 30+ 10 cos =
£.

47. Eliminate from the equations

a cos cos 20= 2 (a cos 0— #),

a sin 8 sin 20= 2 (a sin 6-y).

48. Prove that the number of solutions in positive integers (including

zero,), of the equation 3x+y= n (n integral), is

L cosJtt J

49. Solve the equation

6 cos 30 - 3 sin 30 - 10 cos 20 + 5 sin 20+22 cos - 5 sin 8 = 10.

50. Find the greatest value of

cosec2 6 - tan 2

cot2 + tan- 0-1'

7-2
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51. Prove that

sec2 a sec2 a sec 2 a sec2 a

4 _ 1 _ 4 _ 1 _

to r quotients is equal to

sin ra

2 sin (r+1) « cos a

52. Eliminate 8, <f)
from the equations

asin (8 -a)+ b sin (8+a)=x sin (<£ + /3)+y sin (0-/3),

a cos (8-a)-b cos (0+ a)
= # cos ($4-/3) -y cos ($ -/3),

53. Prove that

2 cos a (cos 3,3
- cos 3y)

= 4 (cos j8
— cos y) (cos y

— cos a) (cos a — cos /3) (cos a+cos /3 + cos y).

54. If a cos a + b cos/3+ ccosy= 0,

asin a+ 6sin /3 + csin y= 0,

a sec a + 6sec/3+ csec y= 0,

prove that, in general, ±«±&±c= 0.

55. Eliminate 6 from the equations

sin 3 (Jtt + 0) + 3 sin {lir + 8) = 2a,

sin3(j7r-(9) + 3sin(j7r-^) = 2&.

56. If 61,62, 63 be values of 8 satisfying the equation tan (8+ a)
= h tan 26,

and such that no two of them differ by a multiple of rr, prove that

6^62 + 63+0
is a multiple of it.

57. Prove that

cos 4A = 8sin(A+B+ C)+ cosec A cosec JScosec C.
sin A sin (A - B) sin (A — C)

58. Prove that

2{sin
3
(^-a)cos2(u-$)sin(/3-y) + sin3 (^-^)cos2(/3-$)sin(y-a)

+ sin3
(6
-

y) cos 2 (y
-

(fj)
sin (a

-
0)}

=
{sin 2a + sin 2/3+ sin 2y- 3 sin 26} sin (/3-y)sin (y

—
a) sin (a-/3),

where = 1
(a+ /3 + y

-
3d).

59. IfJ + 2?+ C+2) = 180°, prove that

(N- sin J) (6'- sin 2?) (S- sin (7) (5- sin D)
= £ (sin .4 sin 2?+ sin CsinZ>) (sin 2? sin C+ sin .4 sin 2)) (sin Csin.4 + sin2?sin2)),

w here 2#= sin A + sin 2? + sin C+ sin 2>.
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60. Prove that the sum of the products of n terms of the series

cos a+ COS (a+ /3)+ cos (a+ 2/3) +
takeu two and two together is

£ cosec2
J/3 sec |/8 sin \ ?i0[sin£?i/3cosj£+ sini (n

-
1) /3cos {2a + (n

-
1)/8}] -| n.

.. cos0+ sin0 4 (cos
- sin 0) (cos 20 -sin 20)

2 + cos 26 + sin 2(9

~
4 (cos 26

- sin 20)
2-

(cos
- sin 0)

2 '

shew that there will be three values of 6, such that

tan 6i + tan 2 + tan 3
= 9.

62. If tan 20 -tan = tan 2(f)- tan = tan
2\|r

— tan -^,

shew that + +^ is an odd multiple of \tt, provided tan0, tan0, tan ^
are all unequal.

63. If #cosa+y sin a+2 + cos 2a=0,

x cos /3+y sin /3 + 2 + cos 2/3=0,

# cos 7+3/ sin y+ z+ cos 2y= 0,

prove that x cos +3/ sin + 2+ cos 20
= 8 sin \ (a+/3+ y+ 0) sin £ ((f) -a) sin £ (0-/3) sin £ (0

-
y).

64. Eliminate 6, from the equations

tan 6 + tan =
a,

sec 6 + sec =
6,

cosec 6 + cosec =c,

and shew that, if 6 and c are of the same sign, be > 2a.

65. Prove that the result of eliminating 6 from the equations

cos (0- 3a) _ cos (0-3/3) _ cos (0
-
3y)

COS3 a cos3
/3 COS3

y

is sin (/3
-
y) sin (y

-
a) sin (a

-
/3) {cos (a + /3+y)

- 4 cos a cos /3 cos y) )
=0.

66. If (1 -x+x2
)'

1 be expanded in powers of x, shew that the coefficient

of xn is sin J (?i + 1
) jr/sin ^ 7r.

67. Prove that 2cos4asin 0+y)sin(/3-y)
= - 8 sin (/3

-
y) sin (y

-
a) sin (a

-
/3) sin (/3 + y) sin (y + a) sin (a+ #).

68. Prove that

2 cos 2 (3 + y
-

a) sin (/3
-
y) cos a= 8 sin (/3

-
y) sin (y

-
a) sin (a

-
/3) cos a cos /3 cosy.

69. If a sin + 6 cos 6 = a cosec + 6 sec 0,

shew that each expression is equal to

70. Find the greatest value of

sin (/3-y) + sin (y-a)+sin (a-/3).



102 EXAMPLES. CHAPTER VI

71. Solve the equation

cos (x - a) cos (x
-

b) cos (x
-

c) =sin a sin b sin c sin x+ cos a cos b cos c cos x

72. Solve the equation

cos 2x + cos 2(x-a)+ cos 2 (#
-

b) + cos 2 (#
-

c)
= 4 cos a cos 6 cos c.

73. Solve the equation

sin3 3a + sin 3 2a= sin2 a (sin 3a+ sin 2a).

74. Eliminate 8 from the equations

a cos 20 + 6 sin 20= c,

a' cos 30 + b' sin 30= 0.

75. If ^ + 5+C= 180°, shew that

sin2 £5 sin2 \ C+sin
2
JCsin

2
IA +sin2 * 4 sin2 \B

is not less than ^W (sin
2 J. + sin 2 B + sin 2

(7).

76. Eliminate from the equations

4x= 5a cos - a cos 50

4y= 5a sin - a sin 50

77. If cos 2a sin (/3— y) sec (/3 + y)

= cos 2/3 sin (y
-

a) sec (y + a)
= cos 2y sin (a

-
£) sec (a+ /S),

prove that cos 2a+ cos 2/3+ cos 2y = 0,

and sin 2 (/3 + y) + sin 2 (y + a) +sin 2 (a+ /3)=0.

78. Prove that

in-M
2 cos (»ia+ /3)=cos (-gJ/a + S) sin i (iy+1) acosec ^a,

»i=0

m =M n=N p=P
and 2 2 2 cos (??ia+ «/3+j0y+ )

m=0 «=0 /)=0

=cosi(.l/a + i\
r
/3 +Py+ ...)sini(i/+l)asini(iV+l)/3...cosec^acoseci /

3....

Sum to n terms the following series in Exs. 79—93.

79. sin2 a+ sin2 2a + sin2 3a + + sin2 na.

80. sin2 a sin 2a+ sin2 2a sin 3a+ +sin2 «asiu (?i+l) a.

81. cosecacosec (a+/3)

+ cosec (a + /3) cosec (a + 2/3) + + cosec {a+ (n
- 1 ) /3}

cosec (a + «/3).

82. sin .z sin 2x sin 3.r

+ sin 2x'sin 3xsin Ax+ + sin ?u;sin (?i+ l).tsin (n + 2)x.

83. sin3 a + ^sin
3 3a+isin3 32 a + + s

—
,
sin3 3"- 1 a.

•J «i
z o" '

84. tan0tan30+ tan20tan40+ + tan w0 tan (71 + 2) Q.
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85. tan sec 20 + tan 20 sec 22 + + tan w0 sec 2" 0.

1 X 1 X X
86. tan#+-tan s + TtaiTT + + «—? tan

2 2 4 4 2n ~* 2n_1
*

87. tan x sec2 #+ - tan '- sec2 -
O 25 22

+-2 tanpsec2-+ +^ tan—
x
sec2—

,
.

88. 1 + c cos cos + c2 cos 20 cos 20 + + c"
_

1 cos (n
- 1

) 6 cos (« - 1 ) $.

cos 20 2 cos 40 4 cos 80 2"
~

x cos 2"
1 '

sin 2~20 sin2 40
+

sin 2 80
+ +

sin2 2"
*

qo
sin0 sin 20 sin n0

cos0+cosl 2 cos20 + cos22
'

cos w0 + cos n2
'

q
, cot 2a cot 3a cot(?i+l)a

1- cos2 2a sec2 a 1 - cos2 3a sec2 a 1 - cos2
(n + 1) a . sec2 a

'

92. 1.3sin-+ 3.5sin— + + (2w-l)(2n + l)sin
^
2" ^ '

93. 3. 4 sin a + 4. 5 sin 2a+ +(»+2)(w+3)sinna.

94. If 15 2 be two solutions of the equation

sin (0 + a) + sin (0+ /3) + sin (a + £)= (),

where 0j, 62 , a, and /3 are each less than 2ir,

shew that sin (0j + 2)+sin (/3+ 0^+sin (/3+ 2)
= O.

95. Prove that

. .,24/4 + 1 ,#4+1 .

A cot -1 =—+Atan -1—7^- =1ji,
x/.3 V3

, .#2+ 1 ,2#2 + l
and itan *—

7= A tan -1 ;=— = t,W.2
V3 V3 " 5

96. If a, |3, y, 8 are four unequal values of 0, each less than 2tt, which

satisfy the equation

cos 2 (X
-

6) + cos
(/x
-

0) +cos i/= 0,

prove that a + /3 + -y+ 8-4X = 2/i7r,

and that sin £ (# +y+8-a-2/x) + sin | (y + 8 + a-/3-2/i)

+ sin^(«+ a + j8-y-2/*) + sin J(a + /3 +y-8-2/i)
= 0.



CHAPTER VIL

EXPANSION OF FUNCTIONS OF MULTIPLE ANGLES.

Series in descending poiuers of the sine or cosine.

78. If in the formula (40), of Art. 51, we write for sin2
''^. its

value (1
— cosrA)

r
,
and arrange the series in powers of cos A, we

shall obtain an expression for cos nA in powers of cos A only.

Writing for A, we have

cos n6 = cos" - n

^7 C0S"
- '

2

( 1
~ COs2 °) + • ' '

+ (- iy
n(n-l) (n-2r + l)^^ Q (J

_^ Qy +

The coefficient of (— l)''cos
n-2r in this series is

n(n-l)...(n-2r + l) n{n — 1) ... (n
— 2r — 1)

~~i(2r) !

" + "

(2r+2)!
^ + '

w(n-l)...(w-2r-3) (r + 1) (r + 2)+ _

(2r + 4) ! 2!
+ "'

;

this is equal to the coefficient of x2r in the product of (1 + x)
n and

(1
-

l/x-)~
{r+1)

,
x being supposed to be greater than unity; the

coefficient is therefore equal to the coefficient of xr~l in the

expansion of (1+ a?)»-»-
1

(1
-

l/oc)-
{r+1)

. This latter coefficient is

equal to

+ (.-2r)(»-6-l) (r + !i)+
|
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and this is equal to

(»-r-l)-yfo-2r
+ l)

{r (1 + 1 );i

_2r + (n
_

2r) (1 + 1)n
-2r
-^

or to
»(n-r-l)...(»-2r + l) ,„__

r !

The coefficient of cos"0 is seen to be £ {(1 + 1)
B+ (1

-
l)
n
}f

or 2"_1
;
the coefficient of — cos71-2 is the term independent of

x in the expansion of (1 +x)
n~2

(l
—

l/x)~
2
,
and this is easily seen

to be (1 + 1)"~
2 + (n

-
2) (1 + l)"

-3
,
or n . 2"~3

.

Hence we have

cos nd = 2*-1 cos" 0-~ 2n
~3 cos"-2 + \~ 2?l

~5 cosn
~4 e - • -0-)'

A. I Z !

of which the general term is

(- 1y
n(n-r-l)...(n-2r + l)^^ cog„ ft

r

In a similar manner we obtain from the formula (39) of

Art. 51 the series

n 9
sin nd/sin

= 2"-1 cos'1"1 =— 2n
~3 cos71-3

+ (n
" 3

ffi

"
4) 2"- cos-5 0- (2),

of which the general term is

(a-r-l) (.-»)
cos„.!r_,

I* !

79. If in the formulae (1) and (2) we change into ^ir
—

0,

we obtain the formulae
n— IX

(- l)
2 cos 710 = 2""1 sin" - - 2""3 sin'1"2

+
n (?

27
3) 2""5 sin"-" -

(3),

--i n — 2
(- 1

)

a sin n0/cos = 2""1 sin"" 1 — 2"~3 sin71"3

+ ( "
~ 3> <"

~
4)

2»-* sin7-5 -
(4),

where n is even, and

(- 1)*
(» _,)

sin n0 = 2"" 1 sin" -
y
2"~3 sin"-2

+
n(

",7
3) 2»-°sin»-*0- (5),
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(_ i)^*-
1 '

cos 7i (9/cos
= 2n

" ] sin""1 - —- 2n
"3 sinn

"-8 $

+ (w -3)(w -4) 2M
_
Bgin^^

where w is odd.

(6).

Series in ascending 'powers of the sine or cosine.

80. In order to find expansions of cos?i#, sinn# in ascending

powers of cos or sin 0, we may write each of the six series we
have obtained in the reverse order. It will, however, be better

to obtain the required series directly.

First suppose n even, we have then

cos nd = (1
- sin2 0f

n - n(n ~ 1
)
(i
_ sin2 df^ sin2 q

n(n-l)(n-2)(n-S) .

2/)a»-2 •
, a

-\
——

(1
— sm2

0)
2 sin4 tf -

;4 !

expanding each power of 1 — sin2

by the Binomial Theorem, we

have

(n in _ - \

a , in nCn-1)} . ,- 1 2 V2 ) n(n-l)in „\
coS^ =

l-|-
+ -AT_^ sin^+

|-l^
+
-l__^__

1
j

+
n (n-l) {n-2Kn-S)\^ _ fe

the coefficient of (— l)
s sin2s # being

^»(|n-l)...(|-7i-s + l) n(n-l)(%n-l)...(%n-s+l)
s\

+ ~
~2~T (s-1)!

ra(n-l)(ra-2)(»-3) (£M-2)...(&w-a+l)
4! (s-2)!

+

which may be written in the form

l w(n-2)(ro-4)...(w-2g+ 2) i/2s-l\/2s-l \ /2s- 1

si 1.3.5...(2s-l) \[ 2 A 2 /"A 2
S+

,
/2*-l\/2*-l _\ (2s- 1 Wrc-1\

*
!
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Now, taking Vandermonde's theorem 1

s(s-l)
(p + q)„ =ps + «p«-i qi H

2]
—

P*1*?" + • • • >

where ^ denotes p(/>
—

l)...(p
— s + 1); since this holds for all

2s — 1 n — 1
values of _p

and q, let £>
=—

^— , 9
= —5— ,

then applying the

theorem to the series in the brackets, we see that the coefficient

of (-lYwf*6 is

l w(n-2)...(n-2a + 2)
0) (]

,

J< 1.3.5...(2*-1)
(*n + * 1 )U??+ ^""^

n2 (n
2 - 22

) (w
2 -

4-) . . . (n-
- 2s-2,

2
)

or
(5)1

We have therefore, when w is even,

„ , w2
. .- ?z

2

(ft
2 -22

) .
fl

cos ro0 = 1 - ^ sin2 + —— sin4
...

+ (rly
*H"-*>

£*-*-*» &.,+ (7);

this series is the series (3), written in the reverse order.

81. We have also

sin nd = cos In (1
— sin2

0)-
n ~

sin

n(n — l)(n— 2) .
a /^l»-2 . „/. . ) .

i ^ '(1— sin2^ sin2

+...[;

supposing n even, we expand each term of the series in powers of

sin2
;
we find the coefficient of (- l)

s+1 cos Asm28" 1 to be

1 w(n-2)...( n-2s+2) f/2g— 1 \
(

./2s-\\
(
n-l \

(s-l)l 1.3.5...(2s-l) |V 2 A-i
K* }

\ 2 A-2 V 2 J 1

(s-l)(s-2) (2s-l\
/n-1

2! V 2 A_3 V 2S-3 \ ^ '2

*
!

which is equal to

1 w(w-2)...(w-2g+ 2) .

(ln + 1)
^-1;! "1.3."5...(&-1)

( '^ + S 1J-Wl + 1 >

?i (n
2 - 22

) (n* - 42
) . . . (n

- 2*-2
l

a

)

orto
(27=7)1

'

1 See Smith's Algebra, page 288.
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We have therefore when n is even

/, , n n /i n (n
2 — 22

) . , n
sin /?0/cos0

= - sm ^-=-— sin3 #4- ...
1 o !

/ ,x ,n(n"- 2") ...(» -2*- 21*) .
. „+ (_1)«_L_

;

{2s
l ly

U sm *-i<? + ...(3>.

82. When n is odd, we have

coS
^=cos^(l-sin^)

i("- 1)-^^)
(l-8in^)

4(n - 8)
Sin^+...l

and sin n0 = n (1
— sin2

0)^
n ~

' sin

. «(»-m»-g)
(1
_ rin ,

tf)
«»-«) dn. g+ ,„.

expanding in powers of sin 0, as in the last article, we find in a

similar manner

Ql a _ n2 -l 2
. ,. (n

,
-l«)(n

t
-3") . J/1

cos w0/cos = 1 =— sm2 + v ^ £ sm4 -
'

2! 4!

+ (
_

1)(
(n'-l^-3') (--fr-ip^^ (9)

( -iS) i

. n . „ n (w
2 - l 2

) .
, . n (n

2 - l 2

) (»
2 - 32

) .
,

.

sm ??0 = - sin 6 ^— ' sm3 + —^ ^ '- sin5 -

83. If in the formulae (7), (8), (9), (10) we change into

it7r
—

0, we obtain the following formulae

(- 1)*" cos n0=l- J, cos2 + W2(^" 23)
cos4

2! 4!

n2
(n

2 -22
)(n

2 -42

) 6- —
^y

cos6
(9 + ...(11),

/ i\£"+l a/ • a w
/i w(w

a — 2 2
) -

{-ly sm rip/sin = T cos0 ^-^ -cos3

1 o !

w (n
a - 2 2

) (n
2 - 42

) .
-

+^ ^j—
— cos5

0-...(12),

when w, is even, and

(- I)"
{n

~
1}

sin u0/sin
= 1-^^ cos2

+ ("'- 1

lf-
3'

)

eo^-...( 13),
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(— l)*
v '

cos n6 = r- cos 6 ^ cos3

n (71
2 - l 2

) (if-
- 3 2

) rD ,-..

when n is odd. These formulae are all the same as those of

Arts. 78 and 79.

The circular functions of sub-multiple angles.

84. If in the formulae (1) to (6), or in the equivalent formulae

(7) to (14), we write 6/n for 6, we obtain equations which give

B 8
cos - or sin - when cos 6 and sin 6 are given. We will consider

>i n

the various cases.

(1) Suppose cos 6 given, then the equation obtained from (1)
a

will give us n values of cos-. If cos 6 is given, we should

expect to find the cosines of all the angles
=—

,
since 2kir ± 6

represents all the angles which have the same cosine as 6, where k is

any integer. Now whatever value k has, we can put + k = s + k'n,

where s always has one of the values 0, 1, 2 ... n — 1, and k' is a

positive or negative integer. We have then

2/W ±6 (6 + 2stt
. n , A + 2stt

= cos I- + lirk' j
= cosCOS V^\-/0 I i_

aj /i /u I v>\-/o

n v n J n

thus we should expect to obtain the n values

6 0+27T + 47T + 2(71- 1)tt
cos -

, cos -
,
COS cos —i—

,

n n n n

and these will be the roots of the equation we obtain from (1).

These roots are in general all different, since neither the sum nor

the difference of two of the angles is a multiple of 27r.

(2) Suppose cos 6 is given, then the equations obtained from

(3) or (6) will give the values of sin -. Before we use (6), we must
IV

6

square both sides and write 1 — sin2 - for cos2 -
;
thus we obtain an

equation of degree 2ti, for sin-, when n is odd, and the equation
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(3) gives us an equation of degree n when n is even. We expect

to obtain all the values of sin =— when cos 9 is given ;
as in

the last case, we can shew that all these values are included in the

2sir + 9
expression sin ——

,
where s has the values 0, 1, 2 ... n — 1. When

1 n

n is odd, all these values are different, and therefore we obtain 2h

values which are the 2?i roots of the equation obtained from (6).

avi • u • (n-2s) 7r-d . 2stt + 9
\\ hen n is even, we have sin = sin —

,
hence

n n

in this case there are only n values, these being given by the

equation obtained from (3).

(3) When sin 9 is given, we use the equation obtained from

9 9
(2) to find cos-, this gives 2?? values of cos-, for we must
v / n o n

9 9

square both sides and replace sin2 - by 1 — cos2 -
, before using the

ttt i , n • s-rr + (-l)
s 9

equation. We shew as before that the expression cos

Q
has 2w values, so that we expect to find cos - given in terms of

sin 9, by an equation of degree 2n.

(4) If sin 9 is given, sin - will be given by (4) or (5), accord-

ing as n is even or odd. When n is even, the equation from (4)
n

gives 2/i values of sin-; these will be the In values of

sin — -. When n is odd, the equation formed from (5)

a

gives n values of sin -
;
these will be the n different values of

sin
n

Symmetrical functions of the roots of equations.

85. The formula (1) may be regarded as an equation of the nth

degree in cos 9, when cos n9 is given. Now each of the n angles

9, 9 +
-7r

,
9 +— 9 + ~"~

~
'"*

is such that the cosine of n
n n n
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times the angle is equal to cos nO, hence since cos 0, cos (0-\
J

,

cos | 4. __ )
cos \d H—— ——

\
are all different, they are the

\ n I [
n

J

n roots of the equation (1) in cos 6; we can now use the ordinary

theorems for calculating symmetrical functions of the roots of

equations to calculate symmetrical functions of the n cosines

cos
( +--7r) ,

r having the values 0, 1, 2 ... n — 1. We may of

course, when it is convenient, use the forms (11) and (14) which

are equivalent to (1). Again the equation (2) may be used to

calculate symmetrical functions of the cosines of the n — 1 angles

for which sin ?i#/sin 6 has a given value.

The equation (3) may be used in the same way to calculate

symmetrical functions of the 2m sines

. „ • (« tt\ . ( n 2tt\ . /„ 2m7r-7r\
smtf,

sin(*
+
-), sm(0

+-) sin^H—^—),

where n = 2m.

In the same way the theorem (5) may be used to calculate

symmetrical functions of the 2m + 1 sines

. „ • ( n 2ir \ . t' 4?r \ . /. 4?mr \

where n = 2m + 1.

The equation

( n(n-l) 0/1 7i(w-l)(w-2)(n-3) A iQ }
tann^ jl--^-T--^tan2 ^ +^ /

-^]

—— '
tan4 B \

n n (n— 1) (n—2) J , n= wtan0 i ~ 'tan8 0+
o !

may be regarded as an equation in tan 6, of which the roots are

tan*, tanffl + ^V tan (d +^ tan \$ +fcllirl ,

and may therefore be used for calculating symmetrical functions

of these expressions.
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Examples.

(1) Prove that the sum of the products of the cosecants of

M +- fl+ 2(n~ 1)ff
,n n

taken two at a time, is — \x\
2 cosec2 lx\8, n being an even integer.

Using the equation (7), the required sum is the sum of the products of the

sines of the angles taken n — 2 at a time divided by the product of all of them
;

this is equal to the coefficient of sin2
#, divided by the term not involving

n2 n2

sin 8, or -—-

^r which is equal to - — cosec2
I nd.

2(l-cos?w)
l 4 -

(2) Prove that

COS* J 77 + COS* § 77 + COS* § 77 + COS1 £ 77 = 19/16

and sec4 J77 +sec
4
§tt + sec*

§-
n + sec* ±ir = 1120.

If sin 90/sin 8 be expressed in terms of cos 8, and be then equated to zero,

the values of cos 8 obtained by solving the equation of the eighth degree so

obtained will be

COS^jr, COS §77 COS fir.
We notice that

COS §77= -COS J 77, cos \ 77= -cos fir" ,

thus ±cosi77, + cosfjr, ± cos §77, ±cosf77.

are the roots of the equation. We may either use the series (2), or proceed
thus :

—if sin 95= we have

sin 58 cos AS+ cos 58 sin 48 =

or (sin 38 cos 28+ cos 38 sin 28) (2 cos
2 28- I)

+ (cos 38 cos 28 - sin 38 sin 28) 2 sin 28 cos 28=0 ;

substitute the values for sin 38, cos 28 ... and reject the factor sin#, then let

.£=cos2
8, we obtain the following biquadratic in x

{(4#
2 -

1) (2x
-

1) + 2 (4^
2-

3x)\ {2 {2x
- 1

)
2 - 1

} + {4 (2x
- 1 ) {Ax

2 -
3x)

- 8 (4z
-

1) (1
-

a?) a?} (2.t-
-

1)=0
or (l&c

3 -
12.V+1) (8x

2-8x+ l) + (Mx3- 80o;2 + 20.r) (2#- 1)
=

or, arranging according to powers of x,

25&Z4 _ 448^3 + 240a;2 - 40.r + 1=0.

The sum of the roots of this equation is 448/256, and the sum of the products
of the roots taken two together is 240/256, hence the sum of the squares of the

,
. 4482 -2.240.256 19 . ..

roots is . .

2
= —

; also the sum or the squares of the reciprocals

of the roots is 402 - 2 . 240, or 1120.

(3) Prove that sin a+sin 2a + sin Aa=l <«/?,

where «= j 77.

We find (sin a + sin 2a+ sin 4a)
2= sin2 a+ sin 2 2a + sin'-' 4a.
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Now the roots of the equation sin 70/sin 8 = in sin 6 are

±siner, ± sin 2a, ± sin 4a;

put x=ain2
8, then the equation in x is found to be

64a;3 - 112.r2 + 56a:-7 = 0,

hence sin2 a+sin2 2a + sin 2 4a= 112/64 = 7/4 ;

therefore sin a + sin 2a + sin 4a= A v7.

7T

(4) Evaluate sin — .

Writing a= 2ir/l7, we find by the formula for the sum of the cosines of

angles in arithmetical progression

(cos a+ cos 9a + cosl3a + cos 15a) + (cos 3a+ cos 5a + COS 7a + cos 1 la)= -
1.

Also (cos a+ cos 9a+ cos 1 3a -f- cos 1 5a) (cos 3a + cos 5a+ cos 7a+ cos 11 a) is found,

on multiplying out and replacing each product by half the sum of two cosines,

to be equal to - 1. The two quantities in brackets are therefore .the roots of

the quadratic z2+ \z
- 1 = 0, of which the roots are £ (

- 1 + *]\ 7). It is easily

seen that cos a+ cos 9a + cos 1 3a + cos 15a is positive, and

cos 3a+ cos 5a + COS 7a + COS 11a

is negative, we have therefore

cosa+ cos 9a + cos 13a+ cos 15a= | (\fl7
-

1),

COS 3a + COS 5a+ COS 7a+ COS lla= -j(Vl7+ l).

We can now shew that (cos a+ cos 13a) (cos 9a -f- cos 15a) = —
£, hence

cos a + cos 13a, cos 9a+ cos 15a are the roots of the quadratic

^2 -i(Vl7-l)x-i=0,

hence cos a + cos 13a= § (
- 1 + ^17 + \fte-2JVi) ;

similarly we find cos3a+ cos 5a= £ (-1 -
N/17 + 'V

/34 + 2,v/17).

Now cos a cos 13a= J (cosl2a + cosl4a) = ^ (cos 3a + cos 5a) ;
and since we have

thus found the sum and the product of cos a, cos 13a, we can find each of

them. Noticing that cosa>cos 13a, we have

cos Q = iV {\fV7
- 1 + V34- 2 V17 + 2 Vl7 + 3 \/T7 - V170+ 38V17}.

We have then

sin 7r/17
= \/i( 1 -cos a)

=
J
v 34- 2 Vn-2 V34- 2 Vl7 -4 Vl7 + 3 Vn- Vl7W387l7-

(5) Shew 1
that, if f(x, y) be a homogeneous function of x, y of n— 1

dimensions,

1 [sin x, cos x)

sin (x
-
a\)sin (x

— a 2) ... sin (x
— an )

_
r=n

{(sin ar ,
cos a r)

r- = i sin (x
—

ar) sin (a r -a{) sin (a,.
-

a...)
. . . sin (a,.

— an)

'

1 This theorem was given by Hermite in a memoir "Sur l'Int<5gration des

Fonctions circulates" in the Proc. Lond. Matlu 80c. for 1872.

II. T. 8
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The expression on the left-hand side of the equation may be written

—
, where t=t&nx, ar

= tana,..
(t- aj) (t-a2) ... {t

—
«„)

"

cos x cos a\ cos a2 . . . cos an
'

Now since f(t, 1) is of degree n— 1, lower than n, we have by the ordinary

method of resolving into partial fractions

(«-aj)(*-cr 2)...(*-aB ) r=1 («-«r)(aP -a!) (ar -a2) ...(a,.-a„)

_ /(sin a r ,
cos ar) . cos a; cos ct] cos a 2 ... cos n„

sin (x
-

a,.)
sin (ar

—
ai) ... sin (a r

- aH)
thus the result follows.

Factorization.

86. Since cos??# can be expressed as a rational integral function

of the nth degree in cos 6, we can express cos nd as the product
of n factors linear in cos 6; the values of cos 6 for which cos nd

vanishes are

7T 3tt (2n-lW=-
,
COS s— cos -

2w 2n

these cosines are all different
;
therefore

cos^-, cos^r- cos
,2n 2n 2/i

3tt
cos nV = JL

I
cos tf

— cos —
) (

cos if — cos—= A
(
cos # — cos =- 1 ( cos —

/ . (2n-l)7r^cos — cos -—-—-—
,

V 2« /

where A is a numerical factor. Since the highest power of cos

in the expression for cosnd is 2n_1 cosn 0, we see that A = 2 n
~1

;

therefore

3tt\

2n)

(2n
-

1) tt>

COS 710 = 2n_1 f COS — COS
jj- ]

( COS 6 — COS 5

('

cos — COS

Now cos x- = — cos =——
, therefore this expression tnay be

2n 2n

written

cos nd = 2"-1

^cos
2 6 - cos2

£\ (cos
2 - cos2~

J

(cos
2 0-cos2(n ~^

)7r

)cos0,
when n is odd, and
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-
) fcos

2 - cos2
7̂ -

2n 2w

cos2 — COS2 (n
—

1) 7r

2rc

when n is even
;
these expressions may also be written

cos w0/cos = 2"-1

[sin
2

£-
- sin2 d\

(sin
2

1^
- sin2 d\

it""

when ?i is odd, and

sin-
2ra

- sin2

')

7T
cos ??0 = 2'1-1

f sin
2

<r
sin2

when n- is even.

l
Sm 2^- sin2 #

**±=gZ-**e).

In each of these equations put = 0, we then obtain the

theorems

0*(»-l) • 7T . 37T . (W— 2>7T _ ^22V sin^-sin^— sin-—-—— = 1,
2/i 2w 2«

when n is odd. and

a*(»-l) • 7T • 37T . (W
— 1>9T -

2-
v

'sin^-sin— sin-——--— = 1,
2?? 2n 2n

•(15),

when n is even.

The positive sign is taken in extracting the square root, since

the angles are all acute.

If we divide the expressions for cos n0/cos or cos n0 by the

corresponding one of the products in (15) squared, we obtain the

expressions

COS 110

costf
= / 1

sin
1-

sin2

sin- .

7T

•In
sin-

3tt

2»

1- sin3

An-2)7r
sin2

when n is odd, and

sin 2

cos n = / 1 — 1-
sin2

sin-
7T

274,
sin-

3tt

'In

1-

2w

sin 2

)

•(16"),

Sill'
(w- I)tt

2«

.(17),

when n is even.

8—2
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We may write the theorems (16) and (17) thus:—

cosh0/cos0= n 1 — \ (16),-
{ **&£>=)

where n is odd, and
r= - n / sin 2 # \

I
sin —§r-J

where n is even.

87. As in the last article, since sin n0/sin is an algebraical

function of degree n — 1 in cos 0, we may find a corresponding

expression for it in factors linear in cos
;

in this case

IT 2-7T (n — l)7T
cos —

,
cos— ... cos — —

n n n

are the values of cos for which sin ?i#/sin is equal to zero.

IT '2.HT

These values may be thus grouped ± cos -
,
+ cos—

;
hence

as before

sin nfl/sin
= 2""1 cos

[cos
3 - cos2

-) (cos
2 - cos2— ) ...

(cos^-cos^l^),
when n is even, and

sin w0/sin
= 2"" 1

('
cos2 - cos2

-) [cos
2 - cos2—

)
. . .

( 2 a „(n-l)7T\
cos- — cos- -—a ,

\ zn )

when n is odd.

We can Avrite these equations in the forms

sin n0/sin = 2"" 1 cos (sin2 - - sin2 0)
[sin

2— - sin2 0) ...

when n is even, and

sin M0/sin = 2"" 1

[sin
2 - - sin2 0)

[sin
2— - sin2 0\...

. An- l)tr . a\sin2 v —zr—- sin2
,

\ 2n 1

when n is odd.



EXPANSION OF FUNCTIONS OF MULTIPLE ANGLES 117

We shall shew in the next Chapter that sinnO/sind has the

limit n when is indefinitely diminished; hence

»—1
77" IT

<\/n
= 2 2 sin— sin — (18),

n n x '

the last factor being sin
" *""

or sin —_
)7r

, according- as n

is even or odd. Hence

sinn0/7isin0 = cos0 n /l--ii-
j

(19),
r=1

V
sin2
¥/

when ?? is even, and

r=i(«-l)/ • o/i \

sin n0/n sin = n / 1 - -^i— \ (20),
r=l • »'7T I

when n is odd.

88. The expression cos nQ — cos n$ may be regarded as an

algebraical function of cos 6 of degree n, and can therefore be
factorised

;
the values of cos 6 for which the expression vanishes

are cos$, cos($H j, cosf<£ + -
r

)
,
hence

*0-cos??<£ = 2»- 1 n
|cos5'-cos^+

27

^)l...(21).
COS 111

89. lWe shall now factorise the expression x-n— 2a?
n cos n9 + 1

We have

xn - 2 cos nd + x~n = (x"-
1 + x~n+1 ) (x

- 2 cos 9 + ar1
)

+ 2 cos (x
11- 1 - 2 cos (n - 1) 6 + arn+1

)

- (x
n~2 - 2 cos (n

-
2) 6 + x~n+-).

If we denote xn — 2 cos nd + x~n by un ,
we may write this identity

un = (#
M_1 + x~n+1) Uj + 2u n_ 1 cos 6 - w„_j ;

this equation shews that un is divisible by ul} provided un^ and

,i_o are divisible by u^

Now Mj = (x
- 2 cos + x~ l

) (x + 2 cos 6 + ar1
),

hence "_, is divisible by «„ and therefore u3 , and so on.

1 This method was given by Ferrers in Vol. v. of the Messenger of Mathematics.

ii
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Hence un is divisible by u x ,
and therefore x2 — 2x cos 6 + 1 is a

factor of xm — 2x11 cos nO + 1
;
since 6 can be changed into 6 + -

without altering cos nd we see that, when r is any integer,

x2 - 2x cos ($ +—\ + 1

is a factor of the given expression ;
if we let r = 0, 1, 2 ... n — 1 we

obtain n different factors of the given expression, and these are all

the factors, hence

a-*" - 2xn cos nd + 1 - '"ft

*

jar

4- 2a cos f +—
)
+ 1

1
. . .(22) ;

this may also be written

x2n - 2xny
n cos ?id + y

m = U \x--2xy cos 10 +
J
+?/

2

k..(23).

90. In the equation (22) put = 0, we have then

r~n-\
/ ^rrr \

(xn -iy= n u-2 - 2^ cos— + 1
,

r=o \ n J

and since cos = cos —^— —— ,
the factors on the right-hand

n n

side of this equation are equal in pairs, except that when n is even

there is the single factor x- + 2x + 1, and whether n is even or odd,

there is the single factor x2 — 2x + 1, hence

xn -l=(x2 -l) n (a
2 -2acos —- + 1 (24),

when w ie even, and

a;
n-l=(a-l) II f x2 - 2a cos —- + 1

J
(25),

when n is odd.

Again, putting =
ir/n in the formula (22), we have

r=n-l ( (2r + l)7r )

(x
n +l)

2 = n
ja

2 -2acos v ; + 1
;

(2r + 1) 7T 2 (n
-

r)
- 1

nOW COS — = COS— 7T,
n n

hence the factors are equal in pairs, except that when n is odd we

have the single factor x2 + 2x + 1
;
hence

xn + 1 =
=

n~
l

\x
2 - 2x cos

(2r + ^ v
+ ll (26),

when n is even, and
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r=i(n-3) r C2r+lW )

xn+l = (x+ l) 17
ja»-2a;co8

V * } + lL..(27),

when ?i is odd.

91. In the equation (22) put x = 1, Ave have then

r=»-l f / 2 /,'7T

l-cos??0=2n-1 n U-cos(0+ —
r=o ( \ n

changing into 20 this becomes

sin2 n0 = 22n~- sin2 sin2

(#
+ ?) sin2

(#
+^) • • • sin2

(e +^T^) -

or sin n$ = ± 2n
~ l sin sin f +

-)
sin f +—V . . sin f +

'""

j
,

where the ambiguous sign is as yet undetermined. 7t has been

shewn, in Art. 51, that the form of the expansion of sin n0 in

terms of sin and cos is definite
;
the sign of the product on the

right-hand side is therefore always the same
; put then =

7r/2n,

the sign to be taken is clearly positive as each factor is positive.

We have therefore

sin^=2^-1

sin^sin(6'
+
^sinf6'4-^)...sin^

+
?

^^V..(28).

In (28) change into + irjln, we thus obtain

cos «0= *« sin (d+ ^j
sin

(o
+
^j...

sin
(*
+
?L-i*)...

(29).

The theorem (18) can be deduced from (28) by putting 0=0, and taking

the square root. In a similar manner, the theorem (15) may be deduced

from (29).

Examples.

(1) Prove that ifn be an odd integer, sinnd+ cosnd is divisible by

sin 6 + cos 9, or else by sin 8 - cos 6.

Let wn=sin w0+ cosw0,

then ttn+ «n _ 4
= 2cos20. w„_ 2

= 2 (cos
2 #-sin2

0) w„_ 2 .

Hence, if m„_ 4 is divisible by cos 6 + sin 6 or by cos 6- sin 0, un is divisible

by the same quantity. Now Wj = sin + cos#, hence u5 ,
u

,
w13 ... are all

divisible by sin#+ cos0; also w_! = cos0-sin 6, hence u$, u7 ,
un ... arc all

divisible by cos#-sin 6.

(2) Factorise tan nd - tan na.

ixt x. a 4. smn(d-a)We have tan nd - tan na= —^
cos nd cos na
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In the formula (28) write a- 8 for 8, we then have

sin n (8-a)= (- l)""
1 2n

~ »

T

~U \m[6-a-— )
r=o \ n J

= (-I)"-
1 2«- 1 cos'^

r

~n~
1

cosCa+—
\
jtan0-tan (<*+—)}

=( - 1)»-
1 cos" 8 sin n

(a+|)
*'*!

*

{tan
(9
- tan (a+—

jl
.

Again, we have from (16) and (17)

r=J(n-l) / sin2fl \ r=4« / sin 2
<9 \

cos nd= cos 8 n /I 7- rr— or n / 1 -

sin2 (2r-l)5 r=1
sin2

(2r-l).
v 2» ' \ 2n

sin3 g

sin2
/3

expression for cos nd may be written

r=*(«-i) / tan2
<9 \ ,/=*» / tan2

<9

cos" n /l ^ rr
— \ or cos" 8 n / 1

according as ?i is odd or eveu. Now 1 - °l"
" = cos2 0(1- —-

) , hence the
V tan J

/3/

r=l
tan2^^ - tan^" 1^

2n ' x 2?i '

We have therefore

sinrc(a+^j n
|
tan 5 -tan (a+

— U
tannd-tanna= (-l)»-» i ^ J22-J 1 UL

cos ?ia /, tan-0 \n l-
-ll tan'fcl^;^ 2n 7

the product in the denominator being taken up to r= |/j or ^(n- 1), according
as n is even or odd.

EXAMPLES ON CHAPTER VII.

1. Prove that, if n be an odd positive integer, and a=7r/n,

tai i «$ = (
-

1)4
(w-1) tan $ tan ($ + a) tan (0 + ra^T a ),

and n tan «0 = tan (p + tan (<£ + a) + +tan ((f> + n- la).

2. Prove that

sin 58- cos 58 k
1 - 2 sin 28 - 4 sin2 28

sin50+ cos5i9
n( ¥,r) 1+2 sin 28 -4 sin 2 20"

3. Prove that

n cot na= cot a+ cot (a + -
)
+ +cot(a+

~ "

j,

?i being an integer.
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4 If <£
= 7r/13, shew that

cos$-t-cos 3</J + cos9(/j
= j(l-f-vl3),

and cos 5$ + cos70 + cosll$= j(l
-

\/l3).

5. Prove that

77 2n 3tT 4lT 57T 6tt liz /1\'
COS— COS —r COS — COS— COS — COS— COS— =

.

15 15 15 15 15 15 15 \2

„ .. 27r An
.

877 1
6. Prove that cos -=- + cos— -f cos -=-= —

5 .

Form the cubic of which the roots are

27T 4?7 87T
cos —-

,
cos —

,
cos— .

7. Prove that the roots of the equation

are tan 20°, tan 80°, tan 140°.

8. Prove that

sin 4 a + sin4 3a + sin4 7a+ sin4 9a+ sin4 1 1 a + sin4 13a + sin4 17a + sin4 19a= 3£,

where a=*7r/20.

9. Prove that

o.-i ^ • (a. lM • (a. , M • (a. .

2n-lir\
2" J

sin<£ sin I <p-\ I sin ( <p-\
J

sin ( <p-\ 1

= cos — - cos n I
<f> + -

J

10. Prove that

tana+ tan (
— -a )+tan ( ~+a ) + tan

(
-— -a

) +
\2n ) \2n J \2?i J

to 2/4 terms is equal to 2ft cosec 2?ia.

11. Prove that

. 2ir . 4n . n — 4ir . n-2n . ?iir
sin — sin —- sm—-— sin —r— sin —-

:

2n 2ft 2n 2n 2n

where n is an even positive integer.

12. Prove that
. 9 77

sin2—
n 2ft
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14. Prove that m sinnd- /jsin md is divisible by sin3
0, if m and n are

odd integers.

15. Shew that if m is a positive integer, sec2"1 A + cosec2"1 A can be

expressed in a series of powers of cosec 2A.

_
, sin2asin4a sin(2%-2)a

16. Prove that «= :
—-

:

—
jr.

rr— ,
sin a sin 3a sin (2^-1) a

where a= »r/2?i.

17. Prove that

sin2 x _ sin2 a

sin (x
-
a) sin (x

-
b) sin (x

-
c) sin (x

—
a) sin (a

-
b) sin (a

—
c)

'

sin.r cos (x- a) sin a

sin (#
-
a) sin (#

-
6) sin (x

-
c) sin (x

-
a) sin (a

-
6) sin (a

-
c)

'

18. Prove that the product of

( ,

4A i , ( ,

4«^l7r\
1+COSa, 1 + COS ( a+— 1 1+COSl a-\ 1

is 22 -"
{(-l)2"-cosi/6a}

2 or 2 l
~ n

(\+ cos no),

according as n is even or odd.

19. Prove that

*2

=(versin^)
'+

(versing)
\

(versing)
\ ,

n terms being taken on the right-hand side.

20. Prove that

(tan 71° +tan 37^°+ tan 67|°) (tan 22|°+ tan 52|° + tan 82£°)= 17 + 8^/3

21. Shew that, if m is odd,

tan??i$ = tan<£cot (cf) + ^- J
tan (

(f)+~ )

COK0+^?) ta
"(
0+^)

22. If 28a= it, shew that

N/14= 2 13 sinasin2a sin 13a,

and cos 2a+ cos 6a+ cos 18a = h <J7.

23. Prove that tan — tan— tan —-— = 1,
2n 2n 2/1

n being any positive integer.

24. Prove that

( ,

2"\, ( 2w-1tt\
cosec x + cosec I #-1 ) + -f cosec I x+- -

I

: n {cosec nx + cosec (nx + rr) + + cosec (nx + n - 1 n)}.
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25. Prove that, according as n is even or odd,

2 (1 + cos n6) or (l + cosn0)/(l+cos0)

is the square of a rational integral function of 2 cos 6. Shew that

1+ooa 9<9= (1 + cos 6) (16 cos4 6 - 8 cos3 6- 12 cos2 6+ 4 cos 6+ 1)
2

.

26. Prove that 2"~ : cos"#-cos?i0 is divisible by l + 2cos2#, when n is of

the form 6m- 1, and by (1 +2 cos 26)
2
,
when n is of the form 6m+ 1, m being

a positive integer.

Prove that

210 cos11 6 -cos 110= 11 cos 6 (1 + 2 cos 26) {(1 + 2 cos 20)
3 + (l + 2 cos2<9) + lj .

27. Prove that, if n be an odd positive integer, and

tan (£« + h(j>)
= tan" (£tt + \8),

,
1 + sin2 6 cot2—

then sin #= /t sin 6 n
r=l I , . • o „ . „ nr I

l+sin2 0tan2

28. Shew that any function of the form /(sin 6, cos
6)/(f) (sin 0, cos 6),

where/ and
(f>

denote rational integral functions of degree n, containing cosn 6,

can be expressed in the form A IT sin \ (6
-
a)/n sin h{6- a), where A and the

quantities a, a are independent of 6, and there are 2n factors in the numerator

and 2n in the denominator.

,„ , ,. acos 26 + b cos 6+c sin 6+d , ,
. ... e

If the function - aa ,
,, .

,
,

. a ., be expressed in this form,
a cos20 + 6 cos0+ c sin# + tf

prove that 2a and 2a' are even multiples of it.

29. Prove that

3tT . 27T /—-

tan yy + 4 sin— = vll.

30. Prove that

2G sin7 + sin70

26 cos7 0- cos 16
- tan tan2 f +^ tan2

("^

- £)
•



CHAPTER VIII.

RELATIONS BETWEEN THE CIRCULAR FUNCTIONS AND
THE CIRCULAR MEASURE OF AN ANGLE.

92. We shall now investigate theorems which assign certain

limits between which the sine, cosine and tangent of an angle

whose circular measure is less than \it must lie. The first

theorem which we shall prove is that if 6 be the circular measure

of an angle less than \tt, then sin < < tan 0, unless = 0.

Let AOB = AOB' = 0; and let TB, TB' be the tangents at

B and B', and let 8AS' be the tangent at A. In Art. 11, it

was shewn that the length of the arc AB does not exceed AS+SB;
and thus the arc BAB' does not exceed BS + B'S' + SS', and

therefore arc BAB' < BT + TB'
;

or arc BA < BT. Also

arc BA>BA> BG.

Consequently we have

BC/OB < arc BA/OB < BT/OB.
Now = arc BA/OB, am = BC/OB, and tan = BT/OB ;
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therefore sin 0< 0< tan#. If had been greater than \tt, T might
have been on the other side of 0, and the inequalities which we

have employed would not necessarily hold.

Since sin < < tan 0, we have 1 < 0/sin < sec
;
now sup-

pose 6 to be indefinitely diminished, then the limit when = of

sec is 1
;
hence also the limit of #/sin 0, when is indefinitely

diminished, is unity. Since

sin n . tan
-a- = (0 cosec 0) \ and —

^
— = sec 6 . (0 cosec 6>)

_I
.

v a

we have the theorems that the limits of —x— and —
^
—

, whenJ

is indefinitely diminished, are each unity.

The theorem may also be proved thus :
—The triangle OAB, the sector

OAB, and the triangle OBT are in ascending order of magnitude; and

AOAB=WA . BC^lOA*- sin 0, also sector OAB=WA 2
.d, and

AOBT=iOB. BT=hOB2
. tan 6,

therefore sin 6 < 6< tan 6.

93. The reason, to which we referred in Art. 5, why the

circular measure is more convenient in Analytical Trigonometry
than any other measure of an angle, is that in this measure the

sine and tangent of an angle are each ultimately equal to the

angle itself, as the angle is diminished indefinitely ;
whereas if we

use any other measure, as for instance seconds, this is not the case.

We have in the case of seconds

sin n" sin tt
x

n" 180 x 60 x 60'

tan n" tan 6 tt
x

n" 180x60x60'

where is the circular measure of n seconds, hence the limits of
//

sin }/ ta.n Tk
'

—yj—>
—— when n is indefinitely diminished are each equal to

——-
;

. If then we used seconds instead of circular
180 x 60 x 60

7T

Dneaaure, we should constantly have the number
180 x 60 x 60

occurring, instead of unity, in the large class of formulae which

involve the limits of —^— and - for = 0.
o v



126 THE CIRCULAR MEASURE

The limits of m sin — , in tan — are each n, when m is indefinitely increased,

. a /sin 6\ a /tan d\ a , ,

for wi sin — = a —=- , mtan— =a —^— , where o = — , and when m is tu-
rn \ 6 J m \ 6 J m

definitely increased, 6 hecomes indefinitely small. The limiting values of

, ^„ ,
—-

, when 8 is indefinitely diminished, are each equal to p/q.
smqd' t&nqe'

J ' 4 * u

94. Since, if < \tt, tan ^0 > 10, we have sin \0 > \6 cos \Q,

hence 2 sin \ cos 1 > 6 cos- 1 0,

or sin0><9(l-sin
2

i0).

Now sin2
i0<(i6>)

2
,

hence sin > (1
- J0

2

),
or sin > - \0\

Also cos = 1 — 2 sin2

^ 0, and this is greater than 1 — 2 (£ 0f ;

or cos > 1 — \0'
2
. Also, since sin \0 > ^6 — £ (h0y, we have

hence cos < 1 — -|0
2 + jV^

4
- We may state the results Ave have

obtained thus :
—

If be the circular measure of an angle less than \ir, then sin0

lies between and — \0
3
, and cos lies between

1-10 2 and l-%0* + ^0\

95. We shall now shew that if < ^ir,

sin0>0-£0 3
, cos(9<l-^ 2 + ^^ 4

.

This makes the limits for sin and cos closer than in the

theorems of the last article.

We have 3 sin 10 - sin = 4 sin3

%0,

O • e e
A Z3 sin — — sin 5

= 4 sin3
-~

,

3 sin- -sm.— = 4sm3 -,

Multiply these equations by 1, 3, 3 2 3"" 1

respectively, and

then add them, we have

Sn sin ^
- sin = 4

(sin

3

1
+ 3 sin3 - + . . . + S""1 sin3

^j
,
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.cm
. a Sn . a . (0* 0° 3 \
hence 0.

-j-
- sin < 4

(-
+ - + ... +^

4 ^ A 1 1 1 A< ^^(1 + ^ +
3^
+ - +

3^)-
. e

sin PNow let ?i be increased indefinitely, then the limit of

3^11 19
is unity, and of the series 1 +— + Q4 + ... is = z ;

therefore

31

0-sin0<£0 3
,

or sin > - \0\

Also cos = 1-2 sin2
10;

therefore cos < 1 - 2 (|0
- J

g
3
)
2 < 1 - £

2 + ^0 4
.

Hence sin foes between 6 and — £0
3

, and cos lies between

\-\0- and l — ^0- + ^0\ the angle being less than %tt.

We have also tan = sin 0/cos 8, hence

tan0>(0-£03)(l-£^)-i>(0-^)(l+£02+jn

or tan<9>0+ £<9
3 + i<95 -Jj<9", therefore ta.nO>0 + $e

a
.

Eider s product.

96. We have sin = 2 sin \0 cos 1
0,

. .

sin
^
= 2 sin ^ cos ^ ,

. _ .

sin ^
= 2 sin ^ cos ^ ,

. _ .

sin
gjjz^sin^cos^,

• d On * * 0.0
hence sin = 2n cos % cos ^ ... cos ^ sin —
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a

Now when n is indefinitely increased, the limit of 2n sin ^ is
;

hence the limit, when n is indefinitely increased, of the 'product

. sin0

In this product put 8= \ir, we then obtain Vieta's expression for w, viz.

2_^/2 V2 + x/2 j2 + \/2 + J2
ir~ 2

*

2 2

Examples.

(1) Prove that as 8 increases from to %it,
—
^— continually diminishes,

, ta%0 . 77 .

ana —-r
—

continually increases.
8

xwt i- ii i, 4.1. .
sintf sin(<9+ A) ,, .

We shall shew that —^— > —a
1—

=
—-

;
that is

o 8 + li

, „ , ^ • „ n , a i , . ,, tan# sin h
(8+ h)sm8>8(sm8cosh+ cos8smh), or —• — > 7

— ——
.

v ' 6 h + (l-cosh)8
.. . tan 6 , sin A , sin// sin A .

Now we know that —7r
- > 1>—y— ,

and —7— > ,
,

.. 77-77, since 1 - cos h
6 h h A-f(l — cosh) 8

is positive, hence the inequality is established ;
thus —

^— diminishes from

1 to 2/tt, as 8 increases from to \it.

We shall next shew that

tan(#+A) tan 8 . . .. „ ,,,,.., ,. ..

/ T ' > —z— ,
or 8sm(8 + h)cos8>{8+ h)sm8cos(8+_h);

8 -\-h 8

this is equivalent to

„ 1 i * ,*!-, sin A sin 8 ,. ,,
#sin A>Asin cos (8+ h), or —y— >—-j— cos (8+h);

now we may suppose k<8, hence by the first theorem

sin h sin # , ., „ sin 8 sin £ .. ,.—j— > —t—
,
and therefore —

-^— >—^— cos (5 + A).h 8 8 8

Thus as increases from to i 77-,
—^— increases from 1 to 00 . The theorems
8

may be seen to be true by referring to the graphs of sin 6, cos 8 given in

Art. 32
;

it will be seen that in the first case the ratio of the ordinate to

the abscissa diminishes, and in the second case increases, as 8 increases from

to in.

(2) Prove that the equation tanx.=\x has an infinite number of real roots,

and find the approximate values of the large roots.

In Art. 32 we have drawn the graph of the function tan a:
;
draw in the

same figure the graph of Xx, this is a straight line through the point 0. The
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straight line will obviously intersect each branch of the graph of tan x, and

the values of x corresponding to these points of intersection are the solutions

of the equation. There is therefore a root of the equation between

af=(2*-l)|
and (2A+1) |,

where i is any integer. If £X be large, then (2k+ 1)
— is obviously an approxi-

mate solution
;
to find a nearer approximation let x—-(2k + 1)

— +y, where y is

small, then -coty= \y+ (2k+ \)
—

; putting cosy = l, smy=y,a,nd neglecting

y
2
,
we have

-l=
(2*+l)^y,

or y= -
(2ife+

2

1)X7r
,
therefore

«-(tt+l)f
-

{2k+ 1)Xir

is the approximate solution. To find a still nearer approximation, neglect y
3
,

2
putting y= -

—j
— in the terms which involve y

2
, we have

if-l =
{\y+(2k

+ l)

}

^y= \y
2+y(2k+l)^ t

hence y(2#+l)^= -l+ (£-X)

orv= — -

2 V2 v
(2^+ l)

2 X2 7r
2 '

2 8
^= _

(2^+DXtt
+ ^-

~ ^
( <>£+ l)3X3

7r
3 '

the aPProximate vaIue of # is there

fore «-(tt+l) |
- -

l
-«— +(l-x)

(jft+

8

iy
,x><g>

.

1 8 8 8
(3) Prove *Aa£ ^

= co;! + 1 ton - + £ tot - + J tow - + . . . arf jk/.

It can easily be shewn that

8 8
& cot - - cot 8=\ tan -

,

8 8 8
hence also £cot-- Acot- = £ tan-,

4 * 2 * 4

1 . 1 ,5 1 .

2^
cot

pi
-
2^=1

cot
22^1

~~

22n Wn '

hence by addition we have

i tan
2
+

22
tan p + - +

92»
tan

pS
"
p:

cot
2^-

cot *•

Xow when n is indefinitely increased, the limiting value of
, cot is -°

2-" 22" 6

hence the limiting sum of the series is 2 -cot#.8

If we put 6= %7r, we obtain the theorem

--i tan |+£ tan
£
+ ft tan ^+ ....

IT. T. O
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The limits of certain expressions.

97. When n is indefinitely increased, the limits of each of

.

e
sin

n
the expressions cos -

,

—-r— is unity ;
hence the limiting values

n

. e\ '•

of
(
cos -

)
, I
—
tj— j

are also unity provided r is any number which

\ n

is independent o/n; but if r is a function f(n) of n, which becomes

(.

d\swSm n\—
77~" I

are

n J
undetermined forms of the class 1°°, and the values of their limits

depend upon the form of f(n).
( 0\fw

To determine the limiting values of ( cos -
J

,
we have,

denoting the expression by u,

log, u = \f{n) loge

(l
- sin2

-J
.

It will be assumed as a known theorem that the limit, when x

becomes indefinitely small, of is — 1. Then, since

lo^ f
1 ~ sin2

n)
log, u = i/(w) sin2 -

.

^
sin2 -

n
a

the limit of loge w is equal to that of ^/(n)sin
2
-, with its sign
lb

changed, provided this latter limit exists. We can find the limit

of logg u >
and therefore of u, in the following cases :

—
6 OB

(1) If f(n) = n: then f(ri) sin2 - = n sin -
. sin -

,
and theJ v ' n n n

limit of n sin - is 0, and that of sin - is zero
; therefore the

n n

limit of log,,?/ is zero, or that of u is 1.
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(2) If /(»)= «*; then /(w)sin
2 - =

(nsin-J ,
of which the

limit is 6-. Hence the limit of \oge u is — £0
2
,
or that of u is e~2 r.

(3) f(n) = nP, where p > 2, then /(«) sin2 - = n?'2
. (n sin -

J
,

and this increases indefinitely as n does so. Therefore the limit

of loge a is — oo
,
hence the limit of u is zero.

(.

e\
n

. e
sm -

\ sm-
71 1 n——-

;
since —-r— is less

n / n

.6 / 8\
n

sin - - / sm - \

than 1 and greater than or cos -
,
the limit of I 1 lies

tan -
\ - In \ n /

last
/ 6\ n

between l n or 1, and
(cos -J ;

thus from case (1) in the

Article, the limit of the expression is unity. We see also that

(e\

n* / . 6>v
iP

sin - \ / sin - \

—r— and of —-—
J

(p > 2) lie

between 1 and e~^
9

~, and between 1 and 0, respectively.

Series for the sine and cosine of an angle in powers of its

circular measure.

99. In the formulae (39), (40) of Chapter iv. write 6 for A,
and let x = n9, we have then

sm x = n cos"
, /i

•
/i n(n—l)(n — 2) n .-

1 B sin 6 i ^ }
cosn

-3 6 sin3 6 + . ..
3!

+ (" l)
r~n

(ll'+ iy—
r)

cos"_2r_1 6 sin2r+1 6 +

cos x = cosn 6 - —^-.
— cosn

~2 6 si na 6 + . . .

iy
n(n-l) (n-2a + l)

coatl
. 8. gBinMg +

(2s) !

9—2
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We may write these series in the forms

n , n fsmd\ x{x-6){x-2d) _
,,
/sin 0V

sin x = x cos"- 1
f

-j- J gy-
— cos'1 s d

\^-j-\
+

s x(x-6)...(x- 2r6) n_9r_ia /sin 0^+*
+(- 1>

r -

(ar + i)i

—f«+~ e
\rr) +•-

+ (
_

1)s^-^_^
The number of terms in each of these series depends upon the

value of n, and increases indefinitely as n is indefinitely increased.

In order to obtain the limits of the expressions when n is in-

definitely increased, it is necessary to replace each of these series

by a series in which the number of terms is fixed, and does not

increase indefinitely with n.

The ratio of one term of the series for sin x to the immediately

preceding term is

(x
- 2r + 10) (x

-
2~F+~2d) /tan 6/tan 6A-

(2r+2)(2r + 3)

this number is negative, and is numerically less than

x" /xV x1 1
|

/tan 6

©+ - +
(2r + 2) (2r +3) \n) n 'r+ lj \

/tan #\ 2

If *• have any fixed value,
(

—
^— )

diminishes as n is increased
;

values ??!, rx of w and r may be so chosen that the above expression

has values which are less than unity for n = /?
x ,

r = ?v For the

fixed value of x, and for all values of n Avhich are = n1} the series

for sin x is such that, from and after a fixed term, the position of

which is independent of n, each term is numerically less than the

one that precedes it. Since the sum of a series of terms with

alternate signs, when each term is numerically less than the

preceding one, is less than the first term, we have

where 6 = x/n, provided n =n x ;
r is independent of w, and e is a
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number between and 1. The integer r may have any value not

less than i\.

In a similar manner, we can prove that

„ x(x-O) nn /sin 0\ 2

cos x = cos'1

^-j
—'- COS""2

l-g- J

x(x-6)(x- 20) (x - 30) _ . _ /sin 0\ 4

H— —— cos'1—
*~e(iffi

provided n ^ ??/; s is independent of??, and e is a number between

and 1.

Now let n be indefinitely increased
;
the limits of the ex-

pressions for sin x, cos x must represent these functions. Since

the number of terms in each of the series is fixed, being inde-

pendent of n, we have only to add the limits of the several terms

in order to obtain the limit of the sum. The limit of
/sin 0\*

\6~) '

where k is independent of n, is unity. Also the limit of cosM-fc

is that of cosn 0, divided by that of cosfc

0; and it has been shewn

in Art. 97 that L cosn = 1; that L cos* = 1 follows from

L cos 0=1; hence L cos'1-* 0=1. The numbers e, e depend
upon n, but they are for each value of n between and 1, and

therefore their limits e, e cannot exceed unity. We thus have

sin x = x — q-. + —. — ... + (- 1)' e
Ti3! 5! v '

(2r + l)!'

x2

COS x = 1 - jr, + -r- - ... + (- l)
s
e'

2! 4!
"' v '

(2s)!'

where e, £' are positive numbers which cannot exceed unity.

These results hold, for each value of x, for all values of r and s

which are greater than or equal to fixed integers r: and «,. It

follows that for each value of x, sin x is represented by the con-

sent series

,.-, rrX> /V.2OT+1

a?

~3!
+

5"!"---
+(~ 1)

(2W + l)!
+- ;

and cos a; is represented by the convergent series

._ W 1*1/ - . Wt-

~2~!
+
4!~"' + (_

^(2^0"!
+ *"*

For the sum of a fixed number of terms of the first series differs
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^r+i
from sin x by not more than -= ^-. ,

which for each value of x isJ
(2/- + 1)!

arbitrarily small if r be chosen sufficiently large. That this is the

x2
a;
2r"

t
" 1

case is seen by observing that the ratio -—— -r of 7= —-

r-, toJ &
2r(2r + l) (2r + l)!

#2r-i—
Y\]

may De made arbitrarily small, for any fixed value of x,

by taking r great enough. Similar reasoning applies to the

expression for cos x.

Examples.

(1) Expand cos3 x in powers of x

We have cos3 x= j (cos 3x+3 cos x) ; expanding cos3.r, cos x in powers of

32n _|_ 3
x, we find for the general term in the expansion of cos3

*', (
-

l)
n

, .. ,', x2n
.

4 (2m) !

It will be seen that any integral power of cos x or sin x, or the product of two

such powers, may be expanded in powers of x by putting the expression into

the sum of cosines or sines of multiples of x.

(2) Expand tanx in powers of x as far as the term in x7 .

f xs x5 x7
) ( x2 r4 v6

"1
-1

We have tan
^=|.r--

+— -^ |l__
+_-_| , leaving out

terms of higher order than x7
. Expanding the second factor, we have

J
x3 x5 x7

1 T (x
2
_x* _ofi\ (x

2

_ x*\ 2

(aP\*tan *=
r~6

+
T20"5040J L \2 24

+
720;

+
V2 24/

+
\j)

multiplying out and collecting the coefficients of the terms up to x7
,
we find

tan x=x+ ^x
3+ j

2
g x

b+ ^g x7
.

„. , , ,. . r sin (tan x)
- tan (sin x) , n

(3) Find the limit of ~f~ »
when x= -

The numerator of the expression is equal to

tan x - \ tan3 x+ T^ tan5 x -^^ tan7 x- sin x- £ sin3 x- fg sin5 x -^ sin 7
x,

using the expansion obtained in the last example. This is equal to

(x +^3+^^ +^^)-^3
(l +^+l^) + i|)

(l+|^
2

)-5^o

-(•-^+^-S&)-s(
1-F +S +5)-A

# <1-W-*-r
'

rejecting all terms of higher order than x7
;
this expression reduces to -

fast?.

The limit of the given expression is therefore —
1/30.
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A relation between trigonometrical and algebraical identities.

100. From any trigonometrical identity in which the angles

are homogeneous functions of the letters, a series of algebraical

identities may be deduced, by expanding the circular functions

in powers of the circular measure of the angles, and equating

the terms of each order. Thus for example, in the formula

sin a sin 6 = ^ {cos (a -6)- cos (a + 6)}, expand each of the sines

and cosines and equate the terms of the second order, we have

then ab = \ {(a + b)
2 -

(a
-

b)
2

}.
In Articles 44 and 47 of

Chapter IV., we have given a number of examples of analogous

trigonometrical and algebraical identities
;

in each case the

algebraical identity is obtained, as we have above explained,

from the trigonometrical one. For example, in example (11),

Art. 47, which may be written

2 sin2 a sin (6 + c — a)
— 2 sin a sin b sin c

= sin (6 4- c — a) sin (c + a — b) sin (a 4- b - c),

if we equate the terms of the third order, when the sines are

expanded, we obtain the analogous algebraical identity

2a2

(6 + c - a)
- 2abc = (b + c — a) (c + a - b) (a + b — c).

EXAMPLES ON CHAPTER VIII.

1. Prove geometrically that

tan#>2tan^0, where 0<\n.

2. Trace the changes in the value of tan 30 cot3
0, as increases from

to \ir.

Shew that 174l2 v/2 is a minimum and 17-12^/2 a maximum value of

the expression.

3. Prove that tan 3$ cot cannot lie between 3 and 1/3.

4. Prove that 0>~— —
s, where 0<hn.

2 + cos

5. Prove that 3 tan 50>5 tan 30, if lies between and 7r/10.

6. Shew that the limiting value of -r-s-% - -r,. when = 0, is i.
sin^0 l *
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7. Prove that sin (cos 8)<cos (sin 8) for all values of 8.

8. Prove that the limiting value of the infinite product

(l-tan
2

0(l-tan
2

*)(l-tan
2

|3)
0\/, , J\A . a 8\ . 8

tan 6

9. If :

—r— = l+n, and n be very small, prove that
sin

(f>

sin <£
= (!

— 2«) sin hd, approximately.

10. Find the limiting value of
"

:—
. . .' -J. ,

when 8= \ir.
cos (6 sin 6)

„. ,,, .. v . , , „ „ tan 26 - 2 tan
11. Find the limiting value, when 6= 0, of ^

12. Prove that the limiting value of

/ cot<9 \tan* (if+ifl) „ , . 4
I . — I . when 6= r,ir, is c"

W2 - 2 sin 6)

13. Prove that

/sin.?\ 2
. „a? „# . a? a? -p . a

| )
= 1 — sin- - — cosz - sin- - - cos J - cos2 - sin2 -

\ x ) 2 2 4 2 4 £

a? . .r

8*

14. If in the equation tan#=— -
-\ , the angles

cot a\ + cot a2 cot a3 + cot a4

an "2» a3) a4 De a^ nearly equal; shew that 8 is very nearly equal to

k(al+ a
2+ a3 + ai)-

15. Sum the series

, a 6 6 «» * ^ *
cos -

-f 2 cos 5 cos —
2+ 22cos = cos —

2
cos —

3
+ . . . . .. to n terms.

16. Prove that the sum to infinity of the series

x x x x x
tan - seca?+tan—„sec- + tan — sec—,4- is tana?.

Z 2 2 2° 2

17. Shew that
a a a 6 6

6- sin 8 cos 8 = 2 sin #sin2 - + 22 sin-sin2 - + 23 sin -sin2
5 + ad inf.2 2 4. 4 o

2 2 2
18. Prove that tanfl=

-5
-—

cot - — cot - - cot - —
2 4 o

19. If 8<ir, shew that

J 8
,

. 6
,

. 8~\r 8 6 6~\2
[_

sin
2
+ sin

22+
+ sin

^J[
c
os2

+
cos22

+
-t-cos^J

<^sin0sin- sin^—i]'
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20. If a and b be positive quantities, and if ai = i(a+ b), b
1
= (a 1 b)^,

(1)2 _ a1)h
a

2=i (a l
+ b

1 ), &2= («2&i)^ ar>d so on, shew that a«> = b*> = .

cos 1 r
b

Shew that the value of n may be calculated by means of this formula

21. Find the limiting value of the infinite product

(sin#cos|<9)i(sin|0cos|<9)i(sin|<9cos-|0)i

22. If tan 6= 46, the value of 6 between and \ir will be

7T / 1 _11_ 403 \

2
~

V2^r
+

247r3
+

4807r5
+

)'

23. Prove that
1 + 2 cos 6

2 cos - - 1

I
2"

J

24. Prove that

2 °OS 2" 6
1

* = (2 cos fl
- 1

) (2 cos 26 - 1
) (2 cos 2»- 1

0-l).
2 cos + 1

v /v ' v '

25. Sum to ?i terms the series

-log tan 2<9+ jplogtan2
2 + jplogtan2

3 +

6n sinn 6
26. Having given that the limiting value, when 6= 0, of _ . ; is

neither zero nor infinite, find n.

27. Find the limit, when x=0, of

1 - cos 2x+ cos 4x — cos 6x 4- cos 8.r— cos 1Ox — cos 14x+ cos 16%

3- 4 cos 2#+cos4.r

28. Prove that the sum of the infinite series whose rth term is

(
-

1)
"" 1

273T (2^2)"!
iS

72
Sin (^ + 1 )

29. If e be very small, and <£
= 0-2esin #+ fe

2 sin 26, shew that

6 =
(f>+ 2e sin

<fi + \e
l sin 20, nearly.

30. If y = z+£sin(2 4-£a), expand z in powers of the small quantity k,

as far as the term in k*.

31. From the trigonometrical identity

sin (d-b) sin (a-c) + sin(6-c) sin(a-of) + sin(c
— d)sm(a-b) = 0,

deduce the algebraical identity

[d-b)(a-c){{d-by + {a-cf\ + {b-c)(a-d){(b-c?+ (a-dy-}

+ (c- d) (a
-

b) {(c
- df + (a

-
6)8}

= 0.
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32. Prove that d> differs from £->„—
-

„ , N by 4*r0
5
nearly, (6 being a

2 (2 + cos 2<p)
' °

small angle. (Snellius' formula.)

33. Find the circular measure, to five places of decimals, of the smallest

angle which satisfies the equation sin {x-V\ it)
= 10 sin x.

34. Solve the equation (sin 6)
a cos e=

fe, approximately, where a is positive
and not large, and 6 is known to be nearly equal to a, which is itself not very
small.

35. Shew that there is only one positive value of 6 such that 6= 2 sin 0,

and find its value to two places of decimals by means of a table of logarithms.

36. In the relation asin~ 1 x= b sin _1 y, where a and b are integers prime
to each other, prove that there are 26 values of y for each value of x, unless

a and b are both odd numbers when there are b values.

r—

37. Assuming that if a be the acute angle whose sine is —
, sin la must

4

be ill
, prove that cos a - cos ^ exceeds _ _,,. by less than -OOOOOOo.

256 i 7 • 2 10 J



CHAPTER IX.

TRIGONOMETRICAL TABLES.

101. In order that the formulae of Trigonometry may be of

practical use in the solution of triangles and in other numerical

calculations, it is necessary that we should possess numerical

tables giving the circular functions of angles, so that from these

tables we can find to a sufficient degree of accuracy the functions

corresponding to a given angle, and conversely the angle corre-

sponding to a given function. Such tables are of two kinds,

(1) tables of natural 1
sines, cosines, tangents, &c, in which the

numerical values of the sines, cosines, tangents, &c, of angles are

given to a certain number of places of decimals, and (2) tables of

logarithmic sines, cosines, tangents, &c, in which the logarithms

to the base 10, of these functions, are given to a certain number

of places of decimals. The latter kind of tables are those which

are now used for most practical purposes ;
in nearly all such

tables the logarithms are all increased by 10, so that the use of

negative logarithms is avoided
;
the logarithms so increased are

called tabular logarithms and written thus, L sin 30°
;

so that

L sin 30° = 10 + log sin 30°.

Calculation of tables of natural circular functions.

102. We shall first shew how to calculate tables of the

natural circular functions, which will give the values of these

functions accurately to a certain specified number of places of

decimals, for all angles from 0° to 90°, at certain intervals such

as 1' or 10". We shall first calculate the sine and cosine of 1'

and of 10".

1
Logaritbms were formerly called "artificial" numbers, thus ordinary numbers

were called "natural " numbers.
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(1) To find sin 1', cos 1'.

Let 6 = r-rrr
—™ denote the circular measure of 1', then

180 x 60

8 =
3141592653589793... _ .0002908882086(i5

lOoOO

to 1 5 places of decimals, hence

£0
3 = I (-0003 )

3 = 000000000004

to 12 places of decimals.

Now from the theorem in Art. 95, sin 1' lies between 6 and

—
^6*, and these numbers only differ in the twelfth decimal

place, therefore to eleven places of decimals

•00029088820 is the correct value of sin 1'.

We find also 1 - $6* = '999999957692025029

to 18 decimal places,

and J*
4 = Jj (00029 . . . )

4 = -00000000000000029

to 17 decimal places.

Now cos 1' lies between 1 — hO2 and l — ^6
2 +^I 6

i
;
and since

these two numbers differ only in the 16th decimal place, we have

cos 1' = -999999957692025 correct to 15 decimal places.

(2) To find sin 10", cos 10".

If 6 = „ . nn ,
the circular measure of 10",

we find 8 = -000048481368110, to 15 decimal places,

Id*
= -000000000000021, to 15 decimal places,

hence the two numbers 6 and 6 — ±63

agree to 12 decimal places,

therefore sin 10" = -000048481368, to 12 decimal places.

Also ^
1

4#
4

is zero to 17 decimal places, thus cos 10" = 1—^6'-,

or cos 10" = -9999999988248, to 13 decimal places.

103. The formulae

sin nA = 2 cos A sin (n
—

1) A — sin (n
—

2) A,

cos nA — 2 cos A cos (n
—

1) A — cos (n
—

2) A,

enable us to calculate the sines and cosines of multiples of 1', or of

10". Let A = 10", 2 cos 10" = 2 - k where k = -0000000023504,

then the formulae may be written

sin?jA -
sin(>i

- 1)^ = {sin (n -1)A - sin (n
—

2) A}
— ksm(n-l)A,

cos nA — cos(n — 1)^. = {cos (n —1)^. — cos (?i
—

2) A }

— kcos(n- 1)A ;
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if in these formulae we put n — 2, we can calculate sin 20"

and cos 20". We can now by letting n = 3, 4, 5, ... calculate

the differences sin nA — sin (n
-

1) A, cos nA — cos (n — 1) A,

when the preceding differences sin (n
—

1) A — sin (n
—

2) A ,

cos(n
—

1) A —
cos(?i— 2)^1, and also sin(ri— 1)J., cos(w

— 1)A,

have been found; hence these differences can be found by a

continued use of the formulae; we can then find sinn.4, cosn-4,

and thus we can form a table of sines and cosines of angles at

intervals of 10". We have k = -000000002354, thus in calculating

k sin (n
—

1) A, k cos (n
—

1) A we need only use the first few figures

of the value of sin (n
-

1) A, cos (n
—

1) A.

104. When sin nA, cosnA are thus calculated by successive applications

of the formulae, the errors arising from the use of approximate values of

sin A, cos A will accumulate during the process; it is therefore necessary to

consider how many places of decimals must be used during the process, in

order that with assumed values of sin A, cos A, correct to a certain number

of places of decimals, we may obtain values of sin nA, cos nA which will be

correct to a prescribed number of places of decimals.

Suppose in the number of places of decimals to which sin A, cos A have

been calculated, and suppose that r is the number of places of decimals that is

retained in the calculation of the sines and cosines of successive multiples ;

let «„ be the value of sin nA or cosnA, obtained by this process, and un+xn

the corresponding correct value, we have then

Mn+ tfB=(2-£)(wn_ 1+#»_l)-(«n-2+#n-2)j

also m„= (2
—

k') u n _ l
— un _ i ,

where k' is the approximate value of k to r places

of decimals ;
let (k

—
k')un _ 1 =yn ,

we have then

«n= (2
-

£) «„ - 1
- «„ - 2 + ?/„ ,

hence xn={2-k)xn _ l
-xn _ 2 -yn

or xn
= 2.rn _ l

-xn _ 2 -zn ,
where zn=yn+ kxn _ x ',

this may be written (%n
—
Xn-i) — (

xn-i — xn-2)~ zn,

whence (^»-i -^n-2) = (#»-2- ^n-3)
- 2«-i >

Xi— X-^
— X

j Z'l \

therefore xn -xn _ 1
=x

1
—

(z2 +z3 +... + zn ) ;

the number kxn _ x
is very small compared with 2.r„_i, hence yn + kxn _i differs

insensibly from >/„, hence each of the numbers z2 , z$...zn is less than 1/10'",

therefore their arithmetic mean 6n is less than 1/1
r

,
thus

xn -x1l
_

l
=x

l -(n-\)en ,

xn - l
-xn _ 2=xl -(n-2)6n _ u

X2
—

A*j
— X^

—
i)'i ,

or xn= nx
l -(62 + Z9z + ... + n- \6n) ;
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now d
2 , 63 ...0n are each numerically less than l/10

r
,
hence

-(02+203+...)

is less than \n()i- l)/10
r

,
or

n n(n — \)
r <r 1 - •

107" 2 10'*
'

a fortiori .rn< Jq^
+

2 . 10''
W '

If in this formula m= 12, m = 10800,

108
.
5832

^n<-I nio~'"*•

1010
'

10''
-*

< -0000000108 + -00 5832,

where there are r-8 zeros in the last decimal, hence if ?'=15, xn< '00000007,

or un is correct to seven places of decimals ;
now 10800x10"= 30°, hence the

sine or cosine of 30° will be found correct to seven places of decimals if when

calculating the sines or cosines of the multiples of 10" up to 30° we retain

15 places of decimals throughout the calculation. The formula (a) may be

applied in all such cases to determine the number r, so that xn may be zero

to a certain number of decimal places
1
.

Example.

Prove that in order to calculate the sines and cosines of multiples of 10"

up to 45°, correct to 8 places of decimals, the values of sin 10", cos 10" being

known to 12 decimal places, it is necessary to retain 17 decimal places in the

calculation.

105. When a table of sines and cosines of angles at intervals

of 10", or of 1', is required, it is only necessary to calculate the

values for angles up to 30°, we can then obtain the values of the

sines and cosines of angles from 30° to 60°, by means of the formulae

sin (30° + A) + sin (30°
- A) = cos A,

cos (30° -A)- cos (30° + A) = sin A,

by giving A all values up to 30°. When the sines and cosines of

the angles up to 45° have been obtained, those of angles between

45° and 90° are obtained from the fact that the sine of an angle is

equal to the cosine of its complement, so that it is unnecessary to

proceed in the calculation further than 45°.

The method of calculating Tables of circular functions, which we have

explained, is substantially that of Rhcticus (1514
—

1576) ; his tables of sines,

tangents, and secants were published in 1590, after his death. The earliest

1 This article has been taken substantially from Serret's Trigonometry.
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table is the Table of chords in Ptolemy's Almagest, for angles at intervals

of half a degree. Historical information on the subject of Tables will be

found in Button's History of Mathematical Tables ; see also De Morgan's

Article on Tables in the English Encyclopaedia.

Tlie verification of numerical values.

106. It is necessary to have methods of verifying the correct-

ness of the values of the sines and cosines of angles calculated by
the preceding method ;

this may be done by the following means :

(1) We have formed in Art. 66 a table of the surd values of

the sines and cosines of the angles 3°, 6°, 9° ... differing by 3°
;
we

can therefore calculate the sines and cosines of these angles to

any required number of places of decimals, then the values of the

functions obtained by the method of calculation above explained

may be compared with the values thus obtained. If necessary,

the values of the sines and cosines of angles differing by 1°30'

may be obtained by means of the dimidiary formulae, and we

have thus a still closer check upon the calculations.

(2) There are certain well-known formulae called formulae

of verification, these are

cos (36° + A) + cos (36°
- A) = cos A + sin (18° + A) + sin (18° -A),

sin A = sin (36° + A)- sin (36° -A) + sin (72°
- A) -sin (72°+ A)

(Euler's formulae),

cos A = sin (54° + A) + sin (54°
- A) - sin (18° + A )

- sin (18°
- A )

(Legendre's formula).

The verification consists in the substitution of the values obtained

of the functions in these identities.

Tables of tangents and secants.

107. To form a table of tangents, we find the tangents of

angles up to 45° from the tables of sines and cosines by means of

the formula tan A = sin A/cos A; the tangents of angles from 45°

to 90° may then be obtained by means of Cagnoli's formula

tan (45° + A) = 2 tan 2A + tan (45° -A).

A table of cosecants can be formed by means of the formula

cosec A = tan \A + cot A, and a table of secants by means of the

formula sec A = tan A + tan (45°
—
$A).
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Calculation by series.

108. A more modern method of calculating the sines and

cosines of angles is to use the series in Art. 99
;

if we put
in it ,

x = —
.
- we have

n 2

We thus obtain the formulae

sin (m/re 90°)= 1-57079 63267 94896 61923 13 m/n

-0-64596 40975 06246 25365 58 m3
/»

3

+ 0-07969 26262 46167 04512 05 m^n*

-0-00468 17541 35318 68810 07 m7
/»

T

+ 0-00016 04411 84787 35982 19 m9
/%

9

-0-00000 35988 43235 21208 53 mnjnn

+0-00000 00569 21729 21967 93 ?n,
13

/rc
13

-0-00000 00006 68803 51098 11 m16
/n

15

+ 0-00000 00000 06066 93573 11 m17
(n

1J

-0-00000 00000 00043 77065 47 w19
/?i

19

+ 0-00000 00000 00000 25714 23 »i 21/n
21

-0-00000 00000 00000 00125 39 m^jvP

+ 0-00000 00000 00000 00000 52 m25
/?*

2*

cos (m/n 90°) = 1-00000 00000 00000 00000 00

-1-23370 05501 36169 82735 43 m2
/n

2

+ 0-25366 95079 01048 01363 66 mi
jn

i

-0-02086 34807 63352 96087 31 m6
/n

6

+ 0-00091 92602 74839 42658 02 m*/n
8

-0-00002 52020 42373 06060 55 m10
/n

10

+ 0-00000 04710 87477 88181 72 m12
/?j

12

-0-00000 00063 86603 08379 19 mu/,i
H

+0-00000 00000 65659 63114 98 m16
/n

18

-0-00000 00000 00529 44002 01 m18
/n

18

+0-00000 00000 00003 43773 92 m20
/?i

20

-0-00000 00000 00000 01835 99 m22
/n

22

+ 0-00000 00000 00000 00008 21 wi24/n
24

-0-00000 00000 00000 00000 03 w26
/«

26
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Since we need only calculate the sines and cosines of angles up

to 45°, the fraction m/n is always taken less than J, so that very

few terms of the series suffice for the calculation to a small number

of decimal places. These series are taken from Euler's Analysis

of the Infinite, where they are given to six more decimal places.

Logarithmic tables.

109. When tables of natural sines and cosines have been

constructed, tables of logarithmic sines and cosines may be made

by means of tables of ordinary logarithms which will give the

logarithm of the calculated numerical value of the sine or cosine

of any angle; adding 10 to the logarithm so found, we have the

corresponding tabular logarithm. The logarithmic tangents may be

found by means of the relation L tan A = 10 + L sin A - L cos A,

and thus a table of logarithmic tangents may be constructed. We
shall in a later Chapter give a direct method by which tables of

logarithmic sines, cosines, and tangents may be constructed.

Description and use of trigonometrical tables.

110. Trigonometrical tables, either natural or logarithmic,

are constructed as follows:—
(1) They give directly the functions for angles between 0°

and 90° only; the values of the functions for angles of magnitudes

beyond these limits may be at once deduced.

(2) The tables give the values of the functions of angles from

0° to 45°, and from 45° to 90°, by means of a double reading of

the same figures ;
the names of the functions, sine, cosine, tangent,

and also the degrees (< 45°), are printed at the top of the page,

and the corresponding minutes and seconds are printed in the

left-hand column, the angles increasing as we go down the page;

again the names cosine, sine, cotangent, &c, and the degrees

(>4o°), are printed at the bottom of the page, in the same

columns in which sine, cosine, tangent, respectively are printed

at the top ;
in the right-hand column are printed the minutes

and seconds for the angles which are complementary to the

former ones, these latter angles of course increasing as we go

II. t. 10
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up the page. We give as a specimen a portion of a page of

Callet's seven-figure logarithmic tables for angles at intervals

of 10".

17 deg.

f
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the difference between the values of the function for the smaller

tabular angle and an angle greater than this angle by y" is -~ a
;

the increase of the function for an increase 10" of the angle is a,

and that for an increase y" (< 10") is that fraction of a which

y" is of 10". In the specimen of Callet's tables which we have

given, the differences between consecutive logarithms are given
without the decimal points in the columns headed dif.

For example, suppose we wish to find Zsin 17° 51' 13", we find from the

table

Zsin 17° 51' 10"=9-4865328,

Zsin 17° 51' 20" = 9-4865982,

dif.
= 654;

we have 1^x654 = 196*2, hence we must add -0000196 to the first logarithm
and we obtain Zsin 17° 51' 13" = 94865522.

Again suppose we require the angle whose tabular logarithmic tangent
is 9-5082032. We find from the table that the given logarithm lies between
the two

Ztan 17° 51' 40" = 9-5081819,

Ztan 17° 51' 50"= 9-5082540,

dif.
= 721;

the difference between the given logarithmic tangent and the first obtained
from the table is 213, hence the angle to be added to 17° 51' 40" is

fifxl0" = 2"-9 approximately, hence the required angle is 17° 51' 43"

approximately.

The principle of proportional parts.

112. We shall now investigate how far, and with what excep-
tions, the principle of proportional increase, which we have assumed
in the last Article, is true.

Suppose x to denote any angle, and f(x) to denote a natural

or logarithmic function of x, we shall shew in the various cases

that if h be any small angle measured in circular measure, added
to x,

f(x + h) -f(x) = hf (x) + h?R,

where f'(x) is another function of x, and J? is a function which

remains finite when h = 0. From this we see that, provided h be

sufficiently small, f (x -\- }i)
—f (x) is for a given value of x pro-

portional to h, and it will appear that in general fi
JR will be so

10—2
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small that it will not affect the values of the functions to the

number of decimal places to which they are tabulated
;
hence

— —'- is constant to the requisite number of decimal

places for a given value of x. However, two exceptional cases will

arise.

(1) If x be such that f'(x) is very small, then the difference

f(x + h) —f(x) may vanish, to the order in the tables
;
the difference

f(x 4- It) —f(x) is then said to be insensible, and in that case two

or more consecutive tabulated values of f(x) may be the same.

(2) If x is such that R is large compared with f'(x), the

term h-R may not be small compared with hf'{x); in this case

the difference f(x + h) —f(x) is not proportional to h, and is said

to be irregular:

In either of these cases (1) and (2) the method of proportions

fails, but we shall shew how by special devices the difficulties are

obviated.

The student who is acquainted with Taylor's theorem will see that the

formula given above is really the special case of Taylor's theorem

/ (A
-+ /,) =/ (.r) + hf (x) +Wf" (x + e/i),

where 6 is between and 1, thus R=\f" (x+6h), and the error made in

assuming / (x+ h) -f(x) = hf (x) lies between the greatest and least values

which hh-f"{z) assumes between the limits z=x and z=x+ h.

113. First let f(x) = sin x,

then sin (x + h)
= sin x cos h + cos x sin h,

or sin (x + h)
— sin x = cos x (k

—
}.Jt

3 + . . .)
— sin x (^ h" — 5

1

T /i
4 + . . .)

= h cos x — ^h
2 sin x + higher powers of h ;

in this c&sef'(x) = cos x, and the approximate value ofR is — ^ sin x
;

thus sin (x + h)
— sin x = h cos x — h h2 sin x (1)

is the approximate difference equation.

Similarly it may be shewn that, approximately,

cos(# + h)
— cos x = — Asin x — ^A'-'cosa; (2).

. . . 7 . sin h
Aram tan (x + h) - tan x = —, p-

cos x cos (x + it )

h

cos2 x — h sin x cos x
'

or, approximately,

tan (x + h)
— tan x = h sec2 x + h2 sec2 x tan x (o).
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, . , . r . , sin (x + h)
Also L sin (x + h)-L sin x = log

—
Sill \Aj

= log(l -£/r + Acot#),

or L sin (x + h)
— L sin x = h cot x — \ h" cosec2 x (4).

Similarly L cos (x + h)
— L cos x = — h tan x-^h- sec2 a; (5),

h „,„ cos 2a- ,„.

L tan (« + /<)
- L tan # = -. 2h2

. 9 . • .(o).v 7 sm « cos x sin- z«

In each case we have found only the approximate value of R,

that is to say, we have left out the terms involving cubes and

higher powers of h. It appears from these six equations that

if h is small enough, the differences are, for values of x which

are neither small nor nearly equal to a right angle, proportional

to h. The following exceptional cases arise.

(1) The difference sin (x + h)
- sin x is insensible when x

is nearly a right angle, for in that case hcosx is very small; it

is then also irregular, for ^k
2 sinx may become comparable with

h cos x.

(2) The difference cos (x + h)
— cos x is insensible when x is

small ;
it is then also irregular.

(3) The difference tan (x + h)
— tan x is irregular when x

is nearly a right angle, for h2 sec2 x tan x may then become

comparable with h sec- x.

(4) The difference L sin (x + h)- L sin x is irregular when

x is small, and both insensible and irregular when x is nearly

a right angle.

(5) The difference L cos (x + h)
— L cos x is insensible and

irregular when x is small, and irregular when x is nearly a

right angle.

(6) The difference L tan (x + h)
— L tan x is irregular when

x is either small or nearly a right angle.

It should be noticed that a difference which is insensible is

also irregular, but that the converse does not hold.

In order to investigate the degree of approximation to which the principle

of proportional parts is in any case true, it is the simplest way to consider the

true value of It ;
in the case of sin(#+ /i!)-sin.r the true value of the second

term is -
^/^sin (x + 6h), where is between and 1; if the table is for

intervals of 10", the greatest value of $A
a is £ (GOx ™Jx 180V or M'00005)^
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this gives no error in the first eight places of decimals
;

in the case of

tan (x+ h)
— tan x the error is (•OOOO5)

2 sec2
(.r+ 0A)tan (x+ 6h) ; hence when

tan x+ tan 3 #= 40, the error will begin to appear in the seventh place of

decimals. In the case of Lsinx there is no error in the seventh place of

decimals if x>b°

114. When the differences for a function are insensible to the

number of decimal places of the tables, the tables will give the

function when the angle is known, but we cannot employ the

tables to find any intermediate angle by means of this function
;

thus we cannot determine x from the value of L cos x, for small

angles, or from the value of L sin x, for angles nearly equal to

a right angle. When the differences for a function are irregular

without being insensible, the approximate method of proportional

parts is not sufficient for the determination of the angle by means

of the function, nor the function by means of the angle ;
thus the

approximation is inadmissible for L sin x, when x is small, for

L cos x, when x is nearly a right angle, and for L tan x in either

case.

In these cases of irregularity without insensibility, the following

means may be used to effect the purpose of finding the angle

corresponding to a given value of the function, or of the function

corresponding to a given angle.

(1) We may use tables of L sin x, L tan x for the first few

degrees calculated for angles at intervals of one second, and for

L cos x, L tan x for the few degrees near 90°, calculated for each

second ;
Callet gives such a table in his trigonometrical tables

;
we

can then use the principle of proportional parts for all angles which

are not extremely near zero or a right angle.

(2) Delambres method.

This method consists of splitting L sin x or L tan x into the

sum of two terms, the differences for one of which are insensible

for values of x near those at which the irregularity takes place,

and the differences for the other one are regular; the difference

for the first of these terms is irregular, but this is of no con-

sequence, owing to its being also insensible. Thus if x be the

circular measure of n" a small angle,

, . ,. /. sin x r \ .

.Lsinw =(log h La.
J
+ log n,
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.. /. tana; r \
,

.

L tan n = flog h
Laj

+ log n,

where a is the circular measure of 1".

Now log (n + h)
-

log n = log
(l

+ -
j

hence the differences for log n are regular, if h be small compared

,.^ r. i sin a; , tan x . .,
,

with n. Also the differences for log
— -

, log are insensible,
CC 00

for

sin (a; + A) ,
sin x

,
sin (#+/;) ,

x+ h
log -—r-1 - log = log -, -

logh x + h & x & sma; °
a?

,' A1
, *, ^3

= /t cot a; — — cosec- a; h- ttt>
2 a; 2a;

2

1\ A2
/ 1

/>(cot*~)
+
|(^-cosec^)

, . tan(# + /<) , tana;
and log—^ log

—
h (

1 - 1
\ —{- 4 C0S 2x

. 1_\

Vsin x cos x x) 2 \ sin2 2a; x2
J

'

each of these differences is insensible since the coefficient of h is

small when x is small.

If tables of the values of log
- - + La, log h La are

00 00

constructed for the first few degrees of the quadrant, we may use

these tables in conjunction with the tables of natural logarithms

of numbers to find n accurately when L sin n" or L tan n" is given,

and conversely.

If Zsinrt" or Ztann" is given, find the approximate value

sin oo

of n
;
then from the table we get the value of log V La or

00

log- h La, either of which changes very slowly; then \ogn is
oo

given by the value

r • // /i sin x r \Lsmn —
(log \- La) ,

r . ,, /. tan x T \
or L tan n —

I log h J,a )
,
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and we find n accurately from the table of natural logarithms. If

sin x
n is given, the table gives the value of log + La, and sin n" is

x
then found by the formula.

(3) Maskelynes method.

The principle of this method is the same as that of Delambre's.

If x is a small angle, we have

sin a; _ x- /, x2
\$ i

, ,=1— — = M — —
I = cos 3

x, approximately ;

hence log sin x = log # + £ log cos x
;

when x is a small angle the differences of log cos x are insensible ;

hence it is sufficient to use an approximate value of cos a:. If

log sin x is given we find an approximate value of x, and use that

for finding log cos x
;
x is then obtained from the above equation.

If x is given we can find logx accurately from the table of natural

logarithms, and also an approximate value of log cos x
;
the formula

then gives log sin x. We can shew, in a similar manner, that

log tan a; is given by the formula log tan x = log x — § log cos x.

Example.

Shew that the following formula is more neai'ly true than Maskelyne's :
—

log sin 8= log Q - ^ log cos d + £i log cos ^ Q.

Adaptation of formulae to logarithmic calculation.

115. In order to reduce an expression to a form in which the

numerical values can be calculated from tables of logarithms, we

must make such substitutions as will reduce the given expression

to the product of simple expressions ;
this may be frequently

done by means of one or more subsidiary angles, as the following

examples will shew.

(1) vV + b6 = a? secy
<f>,

where tan
</>
= b3

/a
3

;
hence

log Va
6 + bs = 2 log a + f (L sec

<f>

-
10),

where L tan
<£
= 1 + 3 (log b - log a) ;

thus v
/

a6 + 66 can be calculated by means of logarithmic tables,

<£ having first been found from the tables.
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(2) a cos a + 6 sin cc = a cos (a
—

<j>)
sec

<£,
where tan

<j>
=

6/a ;

hence

log (a cos a + b sin a)
=

log a + X cos (a— cf>)
— L cos 0,

where is found from

L tan
<£
= 10 + log 6— log a.

116. To calculate numerically the roots of a quadratic

equation supposing the roots to be real.

Let ax- + bx + c = be the equation, and first suppose a and c

to be both positive. We have tan- 8 — 2 cosec 20 tan + 1 = 0;

now let x = y ^Icja, the equation becomes y
2 + by/'Jac + 1 = 0;

hence if sin 26=2 \lacjb, the quadratic in y will be the same as

that in — tan 8, the roots of which are — tan 8,
— cot 6

;
thus the

roots of the given quadratic are —
\/c/a tan 6,

—
^c/a cot 8, where

sin 28 = 2 \lacjb, and hence the roots may be calculated by means

of logarithmic tables.

If a and c are of opposite signs, we may take the quadratic

to be ax? + bx — c =
;
in this case put x = y *Jc/a and it reduces

to y- + byj^/ac
— 1=0; comparing this with the equation

tan2 8 + 2 cot 28 tan 8 - 1 =

we see that if tan 28 = 2 \lacjb, the roots of the quadratic in x

are Vc/a tan 8 and —
<Jc/a cot 6.

117. To calculate the roots of the cubic x3 + qx + r =

supposing them all to be real. We shall suppose q to be negative.

Consider the equation

sin3 8 - l sin 8 + } sin 38 =
;

let x = y V— 4<7/3, then the equation in a; becomes

this will be the same as the cubic in sin 8, if

sin 30 = 4?- (- 3/4g)$
= (- 27r2

/4?
3

)£ ;

hence the values of x are

N/_ 4,/ :; sin 0, V- 4g/3 sin (8 + f tt), V- 4^/3 sin (0 + f tt),

the condition that sin 30 ^ 1 is the condition that the roots of the

cubic are all real.
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We shall shew in a later Chapter how to calculate the roots of

a cubic when two of them are imaginary.
The processes by which we have solved the quadratic and

cubic equations shew that the two algebraical problems are really

equivalent to the geometrical problems of bisecting and trisecting

an angle respectively. It follows that a quadratic equation can

be solved graphically by means of the ruler and compasses only,

whereas the cubic can not in general be solved graphically by
these means, since they are inadequate for solving generally the

geometrical problem of trisecting an angle.



CHAPTER X

RELATIONS BETWEEN THE SIDES AND ANGLES
OF A TRIANGLE.

118. If ABC be any triangle, we shall denote the magnitudes
of the angles BAG, ABC, ACB by A, B, C respectively, and the

lengths of the sides BC, CA, AB by a, b, c respectively. We
shall, in this Chapter, investigate various important formulae

connecting the sides a, b, c of a triangle with the circular functions

of the angles. These formulae will afford the basis of the methods

by which we shall solve a triangle in the various cases in which

three parts of the triangle are given.

119. From the fundamental theorem in projections we see

that the sum of the projections of BA, AC, on BC, is equal to BC,
and that the sum of their projections on a perpendicular to BC is

zero. Expressing these facts we have, since the positive direction

of AC makes an angle
— C with the positive direction of BC,

BA cos B + A C cos C = a,

or c cos B + b cos C = a,

and BA sin B - AC sin C=0, or csin B — 6 sin C = 0,
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which may be written 6/sin B =
c/sin G. These relations and the

corresponding ones obtained by projecting on and perpendicular to

each of the other sides, in turn, may be written

a = b cos G + c cos B *\

b = c cos A + a cos C \ (1),

c =a cos B + b cos A J

a/sin A = 6/sin i? = c/sin C (2).

The equations (2) express the fact that, in any triangle, the

sides are proportional to the sines of the opposite angles.

120. The relations (2) may also be proved thus :
—Draw the

circle circumscribing the triangle ABC, and let R be the length

of its radius, then the side BC is equal to twice the radius multi-

plied by the sine of half the angle BC subtends at the centre

of the circle, that is

BC=2RsinA or 2R sin (180° -A),

hence a = 2R sin A
; similarly

b = 2RsinB, and c = 2RsinC,

hence a/sin A = 6/sin B = c/sin C = 2R.

These relations (2) may also be deduced from (1) ; writing the first two

equations (1) in the form

a- b cos C-c cos B—0,
— a cos C+b-c cos .4=0,

we can determine the ratios of a, b, c
;
we obtain

a be
cos G cos A + cos B cos B cos G+ cos A l-cos2 C"

hence -—
-.

—
:

—7^= - —
jz—.
—~= . „ ^, ,

or a/sin A = 6/sin B= c/sin C.
sin-AsinG sin L'am G sin- C

To deduce (1) from (2) we have

a=— —7sin(2?+C)=— —-. (sinZ?cosC+cos.Ssin G);
sin A sin A v ' *

b c
hence a= -.—„ sm B cos + -.—^ cos B sin C= b cos G+c cos B,

.sin /j suit? '

which is the first of the relations (1).

M we eliminate a, b, c from the three equations in (1), we obtain the

relation > <>>- .i +cos-'Z?-f cos2 G+1 cosA coaBcosG= l, which holds between
the cosines of the angles of a triangle.
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121. If we multiply the equations in (1) by — a, b, c respec-

tively, and then add, we have

b2 +c2 -ar=2bccosA,

which gives an expression for the cosine of an angle, in terms of

the sides; we may write this relation and the two similar ones for

cos B, cos G thus

a- = b- + c-~ 2bc cos A y

b-=c- + a 2 -2cacosB -

(3).

c
n

-=a-+b'-2abcosC,

122. We may obtain these relations (3) directly by means of

Euclid, Bk. II. Props. 12 and 13. If AL be perpendicular to BG,

we have, when C is an acute angle,

AB* = AC + BG°- - 2BC . CL,

and when C is obtuse

AB°- = AC- + BC 2 + 2BC . CL
;

in the first case CL = AC cos C, and in the second case

CL = AC cos (180°
-
C) = - AC cos G

;

therefore in either case

C
2 = a2

4- b- - 2ab cos C\

To deduce the relations (2) from (3) we have

theref ire

. 9 A 4&V-(62+ c2-a2
)
2 _ (26c+ 62 +c2 -a2

) (26c + a2 -a2 -c2
)

8in A ~
46V

~"
46V~

.

2 _ (a + b+ c)(b+c-a) (c+ a-b)(a + b-c)
01* Sill ^T — ~"

. 7 ,m n .

46-<r

thus - —
£— is equal to the symmetrical quantity

(a + b+c)(b + c- a l

^ + q-6) (q+ 6-c)
_

siii- .-1 Bin2 5 sin 2 C
hence

a* o- c1-

from which (2) follows.

To deduce (1) from (3), divide the first two equations of (3) by c, and then

add them
;
we get

a2+&2 <i- + h-= 2c +— - 2 (b cos A + a cos
/.?), or c=b cos il + a cos II.

C
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123. We have

sin2 %A = h(l- cos A), cosHA = |(1 + cos A ) ;

hence

sin2 \A =\
(1
-

26d J
, cos-^ = i

(1
+ —^—j

,

or

(cx+^-cHo-i + c) ms (a + b + c)(b + c-a)
46c 46c

Now let 2s = a + b + c, then 2 (s
—

a) = 6 + c — a, and we have

• » , a (s
— b)(s

—
c) „ . . s(s — a)

sm'U- \

g
-'

,
cos-M - -V^ ;

therefore

i.M-f',"";'!' (4):

these formulae are more convenient than (3) as a means of

determining functions of the angles when the sides are given,

because they are more easily capable of being adapted to

logarithmic calculation.

4 n * o- sin B sin G
,

124. feince —;
— =

, we have
b c

sin B ± sin C _ b + c
^

2 sin £ (B ± G) cos ^ (B + C ) _ b ± c

sin 4 a
01

2 sin £ (£ + G) cos A (i>' + G)
~
~a~ '

6 + c _ cos \ (B - C) 6-c_ sin|CB-C)
a

~
cos £(£ + £)' a "sin 1(5 + 6')'

(6 + c)sin^yl (b
— c)coshA ,„.

or a= r-fg
—
y-, a = ^__£_—-^ (5),cos ^{B — G) sin \ (B — G)

v

we obtain by division the formula

tan %{B-0 =1^ cot%A (5').

To prove these formulae geometrically, with centre A and radius AB
describe a circle cutting AC in 1) and E; draw DF parallel to BE, then
CE= b + c, DC= c - b, DEB= hA, DBF=C+$A - 90°=£C-%B. We have

CD = sin DBF b-c _ sin h{B-C)
CB ain CDB'

°r
a cos|4

'
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also

hence

b+c_CE_EB_ BDcot^A cot^
Z^b~'CD~"DF~ BD tan£ (C-B)~ tan h(C-B)''

t&uh(B-C) = h

b-c
+ c

cothA.

The area of a triangle.

125. The area of a triangle is half that of a parallelogram on

the same base and with the same altitude; if the side a is the

base, the altitude is b sin C or c sin B, we have thus the expressions

\ ah sin C and ^ ac sin B

for the area of the triangle ;
the area of a triangle is therefore

half the product of any two sides multiplied by the sine of the

included angle.

Using the expression for sin A. found in Art. 122,

^j- V(a + b + c) (b + c — a) (c + a — b) (a + b — c),

we have for the area of a triangle the expression

£ V(a + b + c) (6 + c - a) (c + a - b) (a + b - c),

or Vs (s
-

a) (s
-

6) (s
-

c) (G);

this formula was obtained by Hero of Alexandria 1

(about 125 B.C.).

The formula (6) may also be written

£ V26
3
c
s + 2c2a* + 2a?b2 - a* - b* - c

4
.

1 See Ball's Hixtory of Mathematics, p. 82, where the original geometrical proof

of the formula is given.
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Variations in the sides and angles of a triangle.

126. We shall now investigate the relations which hold

between small positive or negative increments in the values of

the sides and angles of a triangle. Suppose three of the parts of

a triangle to have been measured, of which one at least is a side,

the other three parts will be determined by means of the formulae

of this Chapter ;
the relations between the increments of the parts

will enable us to find the effect in producing errors in the values

of the latter three parts of small inaccuracies in the measurement

of the former parts. We shall suppose that the increments are so

small that their squares and products may be neglected.

Suppose A, B, 0, a, b, c to be the values of the angles and

sides of a triangle, as ascertained by the measurement of one side

and two angles, two sides and one angle, or the three sides, the

other three values being connected with the three measured ones

by means of the formulae given above. If the three parts have

been measured inaccurately, there will be consequent inaccuracies

in the values of the other three parts as found by the formulae
;

let A + 8A, B + 8B, C+8C, a + 8a, b + 8b, c + 8c be the accurate

values of the angles and sides
;
we shall obtain relations between

the six errors 8A, SB, 80, 8a, 8b, 8c. It will be convenient to

suppose the increments of the angles to be measured in circular

measure; they can however of course be at once reduced to

seconds.

We have c sinB — 6 sin = 0,

(c + 8c) sin (B + 8B) - (b + 8b) sin (0 + 8G) = ;

since, when the squares of 8B, 8C are neglected,

sin (B + 8B) = sin B + 8B cos B, sin (0 + 80) = sin + 8C cos C,

we have, (c + 8c) (sin B+8B cos B) - (b + 8b) (sin C + 80 cos C) = :

hence if we neglect the products 8c, 8B, 8b, 80, we have

c cos B . 8B + sin B . 8c - b cos C .80 -sin .8b = 0.

This, with the two corresponding equations, may be written

sin . 8b - sin B . 8c = c cos B . 8B - b cos . 80 \

sin A. 8c- sin . 8a = a cos . 80 - c cos A . 8A \. . . .(7).

sin B . 8a — sin A . 8b = b cos A . 8A — a cos B . 8B J
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Also 8A+8B±8C = Q (8),

in virtue of the relations

A + B + C = 7T, A + 8A + B + 8B + C+8C = 7r.

The equations (7) are not independent, as may be seen by

writing them in the form

^-- = CotB.8B-cotC.8C,
b c

-- — = cot C . 8C - cot A . 8A,
c a

r = cot A . 8A — cot B . SB,
a b

which shews that any one of the equations may be deduced from

the other two.

The system consisting of two of the equations (7) and the

equation (8) is sufficient to determine any three of the six errors

when the other three are given, except that one at least of the

three given errors must belong to a side.

By eliminating 8B, 8C, between (7) and (8), we obtain an

equation giving 8a in terms of 8b, 8c, and 8A; this may however be

found directly from the formula a2 = b2 + c
2 — 26c cos A

;
we obtain

a8a= (b
— c cos ^L) 8b + (c

— b cos A) 8c + be sin A8A,

which, with the two corresponding formulae, becomes, in virtue

of (1),

a8a = a cos C . 8b + a cos B . 8c + be sin A . 8A\

b8b = 6 cos A . 8c + b cos C . 8a + ca sin B . 8B> (9).

c8c = c cos B .8a + c cos A . 8b + ab sin G . 8G)

Relations between the sides and angles of polygons.

127. Let O], a2 ,
a 3 ...an denote the lengths of the sides, taken

in order, of any plane closed polygon, and let a1} a2 ...<xn denote the

angles, measured positively all in the same direction, which these

sides make with any fixed straight line in the plane of the

polygon; then from the fundamental theorem in projections in

Art. ]7, we have, projecting on the fixed straight line and

perpendicular to it, the two relations

a }
cos cr, + a., cos a,+ + an cos an = ,

ajsiri a, + a2 sin a,,+ +an 8in aa =

1!. T. 11
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Now let the line on which the projection is made be the side an ;

if we denote by ft the external angle between an and a1} by ft the

external angle between a x and a2 , &c, then

«i = &, a*=A+&, «3
= ft + ft + ft, &c, «n = 2ir,

we have then

ax cos ft + a 2 cos (ft + ft) + a3 cos (ft + ft+ ft) + . . . + an = 0\

a, sin ft + a, sin (ft + ft) + a3 sin (ft + ft + ft) + . . .

|
(10),

+ an_, sin (ft + ft2 + . . . + ft,_i) =
'

the two fundamental relations between the sides and angles of a

polygon. If there are only three sides, these relations reduce to

(1) and (2) respectively, remembering that ft = it — A 2 , ft = ir — A 3 .

128. In the first equation in (10), take an over to the other

side of the equation, then square both sides of each equation and

add
;
in the result the coefficient of 2a ras is

cos(ft + ft+... + ft)cos(ft + ft+... + ft)

+ sin (ft + ft2 + . . . + ft.) sin (ft + ft + . . . + ft),

or cos (ft+i + ft.+2 + . . . + ft) ;

this is the cosine of the angle rs between the positive directions

of the sides ar and as ;
we thus obtain the formula

an2 = «i
2 + a2

2 + . . . + a„_r + 2a1a2 cos 612 + . . . + 2aras cos 6rs+ . . . (1 1 ),

which is analogous to the formulae (3), to which it reduces when

n = 3. In the formula (11), r and s are each less than n and are

unequal.

The area of a polygon.

129. The area of a polygon is given by the expression

\ (a&z sin 12 + . . . + aras sin 6rs + ...) (12),

or ^%a r a s sin rs ,
the summation being taken for all different values

of r and s; if we suppose s is always the greater of the two

quantities r and s, the angle 6rs is, as in the last Article, the

sum of the external angles ft.+1 + ft+ 2 + ••• +ft. To prove this

formula, we shall first shew that in the case of a triangle it

reduces to the expression %a2a3 sin A lt and shall then shew that

if it holds for a polygon of n — 1 sides, it also holds for one of

n sides.
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We have in the case of the triangle AyA^A^, in which

A
1
A, = a 1 ,

V2
= tt — A 2 , ia

= 7r—A 3 , #i3 = 2tt — Ao — A s ;

hence in this case ^£,aras sin rs ie equal to

^(axaosinAo + a^assinAs — 0^3 sin -4 1) or ^a2 a 3 s'mA u

thus the formula holds when n — 3.

Now suppose the formula true for a polygon of sides

&i j
Cf 2 >

^ n—1 >

so that the area of the polygon is

%Xaras sin rs + \a'n_^tar sin n-i,r,

where r and s are each less than n — 1. Now replace the side a'n-!

by two sides «„_!, a„, thus making a polygon of n sides; we have

to add ^dn^an sin n-i,n\ the area of the polygon of n sides is

then

^ 2ara8 sin rs + L a'n_!Stt,. sin 0'n-hr + i cin-^an sin n^ltn .

Now we have, by projecting the side dn- x
on ar ,

a'n_! sin 0'r<n-i
= ««-i sin #,.,„_! + an sin

#,., „ ,

hence the above expression becomes

^Saras sin rg + ^Sa r (an^ sin r>n-i+fln sm #»-, n)+ 2 a«-i a» sin #„_!,„,

or ^5<a,.as sin#,.s ,

where r and s have all different values from 1 up to n, such that

r < s.

The formula (12) has been shewn to be true when n = S, and

is therefore true for n = 4, &c, and therefore holds generally.

It should be observed that in the formula (12) the coefficient

of O] vanishes, in virtue of the second equation in (10); the

formula therefore becomes ^Sa,.a g sin 0,-iS ,
where r and s have all

values from 2 up to n, s being always greater than r.

11—2
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EXAMPLES ON CHAPTER X,

Prove the following relations in Examples 1—11, for a triangle ABC.

1. asm(B-C) + bsin(C-A)+csm(A-B)= 0.

2. a3 cos A + b3 cos B+c3 cos C=abc (1+4 cos A cos B cos C).

3. a* cos C+ c2 cos 4 =~ {6
2+ (c

-
a)

2
}.

4. a cos A cos 2.4 + 6 cos B cos 2.5+ c cos Ccos 2C

+ 4 cos 4. cos B cos C (a cos A + 6 cos 5+ ccos C)=0.

5. a2 cos 2 (5 - C) = b- cos 25+ c2 cos 2C+ 26c cos (5 - C).

G. a3
cos(.5-C) + &3 cos(C-^) + c3 cos(.i-jB)= 3a&c.

7. c3=a3 cos35+3a2 6cos(25-^l)+3a6
2
cos(5-2/l) + 63 cos3J.

8. (cot J 4 - tan IB - tan ± C)4+ (cot i5 - tan i C- tan £4 )
*

+ (cot£0-tan£.4-tan£.B)4= (cot£4+coUiB+cot£CA

9. 62+ c2 -26ccos(4+60°)= c2+ a2 -2cacos(5+ 60°)

= a2+ 62
-2a&cos(C+60°);

interpret this result geometrically.

10. cos\Bsm{\B+C) : cos|Csin(iC+Z>) :: a+ c: a + b.

11. (a+ &)sin5=26sin(5+ |C)cosiC.

12. Prove that, if the sides of a triangle be in a. p., the cotangents of its

semi-angles are in a. p.

13. If the squares of the sides of a triangle are in a. p., shew that the

tangents of its angles are in h.p.

14. If 1-cosJ, 1-cosj3, 1— cosC are in h.p., shew that sin A, sin B,
sinC are in h.p.

15. If b~a= mc, prove that A=cos~ 1
(m cos ^C) — ^C,

, . , , „ . N
1 +m cos B

and cot £ (B -A)= -.

—^p- .m sin B

16. Prove that, in a triangle, cos .4 + cos.S+ cos C>\ and £•§.

1 7. Prove that, in a triangle, tan2
1B tan2

\ C+ tan2
1 C tan2 h A + tan2

h A
tan2 £5<l, and that if one angle approaches indefinitely near to two right

angles, the least value of the expression is
;}.

18 Prove that a triangle is equilateral if cot zl + cot 2? + cot C=J3.
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19. If in a triangle,

cosec A cosec B cosec C+ 4 cot A cot 5 cot C
= seciJ sec|Z?sec JC4-4tani J tan^/Jtan^C,

prove that one angle is 60°.

20. If in a triangle, cos A = cos B cos C, prove that cot B cot C— \.

21. If 5 be an angle determined from cos0=—— , prove that

i / .
_. (a + 6) sin 5 , ... „, csin#

cosi(^- Jg) =
v

,_ ,
and cos h(A + B) =—j=.

2 V«6 2 V«6

22. If is a point inside an equilateral triangle, prove that

B0 2+ CO*-A0 2

cos (BOC- 60°): 2BO.CO

23. If c= 64- 1 «, and ^C is divided in so that BO : OC :: 1 : 3, prove
that <L/lC0=2z.4(;a

24. If CD, CE make equal angles o with the base of a triaDgle ABC,
shew that area ABC : area CED : : c : 26 sin A cot a.

25. If 4i3 be divided in C, Z), so that AC=CD=DB, and if P be any
other point, prove that sin APD sin BPC= 4 sin APC sin BPD.

26. If the sides of a parallelogram be a, b, and the angle between them

be
a>, prove that the product of the diagonals is {(a

2
4- 62)

2 - 4a2 62 cos2
top.

27. If D is the middle point of the side BC of a triangle, and LBAD = 6,

L CA D=
(f),

shew that cot 8 - cot
cf>
= cot B - cot C.

28. A straight line divides the angle C of a triangle into segments a, /3,

and the side c into segments x, y, and is inclined to this side at an angle 6 ;

prove that .rcota- ?/cot/3=ycot A -.rcot B= (x+y)cot6.

29. If the sides of a triangle are in a. p., and if the greatest angle exceeds

the least by 90°, prove that the sides are as sl"+ \ : \/7 : *J7
— 1.

30. Prove geometrically, that in any triangle

a cos = 6 cos (C -0) 4- c cos (Z? 4-0), 6 being any angle.

If a, 6, c denote the sides AB, BC, CD of any plane quadrilateral, show that

a sin A -6 sin (A - B) 4- c sin (A — B — <?)_. a a

acoaA-bcos{A- B) +ccos(A—B — C)

31. If a triangle ABC be such that it is possible to draw a straight line

AD meeting BC in D, so that L BAD is one-third of L BAC, and also BD is

one-third of BC, prove that a*//-'= (6
2 -c2

)(6
2 4-8c2 ).

32. BC is a side of a square ; on the perpendicular bisector of BC, two

points /', Q .'ire taken, equidistant from the centre of the square; BP, CQ are

joined and cut in A ; prove that in the triangle ABC,

tan A (tanB- tan C')
2 4-8=0.
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33. If y
2+z2 -

tyz cos a= a?\

z?+x2 -2zxcos@= b2
> and a+/3+y=27r,

x2+y2 — 2xy cos y= c2 J

prove that

(yz sin a+ zx sin /3+ .ry sin y)
2= J (

2b2 c2+ 2c2a2+ 2«2 b2 -a*-^- c4).

34. If A, B, C are angles of a triangle, and x, y, z are real quantities

satisfying the equation

# sin C-zsinB zsmA—xsmC
x—ycosC— zcosB y — zcosA—xcosC"

x y z
then will

sin .4 sini* sinC*

35. Prove that the area of the greatest rectangle that can be inscribed in

a sector of a circle of radius R is R 2
tan^a, where 2a is the angle of the

sector.

36. Shew how to construct the right-angled triangle of minimum area

which has its vertices on three given parallel straight lines ; and if a, b are the

distances of the middle line from the other two, shew that the hypothenuse

makes with the parallel lines an angle cot
~ 1 ——= .

37. If the angles of a triangle computed from slightly erroneous

measurements of the lengths of the sides be A, B, C, prove that if a, j8, y be

the approximate errors of lengths, the consequent errors of the cotangents of

the angles are proportional to

cosec A (j3 cos C+y cosB -
a), cosec B (y cos A + a cos C -

/3),

cosec C (a cos B+ /3 cos A-y).

38. Prove that, if in measuring the three sides of a triangle, small errors

x, y be made in two of them a, b, the error in the angle C is

-f- cot5+^ cot A
),

and find the errors in the other angles.

39. The area of a triangle is determined by measuring the lengths of the

sides, and the limit of error possible either in excess or defect in measuring

any length is n times the length, where n is a small quantity. Prove that in

the case of a triangle of sides 110, 81, 59, the limit of error possible in its

area is about 3*1433% times the area.

40. Prove that the cosines cx ,
c
2 ,

c3 ,
c4 of the four angles of a quadri-

lateral satisfy the relation

(c^+^+C^+C^-Zic^C^+CiW^^W+CiW+CiW+CiW)
+ 4(o2

2
C3

2 c4
2+ C3

2 f4
2 c1

2+ c4
2 c1

2 c2
2+c 1

2
c,-'ca

2
)

-I- 1 Cj c2 c3 c4 (2
-

Ci
2 - c2

2 - c
3
2 - c4

2
)
= 0.



CHAPTER XT.

THE SOLUTION OF TRIANGLES.

130. We shall now proceed to apply the formulae obtained

in the preceding Chapter to the solution of triangles, that is,

when the magnitudes of three of the six parts are given, to find

the magnitude of the remaining three parts; one at least of the

three given parts must be a side. We shall generally select such

formulae as can be used for numerical computation by means of

logarithms, as these formulae only are of use in practice.

The solution of triangles is made to depend upon a knowledge
of the numerical values of circular functions of the angles, hence

since such circular functions are the ratios of the sides of right-

angled triangles, it is seen that the solution of all triangles is

really performed by dividing up the triangles into right-angled
ones.

The solution of right-angled triangles.

131. Suppose the angle C of a triangle to be 90°, then this

is one of the given parts, and we can solve the triangle in the

various cases in which there are two other parts given, one at

least being a side.

(1) Suppose the two sides a, b to be given; then the angle
A can be determined from the formula tan A =

a/b, and B is then

found as the complement of A; also c = acosec<4, which deter-

mines c, when A has been found; the logarithmic formulae for

solving the triangle are then

L tan A = 10 + log a
—

log b,

B=90°-A,

log c = log a — L sin A + 10.
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(2) Suppose the hypothenuse c and one side a to be given ;

then the angle A is determined by means of the formula

sin A =
a/c, B is found as the complement of A, and b is found

from the formula 6 = ccos^l, or from b'
2 = c

2 — a2
.

The logarithmic formulae are

L sin A = 10 + log a — log c,

£ = 90° -.4,

and log b = log c + L cos A — 10

or log b = £ log (c + a) + \ log (c
-

a).

(3) Suppose the hypothenuse c and one angle A are given,

then B is found at once as the complement of A
;
a is found

from a = csinA, and b as in the last case.

The formulae are

log a = log c + L s'mA — 10,

B = 90° -A,

log b = log c + L cos .A — 10

or log b = | log (c + a) + £ log (c
-

a).

(4) Suppose one side a and one angle A to be given, then B
in 90° — ^., c is acosec.4, and b is found as in the last two cases;

the formulae are

log c = log a — L sin A + 10,

£=90° -.4,

log b = log c + L cos .4 — 1

or log b = \ log (c + a) + | log (c
—

a).

132. In certain cases, the formulae of the last Article are

inconvenient, for example in case (2) if the angle A is nearly 90°,

it cannot be conveniently determined from the equation sin A = a/c,

since the differences for consecutive sines are in this case in-

sensible, we therefore use another formula; from the theorem (4)

of Chap. x. we obtain b tan ^B = c — a, bcot^B = c + a, hence

Q ft /Q _ ft \ 2

tan2
£J5=- -, thus we have tan(45°

— %A)= ( )
,
and this

formula, being free from the objection, may be used to determine A.

Again, in cases (3) and (4), the formula b = c cos A is in-

convenient if A is very small
;
we may then use the formula

b = c — c sin A tan \A.
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133. Various approximate formulae may be found for the solution of

right-angled triangles. Let us denote by a, /3 the circular measures of the

angles A, B respectively.

(1) An approximate form of the formula a= c cos B is

a= c(l-*/3
2+ oV/3

4
),

which is obtained by taking the first three terms of the expansion of cos B in

powers of the circular measure of B
; this formula may then be used for

approximate calculation of a, when c and B are given, provided /3 is not

too large.

(2) Since sin^4 = a/c, we have a — Ja
3 + T £<ja

5=
a/c, approximately; to

obtain a in terms of a/c, we have as a first approximation a=a/c, and as a

second approximation a= - + ^ (

-
J

;
the third approximation is

a 1 la I /a\
3

\

3 1 /a\ 5

a=
c
+
6\c

+
6{c)\ -m\z)

a 1 /a\ 3 3 faV>

which may be used to calculate a.

——
) we can obtain the approximate

formula »
(!=?)*

h -
\ (*£) + \ («=-«Y) .

(4) Usin? Snellius' formula <A =• r-TTr- -tttci for the circular measure of
v ' ° ^ 2 (2 + cos 2(f))'

an angle (see Ex. 32, p. 138), in which the approximate error is ^g</)
5
, put

2$=#, we then obtain the formula ff= ,
and the error is approximately

ihifi
5

> *nus B *s gi yeu m degrees by the approximate equation

B=.— x57°-2957.
2c + a

The solution of oblique-angled triangles.

134. To solve a triangle when the three sides are given;

any one of the formulae

.
, , «s-b)(s-c))* . . (s(s-a))'-

Amm H-b)(.-oy*
s(s

—
a)

with the corresponding formulae for the other angles, may be

I: these formulae are adapted for logarithmic calculation.
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Example.

The sides of a triangle are proportional to 4, 7, 9
; find the angles, having

given
log 2 =-301030,

Ltan 12° 36'= 9-349329, diff. for 1'= 000393,

L tan 24° 5'= 9-650281, diff. for 1' = -000339.

We find s= 10, s-a = 6, s — 6= 3, s — c= l, and hence tani.4 = \/l/20,

tan££=V27T0, thus Z tan iJ = 10-1(1 + -301030) = 9349485

and Z tan *£= 10 + 1
(-301030- 1) = 9-650515.

To find A, we have 9"349485- 9-349329 = "000156, and £gg . 60" = 15"8

approximately, hence 1,4 = 12° 36' 15" -8, or .4 = 25° 12'31"-6.

To find B, we have 9-650515 -9-650281 =-000234 and §f£. 60"=41"-4

approximately, hence IB= 24° 5'41"-4, or Z= 48° ll'22"-8; also

C= 180° - .4 - Z= 106° 36' 5"6 ;

thus we have found the approximate values of the angles.

135. To solve a triangle ivhen two sides and the included

angle are given.

Suppose b, c, and A are the given parts, then B and G may-
be determined from the formula

tan i (B -C) = |p-
C
cot \A,

together with Z? + C=180° — A; the logarithmic formula is

L tan h (B - C) = log (b
-

c)
-

log (6 + c) + L cot £ 4.

Having found £ and C, the side a may be found from any one

of the three formulae

log a = log c + L sinA — i sin C,

log a + Z cos £ (5 — C) = log (6 + c) + Z sin \ A,

log a + Z sin |( /? — C) = log (6
-

c) + Z cos h A.

We may also determine a thus:—Since a? = 62 + c
2 - tbc cos ^1

we have

a2 =
(6 + c)

2 - 46c cos2

\A,

hence a = (6 + c) cos 0, where
<f>

is given by

. . 2 \/bc cos kA
sin <f> = =

-— •

b + c
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thus we may first find
cf> by the logarithmic formulae

L sin <£
=

log 2 + h log b + £ log c + L cos \A —
log (b + c),

and then determine a by the formula

log a = log (6 + c) + L cos
</>

— 10.

Example.

If a=123, c= 321, B= 29° 16', find A, C, b, having given

log 99 = 1-9956352, Z si'k. 29° 1 6'= 9-6891978,

log 123= 2-0899051, Zsml5°42'= 9-4323285, cliff, for 1"= 74-87,

log 2220= 3-3463530, L cot 14° 38'= 10-5831901,

% 2221 =3-3465486, Zto»59° 39'= 10-2324552, cliff, for l"= 48-27.

We have Ztan* (0-4)=Zcot 14° 38'+ log 99 -log 222

= 10-5831901 + 1-9956352 - 2-3463530

= 10-2324723.

171
Now 10-2324723- 10-2324552 = -00001 71, and 7^=3-5 approximately,

hence |(C-^)= 59° 39' 3"-5, also |(C+^)= 75°22', therefore .1 = 15° 42' 56" -5,

C'=135°l'3"-5.

Again log 6= 9-6891978+ 2-0899051 -Zsin'l5°42' 56"-5,

and 56-5 x 74-87 = 4230-155, hence Zsin 15°42'56"-5=9-4327515,

therefore log b= 2-3463514, so that 6= 222 -1^=221 -992.

136. To solve a triangle when two sides and the angle opposite

one of them are given.

This is usually known as the ambiguous case.

Suppose a, c, and A are the given parts, then sin C is deter-

mined from the equation sin C= - sin A; when sin C is thus found,
a

there are in general, if csinA ^ a, two values of C less than 180°,

the one acute and the other obtuse, whose sine has the value

determined
;
we must consider three different cases :

—
(1) if csin A > a, we have sin C > 1, which is impossible, and

indicates that there is no triangle with the given parts;

(2) if c sin A = a, then sin (7 = 1, and tho only value of C is 1)0°.

If A < 90°, there is one triangle with the given parts, and that one

a right-angled triangle. If A > 90°, the value C= 90° is inad-

missible, and there exists no triangle with the given parts.
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(3) if c sin A < a, then sin G < 1, and there are two values ot C,

one acute, the other obtuse

(a) if c<a, we must have G < A, hence G must be acute,

thus there is only one triangle with the given parts;

(/3) if c> a, the angle G is not restricted to being acute, and

both values are admissible, provided A < 90°; but if A > 90°

neither value is admissible since C > A. There are two triangles

or none with the given parts according as A < 90° or A > 90°;

(7) if c = a, then G = A or 180° - A
;
for the latter value of C

two sides of the triangle are coincident, the first then gives the

only value of G for which there is a triangle of finite area, but

this is only admissible when A < 90°.

We may state the above results thus :

c sin A > a, no solution

c sin A = a, A< 90°, one solution

csin A = a, A > 90°, no solution

csin A < a, c < a, one solution

c = a, A < 90°, one solution

lc=a, A > 90°, no solution

j

c > a, A < 90°, two solutions

\c >a, A > 90°, no solution

When C is nearly 90°, it cannot be conveniently determined by means of

its sine; in that case we may use one of the formulae

_ csinA . „ 1/Y. /a+csmAtan 0= ± ,
. .

—
,

tan (45 +*C)=± * / ;

—
7 .

V(«+ csin^)(a-csin/l)
" V a-camA

137. It is instructive to investigate geometrically the different

cases considered in the last Article.

From B draw BD perpendicular to the side b, then

BD = c sin A
;

with centre B and radius a, describe a circle
;

then if a is less than csin A, this circle will not cut the side AG
and no triangle with the given parts can be drawn, but if

a > csin A, the circle will cut AG in two points, 6\ and G2 . In

the case a<c and A < 90°, both G
x
and C2 are, as in Fig. (1), on

the same side of A, and the two triangles ABGX and ABC* have

each the given parts, the angles A O, B, AG2 Bhe'mg supplementary.
When a < c, and A > 90°, A will be beyond 1} and no triangle
with the given parts exists. If a>c, then G

x
and C2 are on



THE SOLUTION OF TRIANGLES

B
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opposite sides of A, and only the triangle ABC1 has the given

parts. The triangle ABC2 ,
in this latter case, has the angle at

A not equal to A, but to 180° — .4, and therefore does not satisfy

the given conditions.

If a = c sin A, the circle touches AC at D, and the right-angled

triangle ADB is the one triangle with the given parts, provided
A < 90°.

We remark that since, in Fig. (1),

AD = c cos A, and 0^ = 0,0= Va2 - c2 sin2
;i,

the two values of b are

c cos A + Va2 - c- sin2A and c cos A — Va2 — c- sin2 A
,

these values being both positive when there are two solutions;

we may also obtain these values of b as the roots of the quadratic

equation in 6,

a* = b- + c--2uccosA.
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138. To solve a triangle when one side and two angles are given.

Suppose a the given side, and A, C the given angles, then B
is determined from the equation B = 180° — A —

C, and the sides

b, c will be determined by means of the formulae

log b = log a + L sin B — L sin A.

log c = log a + L sin C — L sin A.

Example.

7/"a=10, A= 51°30'40", B=76°, find b, having given

log 12396= 4-0932816, Z«i?i76°=9'9869041,

log 12397 = 4-0933166, Lsin 51° 30'= 9-8935444,

Lsin 51° 31' =9-8936448.

AVe have log b = 9-9869041 + 1 -Z sin 51° 30' 40"

and Z sin 51° 30' 40"= 9-8935444 + fg x -0001004

= 9-8936113,

hence log b = 1 -0932928, therefore b= 12-396+ J|Jx '001,

or 6=12-3963 approximately.

139. The expression ccos A ± ^a' — cPaioPA for b may be adapted to

logarithmic calculation; let sind>= -sinJ, then b=- —^—-, thus d>
a sin A ^

having been determined from the equation Zsin<£ = Zsin.4 +logc — log a, we
can determine b from log&= loga+ Zsin (cj>±A)

— Zsin.4.

Denoting by a, 0, y the circular measures of the angles A,B, C, respectively,

and by a, £', y the complements of «, 0, y, we obtain the following approxi-
mate formulae for the solution of triangles.

(1) Suppose A, C, a are given, C not being large; then from the formula

a sin C
c = —

,
we get the approximate formula

sin

c = a cosec A {y- ^y^ + ilcJ
5
)-

Also if A and C are both not large, we have

c
_ «(y-^y3+T^y5

-.-)

a-£a3+ T
l
5 a

5
-....

'

hence c is given approximately by

C
=c^{i

+ i(a*-y-')},

which may be used for calculating c.

(2) Suppose, as in the last case, that A, C, a are given ;
also suppose G is

nearly 90°, then c=~ ^ ,
therefore c=-^—A (1-W*+JW4

) may be used
.sin J '

sin J z ' a*' ' J

to determine c approximately.
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If both A and C are nearly 90°, we have

_acosy' _a(l~hy'
2+ ...)

therefore c= a {1
-
£ («/

2 - a'
2
)}

gives c approximate!}'.

140. We shall give a few examples of the solution of triangles,

when instead of sides and angles there are other data.

(1) Suppose the three perpendiculars from the angles on the opposite

sides given ;
denote them by pu p2 , p3 ,

we have then apl
= bp2

= cp3= 2 area

of triangle. Now since

mVs (s
—

a)

~bc~~

•iPz+PsP\ +P1P2) ( -ptPa+PsPi +P1P2)1 1 a /(P2P3+P3P1 +P1P2) (
-

p-iwe have cos hA = * / }J————- —L
.

—
5

which determines A ; also^2
=csm A, hence c is determined when J is known.

(2) Suppose the perimeter and the angles of the triangle given. We have

s= R (sin ^4+ sin B+ sin C),

hence R is determined, and the sides are then
_ . „ 2s sin A

2RsinA, 2RsmB, 2RsmC, or "=
sinA+smB+ sin(J ,

j ssin^M
with similar values for b and c; this value of a reduces to

l ,

cos £/> cos ^ O

which is adapted to logarithmic calculation.

(3) Suppose the base, height, and difference of the angles at the base

given. Let a be the base, p the height and B-C=2a the given difference :

then since B+ C=180°-A, we have B= 90° + a-hA, C=Q0°-a-^A, also

a=p (cot B+ cot C)=p {tan ($A-a)+ tan ($A + a)},

therefore - = ^ ,
hence cos A is given by the quadratic

p cos 4+ cos 2a

a2
(cos A + cos 2a}

2= 4p
2

(
1 - cos2 .4 )

or cos2 A (a
2+ 4p

2
) + 2a2 cos 2a . cos A = 4p

2 - a2 cos2 2a,

the solution of which is

a2 cos 2a
. 2p (4p

2 + a2 sin2
2a)

^™ A =
-W^4j2± a»+4p»

~
!

these are two values of cos A corresponding to two solutions of the problem.

Solve the triangle with the following data:

(4) C, c, a-fb.

(5) B, a, b+ c.

(6) The area and the angles.

(7) C, c + a, c + b.

(8) The angles and the height.
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The solution of polygons.

141. The relations between the sides and angles of polygons,

and the methods of solving a polygon when a certain number of

sides and angles are given, have been considered by Carnot 1
,

L'Huilier 2
,
Lexell 3

,
and others. The two fundamental equations

in this so-called Polygonometry have been given in Art. 127.

In order that a polygon of n sides may be determinate, In — 3

of its In parts must be given, and of these at least n — 2 must

be sides. To prove this, suppose the polygon divided, by means of

a diagonal, into a triangle and a polygon of n — 1 sides ;
if the sides

and angles of the latter polygon were determined, we should only

require to know two parts of the triangle in order to determine

the figure completely, since one side of the triangle is already
determined as a side of the polygon, hence to determine a polygon
of n sides we require to know two more parts than for a polygon
of n — 1 sides

;
since therefore for a triangle three parts must be

given, one of which is a side, for a polygon of n sides we must

have 3 + 2 (n
—

3), that is 2n — 3 parts given. If of these In — 3

parts, only n - 3 were sides, we should have n angles given ;
but if

n — 1 angles are given, the nth is also given, so that only In — 4

independent parts would be given, thus at least n — 2 of the given

parts must be sides.

In some cases, a polygon can be conveniently solved by dividing
it by means of diagonals into triangles, taking the diagonals for

parts to be determined
;
this method is however not always con-

venient, as may be seen, for example, by considering the case of a

quadrilateral when two opposite sides and three angles are given.

142. To solve a polygon of n sides, when n — 1 sides and n — 2

(ingles are given.

(1) Suppose the angles to be found are adjacent to the side

to be found. We shall, as in Art. 127, use the external angles

fix, /32 .../3n between the sides, instead of the internal angles;

1 Carnot, Geometrie der Stellung.
2
L'Huilier, Pohjqonometrie. Geneva, 1789.

3
Lexell, Nov. Comm. Petrop., Vols. xix. xx.
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suppose an the side to be found, then from the second equation (10)

of Art. 127, we have

sin ft {(*! + a.2 cos ft + a3 cos (ft + ft) +...+ an-i cos (/3.2 + . . . + /?„_,)}

= - cos ft {a 2 sin ft + a 3 sin (ft + ft) + . . . + a n_! sin (ft + . . . + /?»_,)',

hence

o q 2 sin ft + ff
.,
sin (ft + ft) + . . . + aw-i sin (ft+ . . . + /3n^)

Oj+ « 2 cos ft+ a 3 cos (ft + ft)+ . . . +a^ cos (ft+ . . . + ft_i)
'

this determines & in terms of the given angles ft, ft... ft^ and

the given sides a 2 ,
a 3 ... an_! ;

it should be noticed that this

equation is found by projecting the sides on a perpendicular to

the unknown side
;
the remaining angle /ft is then determined

from the relation ft + ft + . . . + ft t
= -tt-

Having found ft and /ft, we can determine an from the

equation obtained by projecting the sides on an ,

«>i
= —

{«i cos ft + a2 cos (ft + ft) + . . .
} ,

or by means of the equation (11) of Art. 128, which gives an
2 in

terms of the squares and products of the other sides and of the

cosines of the angles between the sides.

(2) Suppose the angles to be found are adjacent to one

another but not to the side which is to be found. We shall take

an as the side to be found, and ft., ft.+1 the angles to be found,

then ft. + ft+1 = 2tt - (ft + ft + ... + ft_, + ft+2 + ... + /3n ),

thus ft + ft+1 is known; also from the second equation (10)

ar sin (ft + ft + ... + ft) = - Oj sin ft - a2 sin (ft + ft)-.. .

- a r_j sin (ft + ft + . . . + ft._,)
- ar+,

sin (ft + . . . + ft.+1 )
-

. . .

-an_1 sin(ft + ...+fti),

hence ft + ft + ... +ft can be determined, and therefore ft..

The side a„ is then determined as in the last case.

(3) In the case in which the two unknown angles are not

adjacent to one another, let H, K be the angular points at which
the angles are unknown

; join HK, then the polygon is divided

into two polygons, in one of which all the sides except one are

known, and all the angles except the two which are adjacent
to the unknown side We can solve this polygon as in (1),

determining UK and the angles //" and K.

II. t. 12
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In the other polygon we now have all the sides except one

given, and all the angles except two adjacent ones; this polygon
can therefore be solved as in (2) ;

we have then all the sides of

the given polygon determined, and the angles at H and K are

determined by adding the two parts into which they were divided

by UK, and which have been separately found.

143. To solve a polygon of n sides, when n — 2 sides and n — 1

angles are given.

We determine the remaining angle at once from the condition

& + &+ ...+£„= 2tt.

To determine an unknown side ar , use the equation

Oa sin& + a 2 sin (ft + /82) + • . . + «n-i sin (& + #,+ ...+ /3n^) = (),

obtained by projecting perpendicularly to the other unknown side

an . We can then determine a n in a similar manner, or use the

other fundamental equation.

144. To solve a polygon of n sides, when the n sides and n — 3

angles are given.

Let P, Q, R be the angular points at which the angles are not

given; join PQ, QR, RP, then the polygon is divided into four

parts, one of which is a triangle. In each of the parts except

PQR. all the sides except one are given, and all the angles except
those adjacent to those sides; we can therefore determine PQ, QR,

RP, and the angles at P, Q, R. We can then find the angles of

the triangle PQR, of which the sides have been determined. We
obtain now by addition the angles at P, Q, R, of the given

polygon.

Heights and distances.

145. We shall now give some examples of the application

of the solution of triangles to the determination of heights and

distances. For fuller information on this subject, as for the de-

scription of instruments for measuring angles, we must refer to

treatises on surveying. The angle which the distance from any

point of observation to an object makes with the horizon is

lulled the elevation or the depression of that object, according
as the object is above or below the horizontal plane through
the point of observation.
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146. To find the height of an inaccessible point above a hori-

zontal plane.

Let P be the inaccessible point and C its projection on the

horizontal plane, let PC =
It, and suppose any line AB = a, measured

on the horizontal plane, if possible so that ABC is a straight line
;

let the elevations of P at A and B be measured, denote them by
a and /3 ;

then a = AC— BC=h (cot a — cot/3), therefore

h =
a sin a sin /3

sin (/3
—

a)

which determines h. If it is impracticable to measure the base

line directly towards C, let it be measured in any other direction ;

let the elevations a of P be measured at A, and also the angles

PAB =
y, and PBA =

B, then PA =AB .

Sm 5
^ , and /i=^lPsina,

sm(Y + o)

therefore h = a——?——^, thus h is determined,
sin (7 + o)

147. To find the distance between two inaccessible points.

Let P and Q be the two objects, and let any base line AB = a

be measured, the points A, B being so chosen that P and Q are

12—2
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both visible from each of them. At A measure the three angles

PAQ =
a, QAB =

fi, PAB = y; it should be observed that the

angles PAQ, QAB are in general not in the same plane. At B
measure the angles PBA = 8, and QBA = e.

From the two triangles ABP, ABQ, we have

AP = a —.—-.
——

Kv ,

sin (7 + 6)

sin €
and AO = a-——=, r. Thus AP, AQ are determined by the*

sin(/8 + e)
^ J

formulae

log AP =
log a + L sin S — L sin (7 + S),

log AQ — log a + L sin e — L sin ((3 + e).

In the triangle PAQ, we now know AP, AQ, and the angle

PAQ =
a, we find then the angles APQ, AQP by means of the

formulae

Ltan$(APQ-AQP) = Lcot$CL + log(AQ-AP)-\og(AQ + AP),

APQ + AQP = 180° -a.

We then find PQ by means of the formula

log PQ = log AP + Lsma-L sin A QP.

148. Pothenot's Problem. To determine a point in the plane
of a triangle at which the sides of the triangle subtend given

angles.

,G

Let a, /3 hv the angles subtended by the sides AC, CB of a

triangle ABC at the point P, and let x, y denote the angles
I 'AC, PBC respectively; the position of P is found when the

angles x and y are determined, for the distances PA and PB
can be found by solving the triangles PAG, PBC.



THE SOLUTION OF TRIANGLES 181

We have x + y = 2ir — a — /3
— G.

Also
b sin x a sin y Tyn

sin a sin p

Assume
(f>

to be an auxiliary angle such that

a sin a
tan

<f>
=

b sin 13
'

,, - sin x .
,

sin x — sin y ., . wC .

therefore —— = tand>, hence -=— —.—- = tan(<p
— 4o

),
sin y sin x + sin y

or tan h (x
—

y)
= tan \{x + y) tan (d>

—
45°)

= tan (45°
-

<f>)
tan \ (a + £ + G) ;

thus # — y can be found, and since # + ?/ is known, Ave can find

x and y.

149. Examples.

(1) It is observed that the elevation of the top of a mountain at each of the

three angular points A, B, C, of a plane horizontal triangle ABC, is a; shew that

the height is \& tan a cosec A. Shew also, that if there be a small error n" in the

i + ^ j.-l i j i
latoa/.

,

cosC sinri'\
elevation at (J, the true height is very nearly

- —
;
—

. I 1 -\
—

:
—r—:

—
p .

9 1
•

Zi Sill/ A. \ SVYL -Ti. St It -L> olll £(l/

Let be the projection of the top of the mountain on the plane ABC, we

have then, if A is the height of the mountain, A=:0.4tana= O.Stana=OCtana,

thus is the centre of the circle round ABC, hence OA=\a cosec A, or

h—\a tan a cosec A. When the measurement of the elevation at is a + n",

let 0' be the projection of the top of the mountain, then since the elevations

at A and B are equal, 00' is perpendicular to AB; let h + x now be the

height of the mountain. We find geometrically,

O'A = OA + 00' cos C, 0'C= 0C- 00' cos (A
- B) y
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when 00' is so small that its square may be neglected, hence

h+x= O'A tan a= O'Ctan (a + n")

= (0A + 00' cos C) tan a= {0C- 00' cos (4 - B)} tan (a + »"),

hence x=00' . cos C. tana= -00' cos (A
- B) tan a+ OC sec2 a . sinw",

since tan (a + n") = tan a+ sec2 a . sin ?i", approximately; eliminating 00', we

.rcos(^l
- B) tan a= cos Ctana(0Csec2 a . sin»" — a;),

hence 2xsinA sin B—OC sec2 a cos Csinrc",

... . .la tan a ( ,

therefore the true height h+ x is - ——
j- 1 + .

2 sin A \ sin

cos C sin n" \

in J sini?' sin 2a/

(2) 7%e s?'a*es o/" a triangle are observed to be a= 5, b= 4, c= 6, but it is

known that there is a small error in the measurement of c; examine which angle

can be determined toith the greatest accuracy.

Let 6+x be the true value of the side c; let A + 8A, B+ 8B, C+8C be the

angles of the triangle, the parts 8A, 8B, 8C depending on x; we suppose x so

small that its square may be neglected.

We have

cos{A+6A)-
24{6 + x) -48(1 + 1^)-^^

+^^ **;-»(! +m*)i

approximately, hence sin A . 8A — —
5%#.

Also cos(B+8B) =
25

^l
+
{^-

16 =
1(1

+^^ hence sin B.8B=-»a x,

j ,n *™ 25+ 16-(6+x-)
2 1 /, 12a?\ , . _ &^ „

and cos (C+8C) =— v y = -
f 1——

J
,
hence sm C . 8C=fQ x.

. , sin A sin B sin C
A1S° — "——

I"'

so that 24. SJ =40. 8B= -15. SC.

Thus 85 is numerically smaller than 8A and SC, hence the angle B can be

determined with the greatest accuracy.

EXAMPLES ON CHAPTER XL

1. The sides of a triangle are 8, 7, 5
;
find the least angle, having given

log 112 = 2-0492180,

Zcosl9°6'= 9 9754083, diff. for 60" = '0000437.

2. If in a triangle a = 65, 6 = 16, C=60°, find the other angles, having

given

log 3 =4771213, Ztan 46° 20'= 100202203,

log 7 = -8450980, L tan 46° 21'= 10-0204731.
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3. The sides of a triangle are 3, 5, 7 feet
;
find the angles, having given

log 13-5 = 1-1303338, log 14= 1-1461280,

Z cos 10° 53'= 9-9921 175, Z cos 10° 54' =9-9920932.

4. If £= 45°, C=10°, a= 200ft., find b, having given

log 2= -3010300, log 172-64= 2-2371414,

Z sin 55°= 99133645, log 17265 =2'2371666.

5. If in a triangle 6= 2 -25 ft., c=T75 ft., .1=54°, find B and C, having

given
log 2 = -301030, Z cot 27° = 10-292834,

Ztanl3°47'= 9-389724, Ztan 13°48'= 9-390270.

6. If the ratio of the lengths of two sides of a triangle is 9 : 7 and the

included angle is 47° 25', find the other angles, having given

log 2 = -3010300, Z tan 66° 17' 30" = 10-3573942,

Ztan 15° 53'= 9-4541479, diff. for l'= 4797.

7. An angle of a triangle is 60°, the area is 10v'3 and the perimeter is

20
;

find the remaining angles and the sides, having given

log 2 = -3010300, Z sin 49° 6' = 98784376,

log 7 = -8450980, Z sin 49° 7'= 9-8785470.

8. In a triangle ABC, it is given that a=10 ft., 6= 9 ft., C=tan _1
(^);

find c. If errors not greater than 1 in. each are made in measuring a and b,

and an error not greater than 1° in measuring C, shew that the error in

the calculated value of c will be less than 2 -

7 in.

9. In the ambiguous case, a, b, B being given, where a>b, if c, d be the

values of the third side, shew that c2 — 2cc'cos2#+ c'
2= 4&2 cos2 Z.

10. In the ambiguous case in which a, b, A are given, if one angle of one

triangle be twice the corresponding angle of the other triangle, shew that

a\/3= 26sinJ, or 4&3 sin2 ^4=a2
(a+ 36).

11. The base of a triangle is equal to its altitude, and the two other

sides are of known length ;
determine the remaining parts of the triangle

by formulae adapted to logarithmic calculation. Shew that the ratio of the

given sides must lie between i(\/5
—

1) and -i(\/5 + l).

12. A triangular piece of ground is 90 yards in its longest side, and

100 yards in the sum of the other two sides, and one of its angles is 46°.

Determine the other angles, having given

Z tan 23°= 9-62785 19,

Ztan 13° 15'= 9-3719333, Ztan 13° 16'= 9-3724992.

1 3. An angle of a triangle is 36°, the opposite side is 4, and the altitude

\fb-l ;
solve the triangle.
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14. Shew that it is impossible to construct a triangle out of the

perpendiculars from the angles of a triangle on the sides if any side is

< J (3- V5) x perimeter ; and it is certainly possible to construct such a

triangle if each side is > i perimeter.

15. If a triangle be solved from the parts C= 75°, b = 2, c-JQ, shew that

an error of 10" in the value of C would cause an error of about 3"-44 in the

calculated value of B.

16. Having given the mean side of a triangle whose sides are in a.p., and

the angle opposite it, investigate formulae for solving the triangle, and find

the greatest possible value of the given angle. Solve the triangle when the

mean side is 542 feet, and the opposite angle is 59° 59' 59".

17. Solve a triangle, having given the length of the bisector of a side,

and the angles into which this divides the vertical angle.

18. Solve a triangle, having given one side, the angle opposite it, and the

perpendicular from that angle on the side.

19. A triangle is solved from the given parts a, b, A. If the values of

a, b are affected by small errors x, y respectively, find the consequent error in

the value of the perpendicular from A on the opposite side, and prove that

this error is zero if x sin'2 B cos C—y (sin
2B- sin2 C).

20. A lighthouse is seen N. 20° . E. from a vessel sailing S. 25° . E. and

a mile further on it appears due N. Determine its distance at the last

observation correctl}
r to a yard, having given

L sin 20° =9-534052 log 2= -3010300,

log 206= 2-313867, log 207 = 2-315900.

21. A cliff with a tower on its edge is observed from a boat at sea, the

elevation of the top of the tower is 30° ; after rowing towards the shore a

distance of 500 yards in the plane of the first observation, the elevations of

the top and bottom of the tower are 60° and 45° respectively; find the

heights of the cliff and tower.

22. A is the foot of a vertical pole, B and C are due east of A, and D is

due south of C. The elevation of the pole at B is double that at C, and the

angle subtended by AB at D is tan" 1 1
,
also BC=20 ft., CZ>=30 ft. ;

find the

height of the pole.

23. From a certain station the angular elevation of a mountain peak in

the north-east is observed to be a. A hill in the east-south-east whose height
above the station is known to be /;, is then ascended, and the mountain peak
is now seen in the north at an elevation /3. Prove that the height of its

summit above the first station is /i sin a cos /3 cosec (a
—

/3).

24. A train travelling on one of two straight intersecting railways sub-

tends at a certain station on the other line an angle a, when the front of
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the first carriage, and an angle a when the end of the last, reaches the

junction. Prove that the two lines are inclined to each other at an angle 8

determined by 2 cot 8= cot a ~ cot a.

25. A cylindrical tower stands on a horizontal plain ;
an eye in the plain

views the visible arc of the rim of the upper end of the tower. If a, a, a" be

the angular elevations of either end of such arc above the plain, when the eye
is at distances e, c', c" respectively, prove that

(c"-
- c"2

)
cot-' a+ (c"

2 - c2
)
cot2 a'+ (c

2 - c'
2
)
cot2 a"= 0.

26. A balloon was observed in the N.E. at an elevation a; ten minutes
afterwards it was found to be due N. at an elevation /3. The rate at which
the balloon was descending was afterwards ascertained to be six miles an

hour; shew that its horizontal motion, supposed uniform, was at the rate of

miles an hour, the wind at the time being in the East.
V2 tin a-tan/3

27. I observe the angular elevation of the summits of two spires which

appear in a straight line to be a, and the angular depressions of their re-

flexions in still water to be /3 and y. If the height of my eye above the level

of the water be c, then the horizontal distance between the spires is

2c cos2 a sin (/3
—
y)

sin (/3-a)sin (y-a)'

28. The angular elevation of a tower at a place A due south of it is 30°,

and at a place B, due west of A and at a distance a from it, the elevation is

18
c

;
shew that the height of the tower is

a

V2V5+2

29. A tower 51 feet high has a mark at a height of 25 feet from the

ground ;
find at what distance the two parts subtend equal angles to an eye

at the height of 5 feet from the ground.

30. A person on a level plain, on which stands a tower surmounted by a

spire, observes that when he is a feet distant from the foot of the tower its

top is in a line with that of a mountain. From a point b feet further from

the tower he finds that the spire subtends at his eye the same angle as before,

and has its top in a line with that of the mountain; shew that if the height

of the tower above the horizontal plane through the observer's eye be c feet,

the height of the mountain above that plane will be
-5 ^

feet.

31. A man, 5 feet high, standing at the base of a pyramid whose base is

square, sees the sun disappear over one of the edges, hall'-way along it. Shew

that if a and b are the distances of the man from the two nearest corners,

and 8 is the altitude of the sun, the height of the pyramid is

1 (J + tan 8 v £ (60
s - 2afe + b'-) feet.
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32. From the top of a hill the depression of a point on the plain below is

30°, and from a spot three-quarters of the way down, the depression of the

same point is 15° ;
find within 1' the inclination of the hill.

33. ABCD is the rectangular floor of a room whose length AB is a feet.

Find its height, which at C subtends at A an angle a, and at B an angle 1

If a = 48 ft., a= 18°, 0=30°, prove that the height is 18 ft. 10 in. nearly.

34. A tower is situated on a horizontal plane at a distance a from the

base of a hill whose inclination is a. A person on the hill, looking over the

tower, can just see a pond, the distance of which from the tower is b. Shew

that, if the distance of the observer from the foot of the hill be c, the height
be sin a

of the tower is
a+ b+ c cos a'

35. A person standing between two towers observes that they subtend

angles each equal to a, and on walking a feet along a straight path inclined at

an angle y to the line joining the towers, he finds that they subtend angles

each equal to £; prove the following equations for determining the heights of

the towers, hh' (cot
2
/3
— cot2

a)= a2
, (h'

-
h) (cot

2
/3
— cot2

a) = 2a cot a cos y.

36. From a hill-top the angles of depression (a, /3) of two piers of a bridge
are observed, and the distance a between the piers subtends an angle 8 at the

point of observation
; prove that the height of the hill is

\a cot
(j)

sec \8 vsin a sin /3,

where cos <£
= 2 cos 1 8 . Vsin o sin /3 . (sin a+ sin /3)

~ l
,

37. A man on a hill observes that three towers on a horizontal plane
subtend equal angles at his eye, and that the angles of depression of their

bases are a, a, a" ; prove that, c, c',
c" being the heights of the towers,

sin (a
-

a") sin (a"
—

a) sin (a
—

a') _
c sin a d sin a c" sin a"

38. A gun is fired from a fort, and the intervals between seeing the flash

and hearing the report at two stations B, C are t, t' respectively ;
D is a point

in the same straight line with BC, at a known distance a from A
; prove that

if BD= b, and CD= c, the velocity of sound is -! , \} 7,
—

-\ . ExamineJ
i

bc'-ct2
J

the case when a2= bc.

39. From a point on a hill-side of constant inclination, the angle of

elevation of the top of an obelisk on its summit is observed to be a, and a feet

nearer to the top of the hill to be /3 ;
shew that, if h be the height of the

obelisk, the inclination of the hill to the horizon will be

cos x
(a sin a sin

/3)

j/i'sTnGS-a)/
'

40. On the top of a spherical dome stands a cross
;
at a certain point the

elevation of the cross is observed to be a, and that of the dome to be /3 ;
at a
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distance a nearer the dome the cross is seen just above the dome, when its

elevation is observed to be y ; prove that the height of the centre of the dome

, ,, ,. asiny sin a cos y — cos a sin 3
above the "round is -—

;
—'—,-. —

.
sin (y

—
a) cos y - cos 3

41. At noon on a certain day the sun's altitude is a. A man observes a

circular opening in a cloud which is vertically above a place at a distance a

due south of him ; he finds that the opening subtends an angle 2d at his eye,

and that the bright spot on the ground subtends an angle 2(p. Shew that if

x is the height of the cloud

x* (cot
2 a tan 2 - tan2

8)
- 2ax cot a tan2

<£+ a 1
(tan

2
cb - tan2

6) = 0.

42. From a point on the sloping face of a hill two straight paths are

drawn, one in a vertical plane due South, the other in a vertical plane at right

angles to the former, due East; these paths make with one another an angle

a, and their lengths measured to the horizontal road at the foot of the hill are

respectively a and b. Shew that the hill is inclined to the horizontal at an

. ,
/ai+ b2 -2abcosa\%

angle sin -1
(

=—-.

\ ao sin a tan a )

43. The breadth of a straight river is calculated by measuring a base of

length a along one side of the river and observing the angles made with this

base by lines joining its extremities to a mark on the opposite bank. If the

instrument by which the angles are measured gives each a value which is

(1 + n) times the true value, n being very small, shew that the error in the

computed breadth is nearly equal to na .
——

.

2
. _

——
; a, 8 being the

circular measures of the above angles..-,

44. An observer from the deck of a ship, 20 feet above the sea, can just

see the top of a distant lighthouse, and on ascending to the mast-head, where

he is 80 feet above deck, he sees the door which he knows to be one-fourth

of the height of the lighthouse above the level of the sea ; find his distance

from the lighthouse, and its height, assuming the earth to be a sphere of

4000 miles radius.

45. Three vertical posts are placed at intervals of one mile along a

straight canal, each rising to the same height above the surface of the water.

The visual line joining the tops of the two extreme posts cuts the middle

post at a point eight inches below the top; find to the nearest mile tho

radius of the earth.

4G. Borings are made at three points A, B, C in a horizontal plane, and

the depths at which gault is found are a, b, c respectively; also AB=h
>

BC=k, ABC=a. If the upper surface of the gault be a plane, shew that its

inclination
cf)

to the horizon is given by

aj [{a-bf (a-b)(c-b) Ac-bn 2tan2 <i = V ,„
-• - 2

v

;-, COS a -h
1—r^— Y cosec3 a.^

[ k 2 hk k* J
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47. The angular elevation of a column as viewed from a station due north

of it being o, and as viewed from a station due east of the former station and

at a distance c from it being /3, prove that the height of the tower is

c sin a sin |3

{sin (a -j8) sin (a+£)}4
'

48. A lighthouse stands 9 miles due N. of a port from which a yacht sails

in a direction E. X. E., until the lighthouse is N.W. of her, when she tacks

and sails towards the lighthouse until the port is S.W. of her, when she tacks

again and sails into port. Shew that the length of the cruise is 16 miles

nearly.

49. A circular pond of radius a is surrounded by a gravel walk of uniform

width b, and the whole is enclosed by a fence of height d. A person of

height h stands just inside the fence. Shew that the portion of the fence

whose highest points can be seen by reflection from the water is -th, where

1 2 . f h+d \fb*+2ab)- = - COS -1 { 7= ;
—

} ,« * \2y/Ad « + 6 J

d
provided h<d(l + 2a/b), and >

l + 2o/6"

50. The width of a croquet-hoop, the thickness of its wires, and the

diameter of a ball are given; the ball being in a given position, shew how to

find the conditions that it may just be possible for it to go through the hoop

(1) straight, (2) by hitting one wire, (3) by hitting both wires
; assuming that

the angle of incidence is equal to the angle of reflection.

51. Three mountain peaks, A, B, C, appear to an observer to be in a

straight line, when he stands at each of two places P and Q, in the same

horizontal line; the angle subtended by AB and BC at each place is o, and

the angles A QP, CPQ are 4> and \^ respectively.

Prove that the heights of the mountains are as

cot 2a+ cot
\}r

; -i- (cot a + cot
\|/-) (cot a+ cot 0) tan a : cot 2a + cot <£,

and that if QB cut A C in D, AG= CD sin 2a (cot f+ cot 2a).

52. A man standing at a distance c from a straight line of railway sees a

train standing upon the line, having its nearer end at a distance a from the

point in the railway nearest him. He observes the angle a, which the train

subtends, and thence calculates its length. If in observing the angle a he

makes a small error 6, prove that the error in the calculated length of the

c6
train has to its true length a ratio ;

:

—
r .

sin a (c cos a — a sm a)

53. The height h of a mountain, whose summit is A, is to be determined

from the observed values of a horizontal base line BC (a), the angles ABC,

ACB, and the angle (z) which AB makes with the vertical. Shew that

a cos z sin C
h~

ain{B+C)
'
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If h be known approximately, shew that the best direction of EC in order

that an error in measuring C may have least effect on the accuracy of the

above value of/;, is given by jS= 2tan -1
( r ).6 J
\a cos z + h)

54. Three vertical flag-staffs stand on a horizontal plane.. At each of the

points A, B and C in the horizontal plane, the tops of two of them are seen in

the same straight line, and these straight lines make angles o, 8, y with the

horizon. The plane containing the tops makes an angle 6 with the horizon.

Prove that their lengths are BC/(\/cot
2
/3
- cot2 6 + Vcot2

y
- cot2 6), and two

similar expressions. Explain how the signs of the roots must be taken.

55. A tower AB stands on a horizontal plane and supports a spire BC.

An observer at a place £ona mountain, whose side may be treated as an

inclined plane, observes that AB, BC each subtend an angle a at his eye;

he then moves to a place F, measuring the distance EF(=2a), and observes

that AB, BC again subtend angles a at his eye ;
he then measures the angles

AFE(= B) and CFE (
=

y). Shew that if x and y are the heights of AB, BC
respectively,

f COS 8 cos y cos2 a "la

9 y
\ cos^03+ y)cos

2
i(/3- 7 )J

Also if G is the middle point of EF, and H is the point on the line of

greatest slope through G, at which A B, BC subtend an angle 8, and GH is

measured (
=

b), prove that the inclination 6 of the mountain to the horizon is

given by

f .r'V /a2+62\ 2
)i . A a2+ 62

n xy (a?+y)sin28

\(x-y)
2

\ 2b J J 2b x-+y* -2.it/cos2S



CHAPTER XII.

PROPERTIES OF TRIANGLES AND QUADRILATERALS.

150. In this Chapter we shall for the most part assume

without proof the theorems in Euclidean Geometry which are

necessary for our purpose, referring to works on pure Geometry
for the investigation of those theorems.

The circumscribed circle of a triangle.

151. We have already, in Art. 120, obtained the formula

R = \a cosec A, for the radius of the circle circumscribing a

triangle, or as it is now frequently called, the circum-circle.

This formula may also be obtained as follows:
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Let be the circum-centre
;
draw OD perpendicular to the

side BC of the triangle ABC, then D is the middle point of BC,

and the angle BOD = A.

Since BD = OB sin BOD we have

^a = RsmA, or R = ^a cosec A (1).

If S denote the area of the triangle ABC, we have

S = \bc sin A, thus we have the expression R^abc/^S. ..(2).

Also OD = OB cos A = R cos A.

The inscribed and escribed circles of a triangle.

152. We know that four circles can be drawn touching the

three sides of a triangle ;
the inscribed circle, or in-circle, touches

each side internally, let / be its centre
;
the escribed circles each

touch one side of the triangle and the other two sides produced,

let Ilf I?, Is be the centres of these circles
;
we know that IA, IB,

10 bisect the angles A, B, 0, respectively, and that IA bisects

the angle A, and I
l
B

> liG bisect the angles B, 0, externally; it

follows therefore that AIU BI„, CI3 are the perpendiculars from

/], I2 ,
I3 ,

on the opposite sides of the triangle I
X
I2I3 ,

and that /

is the orthocentre of the triangle 7,/2/3 .

The circum-circle of the triangle ABC is the nine-point circle

of the triangle I^LJ^, and therefore passes through the middle

points of the sides I2I3 ,
I3 I\, I\Iz, and also through the middle

points of Hi, Hz, Hi
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153. Let H, K, L be the points of contact of the in-circle

of the triangle ABC, with the sides BG, CA, AB, respectively.

Then AIBC +A ICA +AIAB = S.

Now AlBC = ±IH.BC=\ra, AlCA = \rb, AlAB=%rc,
where r denotes the radius of the in-circle, hence

%r(a + b + c)
= S, whence we have the formula r = S/s. . .(3),

for the radius of the in-circle.

Also a = BH+HC = r{cot%B+cot%C),

hence r=a sin hB sin A C sec I A •(4),

another expression for r, which might of course be deduced from (3).

Combining the formulae (1) and (4) we have the symmetrical

expression r^^Rain^Asm^Bsm^G (5).

Again ,
since AK + BC=$(BC+ CA + A B),

we have AK=AL = s — a,

and similarly BH = BL = s — b, CII = CK = s — c,

hence since r = AK tan \A = BH tan \B = CK tan \ G,

we obtain the expressions

r = (s- a) tan \ A =
(s
—

b) tan \B = (s
-

c) tan ^ G (6),

which may also be deduced from (3) or (4).
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154. Expressions corresponding to those of the last Article

may be found for the radii r„ r2 ,
?*3 of the escribed circles.

Let H
1 ,
Kx , L x

be the points of contact of the circle whose

centre is I1} with the sides of the triangle ABC. Then

Al
i
AB +AllAG-AI1 BC = S, therefore ^(b + c-a) = S,

thus we have the formulae

r,=
S

r„ =
S

?*,= s_
s — cs — a' s — b

for the radii of the escribed circles.

Also a = BH, + H,G = r, (tan \B + tan \ G),

therefore rx
= acos \B cos \G sec \A

•(7),

•(8),

whence we obtain the formula

r, = 4/2 sin^ cos ^ J? cos \G (9),

with corresponding expressions for r2 and ra .

Again, since

BH, = BLU and GH
X
= GK

X , and AK, = AL ly

wefind BII^s-c, GH^s-b, AK^AL^s,
thus we obtain the formulae

r,
= stan£4 = (s-c)cot \ B = (s

-
b) cot {G (10).

13II. T.
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Examples.

(1) Prove that r
1 + r2+ r

3
— r= 4R,

r2 r3 + r3 \\ + rx r2= S2
/r

a
,

' r1
- 1+r2

- 1+r3
-1=r- 1

.

(2) Prove the following formulae for the sides and angles of a triangle,

in terms of the radii of the escribed circles:

(a) a=7m=
, 03) -iA=7=4h :,

V r2 r3 + r3 r, + r, r2 V(rx+ r2) (rx + r3)

(3) Prove that r
* fo +^KWlfo +r^

(4) Prove that 16R2 rr1 r2 r3=a2 b2 c2
.

, , n i a 2R+r-rx

(o) Prove that cos A= —=—\
v ' 2R

(6) If the escribed circle which touches a is equal to the circum-circle,

prove that cos A = cosB+ cosG.

(7) Prove that r, (r2 -f r3 )
cosec A= r2 (r3+ r

x )
cosec B = r3 (\\ + r2) cosec C.

(8) If a, ai, a-2, a3 are the distances of the centres of the inscribed and

escribed circles from A, and p is the perpendicularfrom A on BC, prove that

(a) aaia 2 as = 4R2
p
2
,

(b) cP+aJ+a^+aJ =16R2
,

(c) a- 2 + ar 2+ a2

- 2+ a3
- 2= 4p-

2
.

(9) Shew that the area of the triangle formed by joining the centres of the

escribed circles is -=—
,
or 8R2 cos \A cos ^B cos\C

(10) Shew that the radius of the circle round any of the four triangles

formed byjoining the centres of the inscribed and escribed circles is double o/R.

(11) Prove that the areas Ii I2T3, I 2 I 3 I, I3I1 1, IiL2 I are inversely as

r, ri, r2 ,
r3 .

(12) Prove that (a)
W +W +W = 8 5,
r2r3 r3r! rx r2 r

(b) r3 .II
1
.I[ 2 .II 3

= IA2 .IB 2 .IC 2
.

(13) If di, d 2 ,
d3 be the distances of I from, the angular points of a

1 1 ; dxd2d3 r
triangle, shew that

abc a

(14) If a.', b', c' are the sides of the triangle formed by joining the points of
a2 — a'2 b2 - b"2 c2 - c'2

contact H 1} H 2 ,
H3 of the escribed circles, shew that = —7 = .
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(15) Prove that the sides of the triangle formed by joining the centres of the

circles BOC, COA, AOB are as sin 2A : sin 2B : sin 2C.

(16) Prove that the circum-circles of the two triangles in the ambiguous
case, when, a, b, B are given, are equal in magnitude ; shew also that the

distance between their centres is (b
2 cosec2 B — a2

)^.

(17) In the ambiguous case of the solution of a triangle, prove that the

distance of the points of contact of the inscribed circles with the greater of the

two given sides is equal to half the difference of the values of the third side.

(18) If p\, p2 , pi be the radii of the circles described about IBC, ICA, IAB,

prove that 4R3 - R (p{
2
+p2

2+p3
2
)- pip-zP3

= 0-

(19) Prove that the radii of the escribed circles of a triangle are the roots

of the cubic x3 - x2
(4R + r) + xs2 - rs2= 0.

The medians.

155. The lines AD, BE, CF, joining the angular points of a

triangle to the middle points of the opposite sides, are called the

D L

medians. The length of AD is given by the well-known geo-
metrical theorem AB' + AC- = 2(AD 2 + BD 2

), thus the squares
of their lengths are given by

»H
J = lb2 + £ c

2 -
1 a\ m 2 = i c

2 + £a
2 -

^ b\

m.;-
= ^a

2 + ±z b
n

--lc
2

(11).

Let A/j denote the angle ADC, then

cot il/,
= DL/AL = \{BL- CL)/AL,

where AL is perpendicular to BO, therefore M
x is given by

coti/, = £ (cot B-cot G) (12).

13—2
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The point G, where the medians intersect one another, is called

the centroid of the triangle. It is well known that G divides each

of the medians in the ratio 2 : 1.

Examples.

(1 ) Prove that cot AGF + cot BGD + cot CGE= cot A + cot B + cot C.

(2) If a, ft y are the centres of the circles BGC, CGA, AGB, and A, A' are

the areas of the triangles ABC, a(3y, prove that 48AA'= (a
2+b2+ c2

)
2

.

(3) If Rj, R2 ,
R3 be the radii of the circles BGC, CGA, AGB, prove that

a2
(b

2 -c2
) b2

(c
2-a2

)
c2 (a

2-b2
)+

IV R2
2 R.3

2

(4) If the angles BAD, CBE, ACF are a, ft y, and the angles CAD, ABE,
BCF are a, ft, y, prove that

cot a + cot /3 + cot y— cot a + cot ft + cot y.

The bisectors of the angles.

156. Let a and e^ be the points in which the internal and

external bisectors of the angle A meet the opposite side BO. Let

/, g, h be the lengths of the internal bisectors A a, B/3, Cy, and

/', g',
h' the lengths of the external bisectors Aal} Bftlt Cy^ To

find the positions of a and a1} we have BaJCa = BA/GA =Baz/Ca1 ,

whence

Ba =
ac

b + c'
Ca =

ab

b + c'
Ba,=

ac

c-b' Ca,
ab

c-b'

To find the lengths /, /', we have

&ABa + AACa = S = AA«
1B-AAa 1 C,

hence f(b + c) sin %A =f'(c - b) cos %A = 2S,
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therefore / and /' are given by

197

f=j——cos^A, f = rSinJ-4 (13).
b + c

- J c-b ' v

Examples.

(1) If a, j3, y are the angles that Aa, B/3, Cy make with the sides a, b, c,

shew that a, sin 2« + b sin 2/3+ c.«m2y = 0.

(2) If fu gj, h, are the lengths of the bisectors of the angles, produced to

meet the circum-circle, shew that

f- 1 cos iA + g~! cos h B + h" 1 cos iC = a- 1 + l>-' +C" 1
,

and fx cos |A+ gx
cos ^B + hj cos |C= a+ b+ c.

(3) Prove that a;3 cuts Cy in the ratio 2c : a + b.

The pedal triangle.

157. The triangle LMN formed by joining the feet of the

perpendiculars AL, BM, GN, from A, B, C, on the opposite sides,

is called the pedal triangle of A, B, G. Let P be the orthocentre

of the triangle ABG, then since PMA, PNA are right angles,

a circle whose diameter is PA circumscribes PMAN, hence MN
is equal to PA multiplied by the sine of the angle in the

segment MN, or MN=PA sin A; now if is the centre of the

circum-circle, and OD is perpendicular to BG, it is well known

that AP = 2UD, and we have shewn in Art. 151 that this is

equal to 2R cos A : hence MN = 2R sin A cos A = a cos A. Also
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the angles PLM, PLN are each the complement of A, or

MLN = 7r — 2A
;
the sides and angles of the pedal triangle are

therefore respectively

a cos A, b cos B, c cos G)

7T-2A, 7T-2B, ir-'ic]
( ''

It should be remarked that ABC is the pedal triangle of Ji/2/3 .

The pedal triangle of LMN is called the second pedal triangle of

ABC, and so on.

We have assumed that the triangle is acute-angled ;
if the angle A is

obtuse, it can be easily shewn that the angles of the pedal triangle are

2A — ir, 2B, 2C, and that the sides are —
acos^l, bcosB, ccosC.

Examples.

(1) Prove that the radius of the circle inscribed in the triangle LMN is

2R cos A cos B cos C.

(2) If a, /3, y are the diameters of the circles MPN, NPL, LPM, shew that

be ca ab

(3) Prove that if r', i\', r-/, r3
'

are the radii of the inscribed and escribed

circles of the pedal triangle, then ——~- = —L-,-
3

.

(4) If AL, BM, CN meet the circum-circle in L', M', X', shew that

AL' BM' CN'
_

AL + BM + CN

The distances between special points.

158. Let P be the orthocentre, the centre of the circum-

circle, / of the in-circle, /j of one of the escribed circles, G the

centroid, and U the centre of the nine-point circle of the triangle
ABC. According to Euler's well-known theorem, the three points

0, G, P lie on a straight line, and PG= 20G
;
the point U is also

on OP, at its middle point. Each of the angles IA0, IAP is equal

to^^C); also A0 = B, AP=2BcosA,
AI = r cosec

|-
^4 = 4i2 sin \B sin \ G, AI

t
= \R cos h B cos £ G.

We can now find expressions for the distances of the points

0, I, P, Iu U from one another.
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(1) To find 01 = 8. Wo have

S9 = A 0- + A I- - 2A . AI cos OAI,
hence

5- = R 2

(I + 16 sin2

££ sin2 \C - 8 sin £ J3 sin £(7cos £ B-U)

or 8* = .ft
2 (1-8 sin i4sini.fi sin £(7),

we thus obtain Euler's formula

82 = R 2 -2Rr .... (15).

(2) To find 01, = 8, . We have

8,
2 = P- (1 + 16 cos2

\B cos2

£(?- 8 cos J 5 cos \ Ocos £2^77)

or S,
2 = P 2

(1 + 8 sin £4 cos £P cos J C),

which gives S1
2= i2 a H-2i2r1 (16).

(3) To find OV.

From the triangle 0^1P we have

OP 2 = OJ 2 + 4P 2 - 204. 4P cos 0/1/'

or OP- = R 2

(1 + 4 cos2 4 - 4 cos 4 cos B -
C),

which gives 0Fa = i2 a(1-8 cos A cos5 cos C) (IV).
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(4) To find IF. We have

IP*- = 4R- cos2 A + 16R- sin2 %B sin2 \G
- 16P 2 cos A sin ££ sin ^Ccos £ (5 - C),

hence 7P 2 = 4E 2

{cos
2 A + (1

- cos 5) (1
- cos G)

- cos A sin B sin C
— cos A (1

- cos 5) (1
— cos (7)},

or IP- = 4<R 2

{(1
- cos A) (1

- cos B) (1
- cos C)

— cos A cos i? cos C) (18),

or IP- = 2r°--4<R- cos A cos B cos C.

(5) 7o./t»dIU. We have

7f7 2 = i/P 2 + i/0 2 -iOP 2
;

hence IU*= r* + hR"-Rr- \R" = {\R -rf;

hence IU^^R — r; in a similar manner it can be shewn that

I
1
U = i R + 1\ ;

now ^ R is the radius of the nine-point circle,

hence the expressions we have obtained for IV, I^U shew that

the inscribed and escribed circles touch the nine-point circle. We
have then a trigonometrical proof of Feuerbach's theorem, of

which a considerable number of geometrical proofs have been

given.

Examples.

(1) i/ tj, t2 ,
t3 are the lengths of the tangents from the centres of the

escribed circles to the circum- circle, prove that

111 _a + b + c

t?
+
t?

+
t?

~ ~~
abc~*

(2) Prove that the area of the triangle 10P is

- 2R2 sin |(B - C) sin \ (C
- A) sin £ (A - B).

(3) Prove that GP= \p R2
{2 sin2 \B sin2 £C -& 2 sin -

A}

and GI 2+ 4Rr= Hbc + ca + ab)-i(a'- + b2+ c2
).

(4) Proved QP*=^(a'-iy-e').
(4b)-

If a, ft, y be the distances of the centre of the nine-point circle from the

annul, i,- points, and g its distance from the orthocentre, shew that

a2 + £2 + y
2 + g

2= 3R2
.

C Prove that the nine-point circle does not cut the circum-circle zmless the

triangle is obtuse, and in that case they cut at an angle

cos' 1 (1+2 cos A cos B cos C).
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(7) Shav that, if the distance between the orthocentre and the centre of the

circum-circle is \&, the triangle is right-angled, or else tanBta/iC = 0.

(8) If Q is the centime of the nine-point circle, shew that

(Ql2 -Ql3)(Qii-Ql)=b--c2.

(9) If OIP is an equilateral triangle, shew that cos A + cos B+ cos C = f? .

(10) If the centre of the in-circle be equidistant from the centre of the

circum-circle and the orthocentre, prove that one angle of the triangle is 60°.

Expressions for the area, of a triangle.

159. A very large number of expressions for the area of a

triangle, in terms of various lines and angles connected with the

triangle, have been given. Large collections of such formulae

will be found in Mathesis, Vol. III. and in the Annals of

Mathematics, Vol. I. No. 6.

V\c give here a few of these expressions, heaving the verification of them

as an exercise for the student.

(1) Vn-i^^si (2) s/iRpxPzPz, (3) | V<r (<r
-

uii) (o—m2) (o—m3)

where 2<r=m x + m2+m3 .

s2 fcos%(B-C)+gcosh(C-A)+hcosh(A-B)
{)

Scoter'
(o)

2{f-
1 cos$A+g- 1 cos%B+A- 1

cos$C)
'

(6) r2 cot AA cot h B cot \ C, (7) r2 coU4 + 2#r sin A,

(8) rar8 tan iJ, (9) m^, (10) ^V^ivH^ '

yariows properties of triangles.

160. If Q be any point in the plane of the triangle ABC, we

have the identical relation AQBC + AQGA + AQAB = A ABC,
the areas of the triangles with vertex Q being taken with the

proper signs; for example, AQBC is negative when Q and A are

on opposite sides of BC. By taking Q in various positions, we

obtain various well-known relations between the angles of a

triangle.

(1) Let Q be at 0, the above relation becomes

sin 2.1 +sin 2B+ Bm 2C= 4 sin A sin //sin C,

<• the angles BOC, C0A, AOB are 24, 2B, 26' respectively.
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(2) Let Q be at /, we obtain the relation

sin \A sin \ (B + G) + sin hB sin \ (G+ A ) + sin |C sin £ (Jl + 5)

= 2 cos ^ J. cos ^ jB cos 1 0.

(3) Let Q be at U, Ave get

sin A cos(B-C) -\- sin B cos (C— A) + sin C cos (A — B)
= 4 sin .4 sin B sin C

161. The identical relation which holds between the six

distances of any four points A, B, G, Q, in a plane, may be

expressed in various forms.

(1) Using the equation A QBG + A QGA + A QAB = A ABC,
and expressing each of the four triangles in terms of its sides, we
have the required relation in a form involving four radicals.

(2) To obtain the same relation in a rationalised form, denote

the angles BQG, GQA, AQB by a, ft, <y respectively; then since

a + ft + <y
= 2tt, we have

1 — cos2 a — cos2

ft
- cos2

7 + 2 cos o cos ft cos 7 = 0.

Now substituting for cos a its value (QB
2 + QC* - BC2

)j2QB . QG
with the corresponding expressions for cos ft, cos 7, we have the

required relation.

162. Taking any general relation between the sides and

angles of a triangle, another relation may be deduced, by re-

placing the sides and angles by the corresponding sides and

angles of the pedal triangle. The sides and angles of this

triangle are given in (14), and we may therefore replace a, b, c,

in the given relation, by a cos A, bcosB, ccosC, and the angles

A, B, C by 7T-2A, tt-2B, tt-2G.

As an example of this transformation, we obtain from the

known relation a2 = b2 + c
2 — 26c cos A, the new relation

a2 cos2 A = b2 cos2 B + c
2 cos2 C + 2bc cos B cos G cos 2A .

This method of transformation may be extended, by taking
the nth pedal triangle, of which the sides are

(- 1)"
_1 a cos A cos 2A cos 4A . . . cos 2n_1 A,

(- 1)"-
1 6 cos B cos 2B cos 4>B ... cos 2"-1

B,

(- I)'
1
"

1 c cos C cos 2G. . . cos 2'
1" 1

C,
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and the angles are

$(2»+ 1)tt-2M, i(2
n +l)7r-2

n
B, $(2» + l)w-2»0,

when n is odd, and

-i('2
n -l)7r + 2"A, -i(2'

l

-l)77 + 2»i>
>

, -4(2"-l)7r + 2»C,

when n is even.

Thus, in any relation between the sides and angles of a triangle,

we are entitled to write (- 1 )
n_1 o cos A cos 2A ... cos 2n

~
lA for a,

and ^(2
n
+l)7r-2"^l or 2nA -£(2

M -
1)tt for A, according as n

is odd or even, with corresponding expressions for the other sides

and angles.

163. In any general relation between the sines and cosines of the angles

of a triangle, we may substitute pA + qB+ rC, qA +rB+pC, rA+pB + qC for

A, B, C respectively, where p, q, r are any numbers such that p+q+r is of

one of the forms 6»- 1, 6n+ 2, where n is a positive integer, provided that

when p+q+r is of the form 6m— 1, the signs of all the sines are changed, and

when p+q + r is of the form 6?t+ 2, the signs of all the cosines are changed.

This theorem follows from the facts that in the first case the sum of the

angles 2?m -(pA + qB+ rC), 2nir -(qA+rB+pC), 2nrr-(rA+pB+qC) is n,

and in the latter case the sum of the three angles

(2»+l) n -(pA+qB+rC), (2n + l) tt -(qA + rB+pC),

(2n + l)7r-(rA+pB + qC), is jr.

Properties of quadrilaterals.

164. Let ABCD be a convex quadrilateral ;
denote the sides

AB, BG, CD, DA by a, b, c, d respectively, and the diagonals AC,
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BB hy x, y respectively; also let A + G = 2a, and let
<j>

be the

angle between the diagonals.

We shall find an expression for the area S of the quadrilateral

in terms of a, b, c, d, and a. We have

y"-
= a"- + d? - 2ad cos A = b2 + c- - 2k cos G,

therefore ad cos A — be cos C=^(a2 + d2 — b2 — c
:

),

also ad sin A + be sin C = 2S
;

square and add the corresponding sides of these equations, we get

a2d2 + b2
c
2 - 2abed cos 2a = 4£ 2 + 1

(a
2 + d2 -b2 - c

2

)
2
,

hence 1 6S 2 = 4 (ad + be)
2 -

(a
2 + d2 -b2 - c

2
)
2 - 16abcd cos2

a,

or US 2 =
{(a + d)

2 -
(b
-

c)
2

} {(b + c)
2 -

(a
- d)

2

}

- Wabcd cos2 a
;

hence S 2 = (s— a) (s
—

b)(s
—

c) (s -d) — abed cos2 a (19),

where 2s = a + b + c + d.

In the case of a quadrilateral inscribable in a circle we have

2a = 7r, thus

S 2 = (s-a)(s-b)(s-c){s-d) (20).

The expression (19) shews that the quadrilateral of which the sides are

given has its area greatest when a= hn, that is, when the quadrilateral can

be inscribed in a circle.

The theorem (20) was discovered by Brahmegupta, a Hindoo Mathema-
tician of the sixth century.

165. Expressions for the area of a quadrilateral can be found,

which involve the lengths of the diagonals and the angle between

them.

The area of the quadrilateral is the sum of the areas of the

four triangles into which the diagonals divide it; the area of each

of these triangles is half the product of the two segments of the

diagonals which are sides of it, multiplied by sin
<p ;

hence by
addition we have

aS' = \xy sin
<f> (2 1

).

Also

2(L4 OB cos
cf>
= OA 2 + OB 2 - a2

,
20G . OB cos

cf>
= OC 2 +OB 2 - c\

20A . OB cos = d2 - OA 2 - OB 2
,
20B . 00 cos

cf>
= b2 -OB 2 - OC2

,

hence 2xy cos $ = b2 + d2 - a 2 - c2 (22),

therefore 6' = | (6
s + d2 - a2 - e

2

)
tan c£ (23),
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and eliminating <f>,
we obtain Bretschneider's formula

S=l [4*?tf
-

(6
2 + d- -a-- c-y-}? (24),

which expresses the area in terms of the diagonals and the sides.

If a circle can be inscribed in the quadrilateral, we have a+ c= b + d,

hence the formulae (23), (24) become S= | (ac
-
bd) tan

<p, and

166. An expression may be found for the product of the

diagonals of a quadrilateral, in terms of the sides and the cosine

of the sum of two opposite angles.

Through B and G draw straight lines meeting in E, so that

the angles CBE, BCE may be equal to the angles ABB, ABB,

respectively. The triangles ECB, ABB are similar, hence

AD _BD AB
CE~ GB

~
BE'

thus AB.GB = BD.CE. Also since the angles CBD, ABE are

equal, and AB : BE :: BD : BG, the triangles ABE and CBD are

similar, therefore AB.GD = BB.AE.

Since AC2 = A E* + EG 2 -2AE. EG cos (A + C),

multiplying by BD", we have

xhf = a?c% + b*d9 - "labcd cos 2a (25).
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If 2a = 7r, we have Ptolemy's theorem xy = ac + bd, for a quadri-

lateral inscribed in a circle.

If 2a = ^7r, we have x-y-
= a?c2 + b-d'2

,
for a quadrilateral in

which the sum of two opposite angles is a right angle.

167. In the case of a quadrilateral inscribed in a circle, the

lengths of the diagonals x, y, and of the third diagonal, formed by

joining the point of intersections of the sides a and c to that of

b and d, may be found in terms of the sides.

Let FG be the third diagonal, and denote the lengths of

AC, BD, FG by x, y, z respectively. We have

a* = a- + b2 - 2ab cos B

and x- = c
2 + d3 — 2cd cos D,

1 1\ a- + b* c- + d2

hence
Kab cd

+
ab cd

*

hence x2 = (ac + bd)(ad + bc)/(ab + cd) (20),

and similarly it may be shewn that

y-
= (ac + bd) (ab + cd)j(ad + be).

We have also

FA -AD -Sin7) dx

sin (A + D) y cos D + x cos A '
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byand similarly FB

hence

y cos D + x cos A '

FA FB FB-FA a

dx by by
— dx by

— dx '

hence FA.FB =fMJ -,

(by
- dxf

it may be shewn in a similar manner that

GC.GB = 7
h2aCx

y,.
(ay

-
ex)*

Now the square on FG is equal to the sum of the squares of the

tangents from F and G to ihe circle (see McDowell's Geometry,

p. 92), hence Ave have

a-bd b2ac
z> = xy

{(by
—

dx)
2

(ay
—

ex)-}

Now from the values found above, for x2 and y-, we have

x y by — dx ay
— ex

ad + bc~ ab + cd~ a (6-
-

d")

~~

b (a
2 - c

2

)

'

therefore substituting in the expression for z2
,
we obtain

* - «* +k>« + c<*> fe^w +<^y (2?)-

.

Examples.

(1) If the quadrilateral is inscribed in a circle, shew that the radius of the

circle is
1 f(ab+cd) (ac+ bd) (ad + bc)]

i

4 |(s-a)(s-b)(s-c)(s-d)j
'

1 Sheio that the distance between the centre of a circle, of radius r, and
the intersection of the diagonals of an inscribed quadrilateral is

(ab+odKad+bc)
«M+bd>f("-«*" &-*»#•

(3) Shev) that the diagonals of a quadrilateral inscribed in a circle meet at

. _.(a2+ c2)~(b2+ d2
) _. _, f(s-b)(s-d ))* .

#
.

,
..

an angle cos *
rr-r
—Vjx—- or 2tan l

{) r-7 'J- , and that the* 2 (ac + bd) l(s-a)(s-c)J

, , j- ,- , • abed (ac+ bd)
product oj the segments of a diagonal is . . , , , . .

(4) If S is the area of a quadrilateral inscribed in a circle, shew that the

straight lines joining the middle points of the opposite sides meet at an angle

,
(

IS (ad + bc)(ab + ud) )

\(b
2 ~d2

)(a
2
~c*)' ac + bd J*
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(5) If E, F, G are the intersections of pairs of the diagonals of a quadri-

lateral inscribed in a circle, sheic that the area of the triangle EFG is to that of

the quadrilateral in the ratio a2 b2 c2 d2
: (a

2 b2 ~ c2 d 2
) (a

2 d2 ~ b2 c2
).

(6) Prove that the area of a quadrilateral in which a circle can be

inscribed is Vabcd sin |(A + C) ;
shew also that *J&d sin \A= v be sin h C.

(7) With four given straight lines, three distinct quadrilaterals can be

constructed, each of which is inscribable in a circle; their areas are equal; the

six diagonals \ohich intersect within the circle are equal in pairs; and if a, /3, y

be the lengths of these lines, S the common area, and R the radius of the circle,

sheiv that R= a/3-y/4S.

(8) The difference of the areas of the triangles whose bases are the sides

b, d of a quadrilateral, and ivhose vertices coincide with the intersection of the

diagonals, is | V4a
2 c2 -

(x
2+ y

2 - b2 - d2
)
2

.

(9) // a quadrilateral be such that all rectangles described about it are

similar, shew that a2+ c2= b2 + d2
.

(10) A quadrilateral is such that one circle can be described about it, and

another inscribed in it; shew that the radius of the latter is ; , .J a+b+c+d

(11) If the diagonals of a quadrilateral intersect in 0, shew that

area AOB . area ABCD = area ABC . area ABD.

Properties of regular polygons.

168. Let be the centre of the circles circumscribed about

and inscribed in a regular polygon of n sides. Let R, r be the

radii of the former and the latter circles, and let a be the length

of a side of the polygon.
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If AB be a side of the polygon, and D its point of contact

with the inscribed circle, the angle AOB is 2tt/ii, and the angle

AOD is ir/n ;
we have

a = 2i?sin- = 2rtan -
(28),n n

thus the radii of the circles are determined, when the side a is

given. The area of the triangle OAB is

1 75, • 2tt 1 nL TT
~ R- sin —

, or -
ar, or ?-tan— ,

2 n 2 n

hence the area of the polygon is

1 'I

-^nR
2 sin-- or nr8 tan- f20).2 n n

It should be observed that the problem of inscribing or circum-

scribing a regular polygon of n sides in, or about a circle, is

reduced to the determination of the circular functions of the

angle irfn.

169. Examples.

(1) Circles are described on the sides a, b, c of a triangle as diameters, prove
that the diameter D of a circle which touches the three externally is such that

If D, E, F are the middle points of the sides of the given triangle, and

La the centre of circle whose diameter is D, we have

. 0D=h(D-a\ OE=\(D-b), OF=\{D-c):

also \a, hb, \c are the sides of the triangle BEF, thus expressing the areas of

the triangles in the relation A OEF+ A OFD+ A ODE= A DEF, in terms of

the sides, we obtain the required relation.

(2) From a point P, perpendiculars PL, PM, PN are drawn to the sides

of a triangle ABC; shexo that the area of the triangle LMN is

\ (R
2 — d2

)
sin A sin B sin C,

where d is the distance of V from the centre of the circum-ci/cle.

Produce OP to meet the circum-circle in /'', and let /''/,', l''M\ I'W" be

drawn perpendicular to the sides, their feet lie on a .straight line called the

pedal line of P' with respect to the triangle. The perpendicular from a point
on the side of a triangle is reckoned as positive or negative according as the

point is on the earne Bide or the opposite side of that side as the opposite

angle of the triangle.

II. t. 14
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m . PL -OB OP d . Dr , D , .
,

d
We have p ,L _ 0D

=
0P'

=
R'

PL= {R-d) cos A +
-^P L\

with similar expressions for PM, PJY; now

2 A LMX= PM . PN sin J +PX . PL sin B + PL . Pi/sin C

=(R- d)
2 2 sin A cos i? cos C+^ 2 P'i/' . P'/F sin 4

y,'-

d
+^(A

>

-d)2P'Z'sinvi;

also \~2.P'M' . P'N' sin A is the area of the triangle L'M'X', which is zero, and

SP'Z'sin 4 = -V, 2a . P'Z'= i 2 A P'£C= \ A JPC,

and 2 sin A cos 73 cos C= sin A sin 73 sin C ;

hence 2 A LMX=(R - df sin .4 sin B sin C+ 2d (R - d) sin J sin B sin C

= (R1 - d2
)
sin ,4 sin B sin C |

(3) If A, B, C 6e any three fixed points, and P any pomtf <m a circle whose

centre is O, shew that AP2
. A BOC+ BP2

. A COA + CT2
. A AOB is constant

for all positions of P on the circle.

Denote the angles BOC, COA, AOB by a, (3, y, then a+ + y= 27r, and let

the angle POA be 8. We have AP 2= OP 2+ OA 2 -20A . OPcos6, and similar

expressions for Z?/32
,
CP 2

,
hence the expression above is equal to

OP 2
. A ABC+2 OA 2

. A BOC- 20PZ OA . A BOC. cos ;



PROPERTIES OF TRIANGLES AND QUADRILATERALS 211

the first two terms in this expression are independent of the position of P on

the circle, and the coefficient of 2OP in the last term is

hOA. OB. 0(7 {cos sin a + cos (0+ y) sin /3+ cos (3-0) sin y}

or iOA. OB. 00 cos (sin a -|- sin 3 cos y+ cos 3 sin y)

which is zero
;
thus the theorem is proved.

Particular cases of this theorem are the following;:

(a) PA 2 sin 2A+PB 2 sin 25+PC 2 sin 20 is constant if P lies on the

circum-circle ;

(b) PA 2 sm A +PB 2 sin B+ PC 2 shiC is constant if P lies on the

in -circle.

(c) PA 2 sin A cos (B-C) + PB 2 sin B cos (C-A) + PC 2 sin 0cos (A - B)
is constant if P lies on the nine-point circle.

(4) Shew that the length of the side of the least equilateral triangle that

can be drawn with its angular points on the sides of a given triangle ABC is

2A v/2

Va2 +bs+ cs+ 4 V3a'
where A is the area of ABC.

Let DEF be such an equilateral triangle, and let the circle round DEF
cut BC and A C in H and G respectively ;

the angles FGA, FHB are each 60°

thus FG, FH ave in fixed directions; also the angle HFG is 120° — C.

We have, if A F be denoted by x,

FG = xsin 4/sin60°, FH= {c-x) sin 5/sin 60°,
hence

HO - = cosec2 60° {x
2 sin2 A+(c- x)

n
- sin2 B - 2x (c

-
x) sin A sin B cos (120°

-
C)}.

Now the radius of the circle is ETG/2 sin (120°
—

C), hence the circle is least

when HO is least. The least value of a quadratic expression X.'--r2^.v-(-i',

14—2
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in which X is positive, is v-
y-,

for \x2+ 2px+ v may be written in the form

H)2+- ^- . We find therefore for the least value of HG sin 60°,X

r
. _ (c sin

2 ff+ c si n J sin D cos 1 20° - Cf )
i

[

c Sin
sin2A + sin2B+ 2 sin A sinB cos (120° -C)J

'

which is equal to

c sin J sin B sin (1 20°
- C)

L >

or

{sin
2 A +sin2B+ 2 sin .4 sin B cos (120°

-
<7)}2

V2 c2 sin J sin £ sin (120°- C)

sin CVa2+ 62+ c2+ 4 V3A

Now the side of the equilateral triangle is ZTCsin 60°/sin(120°- C), thus

the least value of the side is
N ——

.

Va2+ 62+ c2+ 4\/3A

(5) Describe three circles mutually in contact, each of which touches two

sides of a given triangle.

Let px, p2 , p3 be the radii of the circles, then MN=2 \/p2/>3>

hence a=BM+CN+MN=p2 cot |B+ p3 cot \ C+ 2 vWJJ,

with similar equations for b and c.

Let x2=
px cot \A, y

2= p 2 cot\B, s2= p3 cot|C,

Vtani-fitan|C= -cosa, Vtan ^ Ctan £ .4 = -cos/3, \ft&n\A tan \B= —cosy ;

we find sin2 a= l - tan^Z?tau£C=a/s, and similarly sin2
/3
=

6/s, sin2
y= c/s,

hence we have the equations

y
2+ 22 - 2^2 cos a _ 22+x1 - 2ix- cos & _x2+ y

2 - 2xy cos y_
sin2 a sin 2

/3 sin2
y

'
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these have been considered in Art. 68, Ex. (12) ; adopting the first solution

there found, we have

X= */s COS (or
—

a), y=\Js COS ((T-/3), z=\/s cos (<r
—

y),

where 2o-= a + /3+ y,

hence

p!
= stani^ cos2

(<r
—

a), p2
= stan iZ?cos2 (o--/3), /33

= staniC
v
cos2 ((r-y)

are the required radii of the circles. The other solutions give the radii of

three sets of circles which are such that two in each set touch two sides

of the triangle produced ;
of one such set, the radii are

s tan ^A cos2
s, s tan h B cos2

(s
-

y), stan|Ccos
2
(s
—

/3).

There are altogether eight sets of circles which satisfy the conditions of

the problem.

This solution is founded on that of Lechmiitz given in the Nouvelles

Annates, Vol. v. A geometrical solution of this problem, which is known as

" Malfatti's Problem," will be found in Casey's Sequel to Euclid. A history of

the problem will be found in the Bulletin de I'Acade'mie Royale de Belgique

for 1874, by M. Simons.

EXAMPLES ON CHAPTER XII.

1. If 6 be the angle between the diagonals of a parallelogram whose sides

a, b are inclined at an angle a to each other, shew that tan =—
5
—

j^—.° a2 — b2

2. If a, ,3, y be the distances, from the angular points of a triangle, to

the points of contact of the inscribed circle with the sides, shew that

Ka + fS+ y

3. The area of a regular inscribed polygon is to that of the circumscribed

polygon, of the same number of sides, as 3 : 4
;
find the number of sides.

4. From each angle of a parallelogram a line is drawn making the same

angle, towards the same parts, with an adjacent side, taken always in the

same order
;
shew that these lines will form another parallelogram similar to

the original one, if a2 ~ b- = 2ab cos B, where a, b are the sides, and B is an

angle of the parallelogram.

5. The straight lines which bisect the angles A, C of a triangle meet the

circumference of the circum-circle in the points «, y ;
shew that the straight

line ay is divided by CB, HA into three parts which arc in the ratio

sin2 $J : 2sin£ylsin£ZJsiniC: sinHC.
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6. If I be the centre of the in-circle of a triangle, la, lb, Ic perpendiculars

on the sides, p 1? p2 , ps the radii of circles inscribed in the quadrilaterals

Able, Bo la, Calb, prove that

Pi Pi , P3 _a+b + c

r~pi r — po r-p3 2r

7. Prove that the line joining the centres of the circum-circle and the

sin 5~sin C
iu-circle of a triangle makes with BC an angle cot -1

cosi>' + cos(7- 1

8. If, in a triangle, the feet of the perpendiculars from two angles, on the

opposite sides, be equally distant from the middle points of those sides, shew

that the other angle is 60°, or 120°, or else the triangle is isosceles.

9. If ABC be a triangle having a right-angle at C, and AE, BD drawn

perpendicularly to AB meet BC, AC produced in E, D respectively, prove
that ta,nCED= t&T)?BAC, and AECD= &ACB.

10. If a point be taken within an equilateral triangle, such that its

distances from the angular points are proportional to the sides a, b, c of

another triangle, shew that the angles between these distances will be

in + A, in + B, Jjr+a

11. The points of contact of each of the four circles touching the three

sides of a triangle are joined; prove that, if the area of the triangle thus

formed from the inscribed circle be subtracted from the sum of the areas of

those formed from the escribed circles, the remainder will be double of the

area of the original triangle.

12. If ABCD is a parallelogram and P is any point within it, prove that

A APC . cot APC- A BPD . cot BPD is independent of the position of P.

13. Three circles touching each other externally are all touched by a

fourth circle including them all. If a, b, c be the radii of the three internal

circles, and a, /3, y the distances of their centres from that of the external

circle respectively, prove that

\bc ca ah) a2 b2 c2

14. P, Q, R are points in the sides BC, CA, AB of a triangle, such that

-p~
=
Q .

=
j,-j-,

;
shew that AP 2+BQ2+ CR2 is least, when P, Q, R bisect the

sides.

15. On the sides a, b, c of a triangle are described segments of circles

external to the triangle, containing angles a, 0, y respectively, where

a+/3 + y = 7r, and a triangle is formed by joining the centres of these circles;

shew that the angles of this triangle are a, /3, y.
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16. Through the middle points of the sides of a triangle, straight linos

are drawn perpendicular to the bisectors of the opposite angles, and form
another triangle ; prove that its area is a quarter of the rectangle contained

by the perimeter of the former triangle and the radius of the circle described

about it.

17. P is a point in the plane of a triangle ABC, and L, At, N axe. the feet

of the perpendiculars from P on the sides
; prove that if MN+JYL +LM be

constant and equal to I, the least value of

PA*+PB*+PC* is iy(a\n*A + sin 2 .5 + sin* C).

18. Lines B'C, C'A', A'B' are drawn parallel to the sides BC, CA, AB
of a triangle, at distances r

x ,
r2 ,

r3 respectively; find the area of the triangle

A'B'C.

If eight triangles be so formed, the mean of their perimeters is equal to the

perimeter of the triangle ABC, but the mean of their areas exceeds its area by

(o»rl«+6»f^+^f^)/4A.

19. On the sides of a scalene triangle A/>C, as bases, similar isosceles

triangles are described, either all externally or all internally, and their vertices

are joined so as to form a new triangle A'B'C
; prove that if A'B'C be equi-

lateral, the angles at the base of the isosceles triangles are each 30°
;
and that

if the triangle A'B'C be similar to ABC, the angles are each

4A
tan -l

a2+ &2+ c2>

where A is the area of ABC.

20. A straight line cuts three concentric circles in A, B, C, and passes at

a distance p from their centre
;
shew that the area of the triangle formed by

, D /Y . BC.CA.AB
the tangents at A, b, C is .

21. If N is the centre of the nine-point circle of a triangle ABC, and

D, E, F are the middle points of the sides, prove that

BC cos NBC+ CA cos NEA + AB cos NFB= 0.

22. On the side BA of a triangle is measured BD equal to AC
;
BC &nd

AD are bisected in E and F ;
E and F are joined ;

shew that the radius of

the circle round BEF is £ BC cosec \ A .

23. If A', B', C be any points on the sides of the triangle ABC, prove

that AB' .BC . CA' + B'C. CA . A'B=4R . A A'B'C.

24. If x, y, z denote the distances of the centre of the in-circle of a

triangle from the angular points, shew that

a*x* + 6V +c*2*+ (a+6+ c)
2x2

y
2 z2= 2 (6VyV+cV^2+ cPbWy*).

25. D, E, Fare the points where the bisectors of the angles of the

triangle ABC meet the opposite sides; if x, y, z arc tho perpendiculars
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drawn from A, B, C, respectively, to the opposite sides of DEF, pu p2 , p3

those drawn from A, B, C, respectively, to the opposite sides of ABC, prove

that ft ! »j,2 M„2
ZL +P\+Pl-=Il+8sm$Asm$Bsm$aor y z-

26. Shew that the distances of the orthocentre of a triangle from the

angular points are the roots of the equation

x3 - 2 (R+ r) x
2 + (r

2 -4R2+s2)x-2R {s
2 -

(*-+2.ft)
2
}
= 0.

27. If each side of a triangle bears to the perimeter a ratio less than

2 : 5, a triangle can be formed, having its sides equal to the radii of the

escribed circles.

28. ABC is a triangle inscribed in a circle, and from D, the middle point

of BC, a line is drawn at right angles to BC, meeting the circumference in E
and F

; AE, AF are joined. If triangles be described in the same way by

bisecting AB, AC, shew that the areas of the three triangles thus formed are

as sin (B-C): sin (C-A): sin {A - B).

29. Three circles, whose radii are a, b, c, touch each other externally ;

prove that the radii of the two circles which can be drawn to touch the three

are abc

(bc + ca+ ab)±2 V'abc (a+ b + c)

30. ABC is a triangle; on its sides equilateral triangles A'BC, B'CA,
CAB are described without the triangle; prove that (1) AA\ BB', CC meet

in a point 0, (2) 0A'=--0B + 0C,

(3) AA'B'C'=^AABC+^{BC2+CA2 + AB 2
).

8

31. A', B' are the middle points of the sides a, b of a triangle ; D, E are

the feet of the perpendiculars from A, B on the opposite sides
; A'D, B'E are

bisected in P, Q ; prove that PQ= $ \/a2 + b2 - 2ab cos 3C.

32. The perpendiculars from the angular points of an acute-angled

triangle meet in P, and PA, PB, PC are taken for sides of a new triangle.

Find the condition that this is possible, and if it is, and a, ft, y are the angles
of the new triangle, prove that

cos a cos/3 cos 7 , . „ n
1 H 7 -{ f. -\ w—h sec A sec B sec C.

cos A cos B cos 6 -

33. Two points A, B are taken within a circle of radius r, whose centre

is C. Prove that the diameters of the circles which can be drawn through
A and B to touch the given circle are the roots of the equation

x2
(r

2 c2 - a2 b2 sin2
C) - 2xrc2

(r
2 - ab cos C) + c2 (r

4 - 2r2 ab cos C+ a2 b2
)
=

0,

where the symbols refer to the parts of the triangle ABC.



EXAMPLES. CHAPTER XII 217

34. If a triangle be cut out in paper, and doubled over so that the crease

passes through the centre of the circumscribed circle and one of the angles A
,

shew that the area of the doubled portion is

$b*- sin* C gos Ccosec (2C-B) sec (C-B), where C>B.

35. From the feet of the perpendiculars from the angular points A, B, C
of a triangle, on the opposite sides, perpendiculars are drawn to the adjacent

sides
;
shew that the feet of these six perpendiculars lie on a circle whose

radius is R^ ^^ ^^ c+s{n2 A sin2 B s[n2 gfi

36. Prove that if P be a point from which tangents to the three escribed

circles of the triangle ABC are equal, the distance of P from the side BC
will be

\ (6 + c) sec \ A sin \B sin \ C.

37. If x, y, z be the sides of the squares inscribed in the triangle ABC,

on the sides BC, CA, AB, shew that -+-+-=- + _ + _ + _.
x y z a o c r

38. A A', BB', CC are the perpendiculars from A, B, C on the opposite

sides of the triangle ABC ; U 2 , 3 are the orthocentres of the triangles

ABC, BC'A', CA'B'. Prove (1) that the triangles Ox 2 3 ,
A'B'C are

equal, and (2) that 2? ,

i/2 1

2= i?a ^(,^ <; ,
where Ra ,

Bb ,
Rc are the radii of the

circles 2 A'03 , 3 B'Oi, OiC02 ,
and r

x
is the radius of the circle inscribed in

A'B'C, and b\ of the circle about A'B'C.

39. If x, y, z are the distances of the centres of the escribed circles of a

triangle, from the centre of the in-circle, and d is the diameter of the circum-

circle, shew that

xyz+ d(x*+if + z'
i

)
= 4d3

.

40. The lines joining the centre of the in-circle of a triangle, to the

angular points, meet that circle in A
x ,
Blt C1 ; prove that the area of the

triangle A
l
B

l
C

l
is £r

2
(cos ^4+ cos I B + cos iC).

41. If each side of a triangle be increased by the same small quantity x,

shew that the area is increased by Rx (cos A + cos B+ cos C), nearly.

42. AA', BB', CC are diameters of a circle, D, E, F are the feet of the

perpendiculars from A', B', C on BC, CA, AB respectively; prove that AD,

BE, CF meet in a point, and that the areas ABC, DEF are in the ratio

1 : 2 cos A cos B cos C.

43. If ID, IE, IF arc drawn from the in-centre / of a triangle, perpen-
dicular to the sides, find the radii of the circles inscribed in IEAF, IFBD,
IDCE; if they are denoted by p { , p2 , i>s respectively, shew that

r-2,H ) (r-2p2 ) (r- 2p-s)
= ri -4p 1/ )../. 3 .
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44. Shew that the radii of the circle which touches externally each of

three given circles, of radii a, b, c which touch each other externally, is

given by

\Ulbc(b + c + Ii) + sjRca{c + a-\-R) + \fRab(a + b + R) = \J abc (a + b + c).

45. Perpendiculars AA X ,
BB

l ,
CC

X
to the plane of a triangle ABC are

erected at its angular points, and their respective lengths are a, b, c
;
shew

that if A and A
x
be the areas of ABC and A

l
B

1 C\, then

A 2 -tf= i{a?{x-y){x-z) + V(y-z){y-x) + c2 (z- X)(z-y)}
= t («i

2
(
x -

y) (*
- z

) + &i
2
(y
- z)(y-x)+^ («

-
*0 (*

-
#)}•

4G. Three circles are described, each touching two sides of a triangle, and

also the inscribed circle. Shew that the area of the triangle having their

centres for angular points bears to the area of the given triangle the ratio

4 sin \A sin \B sin \C (sin \A-\- sin ^.fi-f sin^C)
: cos^.4 cos Tf.fi cos \C{cq§\A + cos^B+cos^C).

47. If the lines bisecting the angles of a triangle meet the opposite sides

in D, E, F, prove that the area of the triangle DEF is

2r2 cos \A cos \B cos iC/cos \{B-C) cos \ (C- A) cos \ {A
-
B),

and that

(a + by(a + cyEF2 + (b + c)Hb + a)*F£>* + (c+ aY(c + byi)E 2=16AZR(UR + 2r),

where A is the area of ABC.

48. is the centre of the circum-circle of a triangle, K is the ortho-

centre, and OK meets the circle in P and /", and the pedal lines of P and P'

in Q and Q ; prove that OQ . OQ'= 2R 2 cos A cos B cos C.

49. N is the centre of the nine-point circle of a triangle ; D, E are the

middle points of CB and CA ; prove that the area of the quadrilateral iVBCE
is ^p

2
(s'm2A -t-sin2fi+ 2sin2C), where p is the radius of the nine-point circle.

50. A triangle is formed by joining the centres of the escribed circles, a

third from this, and so on ; shew that the sides of the ?ith triangle are

A 7T-A 3ir +A (2«-2_i) 7r + (_i)n-2^acosec — cosec
2

cosec — -

3
— cosec i

o»-i »

and similar expressions.

51. If JV is the centre of the nine-point circle of ABC, and AN meets BC
in 7), shew that

DN :DA:: cos (B - C) : 4 sin B sin C,

and that the area of BNC is J It
2 sin A cos (B- C).

52. Shew that the radius of the circle which touches the three circles

DCE, EA F, FBD, where Z), E, F are the feet of the perpendiculars from

A, B, C on the opposite sides, is

2R sin A sin B sin CcosA cos B cos C(sin A -I- sin fi+sin C)
am 1A sin2 i? sin2 C- 2 sin 2 A cos2 .4 + 2 cos A cos ^ cos C2 sin fi sin C"
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53. If from any point 0, perpendiculars OD, OE, OF are drawn to the

sides BC, CA, AB of a triangle, prove that cotADC+cot BEA -;-cot CFB=0.

54. If b, c, B are given, and there are two triangles with these given

parts, shew that their inscribed circles touch, if

c2 (cos
2 B+ 2 cos B -

3) + 26c (1
- cos B) + 62= 0.

55. If t
x ,

t
2 ,

t3 be the lengths of the tangents drawn from the centres of

the escribed circles of a triangle to the nine-point circle, shew that

h2
t>

2
t3

2 _„ , U*-tf tf-tf U2 -U 2— +— +—=r+7R, and l- 2- + - + —--L=2r+11R.
ri r2 rz r

x
-r2 r2 -r3 r3 -rx

56. Prove that the sum of the squares of the distances of the centre of

the nine-point circle of a triangle, from the angular points, is

R -
(Y-+ 2 cos A cos B cos C).

57. Four similar triangles are described about a given circle, and their

areas are A, Aj, A2 ,
A3 ,

shew that

(a) an angle of the triangles is 2cot~ 2
(

—
-) ,

(b) A^ - A^ + A 2
5 + A3*,

(c) the radius of the circle is (AAiA 2 A 3)
v

.

58. Through the angles A, B, C of a triangle, straight lines are drawn

making angles 8, (p, \js
with the opposite sides of the triangle, in the same

sense. Prove that the diameter of the circle circumscribing the triangle

formed by these lines is

„ sin (2A + <p -*},) cos d + sin (2B+ >//
-

6) cos cp 4- sin (2(7+ 6 - cp) cos ^
sin (A + <p

-
f) sin (B+f-0) sin (0+6- cp)

59. The sides of a triangle subtend angles a, /3, y at a point ; prove that

(1) cosJa+ cos|/3 + cosiy= 4cos| 03+y)cos|(y+ a)cos|(a-|-/3),

(2)
OA=

,
.

bcsm(a-A)

V be sin o sin (a
— A )+ ca sin ft sin (fi

— B) + ab sin y sin (y
— C)

60. If di, d2 ,
d3 be the distances of any point in the plane of an equi-

lateral triangle whose side is a, from the angular points, prove that

d2
2d3

2+d3
2
d,

2 + dx

2 d.? + a2
(d^ 4- tf2

2+ rf3
2
)
= a4+ df+ d-/+d3\

Hence shew that the sum of two equilateral triangles, each of which has

its vertices at three given distances from a fixed point, is equal to the sum of

the equilateral triangles described on the distances.

61. If P be any point within a triangle ABC, and if 2 , 3 are the

circum-centres of the triangles BPC, CPA, APB respectively, then if p be

the circum-radius of 0\02 3 ,
shew that

4p sin 8 sin
(]>

sin \^
=xsm 6+y sin

(/> + csin
\|/-,

where x, y, z are the lengths PA, PB, PC, and 6, cp, ^ are the angles BPC,
CPA, APB.
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62. If a, b, c be the radii of three circles touching each other externally,

and >\, r
2 be the radii of the two circles that can be drawn to touch these112 2 2

three, shew that —I

— = - + t + -
.

7\ r2 a o c

63. If the bisectors of the angles B, C, of a triangle, meet the opposite

sides in E, F, prove that EF makes with BC an angle

tan _j (b—c) sin A

(a + b) cos 0+ (a+ c) cos B '

64. If / be the centre of the circle inscribed in A BC, I
x
that of the circle

inscribed in IBC, I2 that of the circle inscribed in I
x BC, and so on

;
shew

that as n indefinitely increases, InIn _ l
divides BC in the ratio of the

measures of the angles C and B.

65. Points D, E, F are taken on the sides BC, CA, AB of a triangle, and

through D, E, F are drawn straight lines B'C, C'A', A'B', equally inclined to

BC, CA, AB respectively, so as to form a triangle A'B'C similar to ABC.

Prove that the radius of the circumscribed circle of A'B'C is

{EF cos a +FD cos /3 +BE cos y)/4 sin A sin B sin C,

where a, /3, y are the inclinations of A A', BB', CC to BC, CA, AB re-

spectively.

66. If P be a point on the circum-circle whose pedal line passes through
the centroid, and if the line joining P to the orthocentre cuts the pedal line

at right angles, prove that

P^ 2+P JC 2 + PC 2= 4fl 2 (l-2cos^cos JBcosC).

67. D is a point in the side BC of a triangle ;
if the circles inscribed in

the triangles ABD, A CD touch AD in the same point, prove that D is the

point of contact of the in-circle of ABC with BC ; but if the radii of the

circles be equal, then

CD : BD : : cosec D + cosec C : cosec D+ cosec B.

68. From a point within a circle of radius r, three radii vectores of

lengths r
x , r», r3 are drawn to the circle, and the angle contained by any

pair is 2irjS ;
shew that

3r2
(r2 r3 + r3 rx + r, r2f= (r2

2+ r, r3+ r3
2
) (r3

2 + r3 rx + r?) (r,
2+ r, r2 + r2

2
),

and that the distance of the point from which the radii are drawn, from the

centre of the circle, is d, where

(r
2 - d2

) (r2 r3 + r3 rt + r
x
r2) = rx r2 r3 (^ + r2+ r3).

69. Circles are inscribed in the triangles D l
El Fl ,

D2 E2F2 ,
D3 E3F3 ,

where D
{ , E,, Ft are the points of contact of the circle escribed to the side

BC; shew that if p 1? p 2 , p3 be the radii of these circles

—
:
—

:
- = 1 - tan xA:\- tan I B : 1 - tan 1 C.

p\ pi /•>:;
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70. In a triangle ABC, A', B', C are the centres of the circles described

each touching two sides and the inscribed circle
; shew that the area of the

triangle A'B'C is

tan J (»r
- A) tan £ (n

- B) tan | (n
- C)

{cosec £ {it
- A ) cosec J (n - B) cosec \ (n

- C) + 4} r2.

71. The three tangents to the in-circle of a triangle which are parallel to

the sides are drawn
;
shew that the radii of the circles inscribed in the three

triangles so cut off from the corners are given by the equation

s^v3 - rs2x2 -
J r2 {a

2 + b2 + c2 - 26c - 2ca - 2ab) x- r6= 0.

72. The perpendiculars from the angular points of a triangle on the

straight line joining the orthocentre and the centre of the in-circle are p, q, r;

prove that
psinA q sin B rsinC

sec B — sec C sec C— sec A sec A - sec B'

a convention being made as to the signs of p, q, r.

73. A point is taken within an equilateral triangle, and its distances

from the angular points are a, (3, y. The internal bisectors of the angles

between (/3, y), (y, a), (a, £) meet the corresponding sides of the triangle in

P, Q, R respectively ;
shew that the area of PQR is to that of the equilateral

triangle in the ratio

2a/3y:(/3+ y)(y + a)(a+/3).
»&*

74. If I, m, u are the distances of any point in the plane of a triangle

ABC, from its angular points, and d the distance from the circum-centre,

prove that

I
2 sin 2A +m2 sin 2B + n2 sin 2(7=4 (R

2+d2
) sin A sin B sin C.

75. If G is the centroid of a triangle, shew that

cot GAB + cot GBC+cot GCA =3 cot <u= cot ABG + cot BCG+ cot CAG,

and cot AGB + cot BGC+ cot CGA + cot a= 0,

where cot w= cot ^4+cot jB+ cot C.

Also if K be the symmedian point, that is a point in the triangle, such

that the angles KAC, GAB are equal, and two similar relations, then

cot AKB+ cot BKC+ cot CKA + \ cot &> + f tan co= 0.

76. Each of three circles, within the area of a triangle, touches the other

two, touching also two sides of the triangle ;
if a be the distance between the

points of contact of one of the sides, and /3, y be like distances on the other

two sides, prove that the area of the triangle of which the centres of the

circles are angular points is £ (fi
2
y
2+ y

2 a2+ or ji- )
'.

77. If a, b, c, d be the perpendiculars from the angles of a quadrilateral

upon the diagonals d
x ,

d2 ,
shew that the sine of the angle between the

,. , , + ((a + c)(b + d)\!s
diagonals is equal to -

-j-j
j-

•
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78. If A BCD be a quadrilateral, prove, in any manner, that the line

joining the intersection of the bisectors of the angles A and C with the

intersection of the angles B and D makes with AD an angle equal to

_,( sin A - sin D + sin (A +B) "1

|1 +cos A +cos i^+cos (A +B)j

79. ABCDE is a plane pentagon; having given that the areas of the

triangles EAB, ABC, BCD, CDE, DEA are equal to a, b, c, d, e respectively,

shew that the area A of the polygon may be found from the equation

A 2
-(a + b+ c+ d + e)A + (ab + bc+ cd+de + ea)=0.

80. Shew that if a quadrilateral whose sides, taken in order, are a, b, c, d
be such that a circle can be inscribed in it, the circle is the greatest when the

quadrilateral can be inscribed in a circle, and that then the square on the

abed
radius of the inscribed circle is

(o+c)(6 + rf)'

81. A polygon of 2n sides, n of which are equal to a, and n to b, is

inscribed in a circle; shew that the radius of the circle is

-
( a2+2ab cos — + b2 ) cosec — .

2 \ n J n

82. A quadrilateral whose sides are a, b, c, d can be inscribed in a circle ;

its external angles are bisected ; prove that the diagonals of the quadrilateral

formed by these bisecting lines are at right angles, and that the area of this

, ., ,
. . 1 s2 (ab+ cd)(ad+bc)

quadrilateral is .

2{a + c) (b + d) >J(s-a) {s-b) (s-c) (s-d)

where 2s= a + b+c + d.

83. A quadrilateral ABCD is inscribed in a circle, and EF is its third

diagonal, which is opposite to the vertex A
; prove that if the perpendiculars

from A on BC, CD meet the circles described on AD, AB respectively as

diameters, in P, then PQ sin D = EF (sin
2 A - sin2 D).

84. The power of two circles with regard to one another, is defined to be

the excess of the square of the distance between their centres, over the sum

of the squares of the radii. Prove that for a triangle ABC, the power of the

inscribed circle, and that escribed circle which is opposite A, is \ {a
2 + (b-c)'

2'

s ,

and hence verify that if the escribed circle touches an escribed circle, the

triangle must be isosceles.
'o'

85. The sides, taken in order, of a pentagon circumscribed to a circle

are a, b, c, d, e
; prove that its area is a root of the equation

a4 - x2 s {\ 2a
2
(b + e - c - d

)
-
£ 2a

3 + £ 2acd}

+ (s
- a — e) (s

- b - d) (s
- c — e) (s

- d -
a) ($

— c - b) s3= 0,

where 2s is the sum of the sides.
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86. If a, b, c, d be the distances of any point on the circumference of a

circle of radius r, from four consecutive angular points of an inscribed regular

polygon, find the relation between a, b, c, and d, and prove that

(lib - cd) (be
- ad) (ca

-
bd)

'(a + b-c-d) K
b + c-a-d)(c+a-b-d)(a + b + c+ d)'

87. The perimeter and area of a convex pentagon ABODE, inscribed in a

circle, are 2s and S, and the sum of the angles at E and B, at A and C,

are denoted by a, [3, ; shew that

s-(sin2a + + si n2e) + -2S (sin a+ + sin f )
2= 0.

88. ABC'D is a convex quadrilateral of which the sides touch one circle,

while the vertices lie on another; tangents are drawn to the circumscribed

circle at A, B, C, D so as to form another convex quadrilateral ; prove that

the area of the latter is

2 (so-
— 2abcd) (abed)

2
a-

(<t
-
bed) ((T—cda) (a-

—
dab) (cr

—
abc)'

where r is the radius of the circle A BCD, 2s= a+ b + c-\-d, and

2a= bed + cda + dab + aba.



CHAPTER XIII.

COMPLEX NUMBERS.

170. In works on Algebra, numbers of the form x + iy, called

complex numbers, are considered, and the application to them of

the ordinary laws of algebraical operations is justified. We shall,

in this Chapter, consider the mode in which such complex numbers

may be geometrically represented, and in which the results of

additions and multiplications of such numbers may be exhibited.

It will appear that circular functions present themselves naturally

in this connection, and indeed that such functions must be intro-

duced in order to give conciseness to the results of the multiplication

and division of complex numbers.

The geometrical representation of a complex number.

171. A positive or negative real number x is represented

geometrically by laying off on a fixed infinite straight line A'OA,

a length OM =
\

x
|

,
to scale, measured from any specified point

in one direction or the other, according as x is positive or negative ;

we may then consider that the number x is represented either by

the position of the point M, or by the straight line OM. In order

to represent a purely imaginary number iy, take a fixed straight

line B'OB, in any fixed plane containing A'OA, perpendicular to

the latter line, then measure from a length 0N=\y\, in the

direction OB or OB', according as y is positive or negative, then

we shall consider that the imaginary number iy is represented by

the point N, or also by the straight line ON. A circle of radius

unity cuts A'A and B'B in the points which represent the

numbers ±1, + i respectively. In order to represent the
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complex number x + iy, complete the rectangle OMPN, then we
shall consider that the point P, or also the straight line OP, re-

presents x + iy. We thus suppose that the result of the addition

of the two numbers x and iy is represented geometrically by the

diagonal of the parallelogram of which the two straight lines OM,

ON, which represent x and iy respectively, are sides. In the

figure, P1 represents a number x
} + iyY in which both x

t and yx

are positive, P2 a number x2 + iy, in which x2 is negative and y2 is

positive, and P3 a number xz + iya in which x3 is positive and y3 is

negative. A'OA is called the real axis, and B'OB the imaginary
axis.

172. Let r denote the absolute length of OP, and 6 the angle
which OP makes with OA. measured counter-clockwise from OA,
then

x = r cos 0, y = r si n 6, and z = x + iy
= r (cos 6 + i sin 8),

where r = \/x2 + y
2
,

6 = tan_^-J
x

The essentially positive number r = \/x2 + y- is called the mud a
fits,

and the angle 6 is called the argument of the complex number

H. T. 15
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x + iy. A straight line OP measured in any direction from in

the plane is thus capable in virtue of its two qualities of absolute

length, and of direction, of completely representing a complex
number. The number x + iy may also be represented by any

straight line in the plane, drawn parallel to OP, and of equal

length, since such a straight line represents both the modulus

and the argument of x + iy.

173. Suppose a point P to describe a circle with centre 0,

and any radius r, commencing from A' and moving in the counter-

clockwise direction, then the modulus of the complex number

represented by P remains constant and equal to r, whilst the

argument increases algebraically continually from — it. We may

suppose the point P to make any number of complete revolutions

in the circle, then at every passage through any fixed position Pl ,

the number x + iy has the same value, or an addition of a multiple
of 27r to the argument leaves x + iy unaltered. In other words, a

variable
cc + iy

= r (cos 6 + i sin 6),

considered as a function of its modulus r and its argument 0, is

periodic with respect to the argument.
For any number x + iy, that value of 6 which lies between

the values — tt and tr may be called the principal value of the

argument; and we shall in general, in speaking of the argument
of such a number, mean the principal value.

It should be observed that the principal value of the argument

6 is not necessarily the principal value of tan-1 -
,
as defined in

Art. 38
;

for a given number x + iy, both cos 6 and sin have

given values, therefore 6 has only one value between — it and tt

In this sense, the argument of a positive real number is 0, that of a

positive imaginary number is \n, and of a negative imaginary number — In.

The principal value of the argument of a negative real number is, as defined

above, ambiguous, being either ir or - n ;
we shall however consider it to be it.

The conjugate numbers x+ iy, x-iy have the same modulus, but their argu-

ments are 6 and -6. The modulus of x+iy is frequently denoted by
mod. (x+ iy), or also by \x+iy\.

174. It is of fundamental importance to observe that whilst a

real variable x can, whilst increasing continuously from xx to x,,

only pass through one set of values, this is not the case with a

complex variable x + iy. There are an infinite number of ways in
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which such a variable may change continuously from x
l + iyx to

x2 + iy.2 ,
even supposing that both x and y continually increase, for

the continuous increase of x from x
x
to x2 is entirely independent

of the increase of y from yx to y2 . This is essentially involved in

the fact that two distinct unities are implied in a complex number,
and is represented geometrically by the fact that two points Pl and

P2 in the diagram may be joined in an infinite number of ways,
the representative point moving along any arbitrary curve joining

Pj and P2 . If a real variable is to increase from #
x to x2 , always

remaining real, the representative point is restricted to remain

in the x axis
;

if the variable is not restricted to have its inter-

mediate values real, the representative point may describe any

arbitrary curve drawn joining the two points on the x axis.

We may express this point by saying that a purely real or a

purely imaginary number is essentially one-dimensional, whereas

a complex number is two-dimensional, and requires a two-dimen-

sional space for its geometrical representation.

The method of representing complex numbers geometrically was given

by Argand in a tract published in 1806, but an earlier attempt at their

representation had been made by Kiilni in 1750. The theory founded on

this method of representation was developed by Cauchy, Gauss, Kiemann,
and others, and forms the foundation of the modern theory of functions.

The addition of complex numbers.

175. Suppose two complex numbers oot + iy1} ms2 + iy2 are re-

presented by the points P, Q ; complete the parallelogram OPRQ,
then the projection of OR on either axis is the sum of the pro-

jections of OP, PR, or of OP, OQ, on that axis; hence the point

R represents the sum (a?, + x2) + i (>/i + y2) of the two given complex
numbers. We see therefore that the sum of two complex numbers

is obtained geometrically by adding the straight lines, which

represent those numbers, according to the parallelogram law. We
have supposed that equal and parallel straight lines of the same

Length, and in the same direction, represent the same number,

thus PR drawn from P parallel and equal to OQ represents

x2 + iy2 . We may therefore express the rule of addition thus:

draw from the straight line OP to represent #, + ///,, and then

from P draw Pit to represent, ./•._. -|- ///_., join OR, then (J li
t
or the

point R, represents the sum {•'a + x.,) + i(y L + y2 ).

L5—2
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176. The mode of extension of the rule for addition, to any
set of numbers, is now obvious.

Draw 0P
X
in the second figure on page 228 to represent xx + ///,,

then from P
L
draw P

XP2 to represent x, + iy2 ,
from P2 draw P2P:t

to represent x8+ iy3> and so on; then join 0Pn ;
the sum of the

n numbers x1 + iy1 ,
x2 + iy,, ... xn + iyn is represented by the

straight line 0Pn ,
or by the point Pn .

Since the length 0Pn cannot be greater than the sum of the lengths
0P

1 , PxPy, ... Pn -\P,n it follows that the modulus of the sum of a set of

complex nuriabers is less than, or equal to, the sum of their moduli.

177. In order to subtract x2 + iy2 from x
x + iyly a line PR

X

must be drawn from P to represent
—

(x, + iy2), this will be equal
to PR, and in the opposite direction

;
then the difference is repre-

sented by 0RX ,
or by the point i^ .

The multiplication of complex numbers.

178. The product of the two numbers

x
l + iy x ,

x2 + iy2 is {:>\x,
-

//,</,) + %
(tfj y2 + cc.,y,),

and if we replace the expressions by

?-! (cos 0, + i sin #i), r2 (cos 62 + i sin (I,),
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their product may be written rxr% {cos (0^ + 0.2) 4- ?' sin (#, + 2)} >

this expression shews that the modulus of a product is equal to the

product of the moduli, and the argument of the product is equal to

the sum of the arguments of the two numbers.

It should however be observed that if 6
X , 62 are the principal values of the

arguments of x
l + h/ 1 ,

xt -\-iy^ then 6
1 + 82

is not necessarily the principal

value of the argument of the product.

We can now obtain a geometrical construction for the product
of two numbers; let A, P, Q represent the three numbers +1,

#i + *2/i>
x2 + ^2 '; join AP, on OQ describe a triangle QOR similar

to A OP, and so that the angle QOR is equal to +01} then

ROA =
1 + 2 ,

and also OR: OQ:: OP :0A ;
hence the length ol

OR is equal to the product of the lengths of OP and OQ ;
it

follows that the point R represents the product (xx + iy x ) (a?2 + iy*)-

If we now introduce a third factor x3 + iy3
= r3 (cos S + i sin 63).

we have

Oi + tyi) (#2 + iyz) O3 + iys)

= r
x
r.2r3 {cos (0, + 2) + i sin (0 X 4-

0.,)} {cos S + i sin 3 ]

= rxr2rs {cos (0, + 2 + 3) + i sin (0 X + 0«+ 8)|,

and we obtain, in a similar manner, the product of four or more
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complex numbers. In the case of n such numbers, we obtain the

formula

{x\ + iy,) O, + iya) . . . (xn + iyn )

= r,r2 ... rn {cos (01 + 62 + . . . + n) + i sin (0, + 0, + . . . + n)} . . .(1).

Or the modulus of the product of any set of complex numbers is

the product of their moduli, and the argument of their product is

the sum of their arguments. The product may be obtained geo-

metrically by a repeated application of the construction we have

given for the product of two numbers.

Division of one complex number by another.

179. The quotient (xt + iy^ (x2 + iy2) is equal to

1 r—
{x1x., + y,y,-i{x1y2 -x.ly1 ))

or -
{cos(0,-02 ) + i8in(0,-0a)};

thus the modulus of the quotient is the quotient of the moduli,

and the argument of the quotient is the difference of the argu-

ments of the two numbers.

To construct the quotient geometrically, join the point Q
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(x2 + iy2) to the point A (+1), and draw a triangle ORP similar to

the triangle OAQ, the angle ROP being measured equal to — d2 ;

then the angle ROA is 1
- d2 ,

and OR = OP/0 Q, therefore the

point R represents the quotient.

The powers of complex numbers.

180. If in equation (1), we put all the factors on the left-

hand side of the equation equal to x + iy, we obtain the formula

(x + iy)
n = rn (cos ii9 + i sin nd) ;

thus the modulus of the nth power of a complex number is the

nth power of the modulus, and the argument is n times that of the

given number. The number n here denotes any positive integer.

To construct such a power geometrically, let Px (x + iy) be

joined to A (+ 1) ;
on 0PX draw the triangle OPjPo similar to

0APl ,
on 0P2 draw OP2P3 similar to the same triangle,

and so on; then the lengths of 0Plt OP2 ,
... 0Pn are r,r

2
, ... rn

,

respectively, and the angles PfiA, P20A, . . . Pn0A are 0, 26, ... nd,

respectively, therefore the points P1} P.2,...Pn represent the

numbers (x + iy), (x + iy)", ... (x + iy)
n

.

In the particular case r = 1, we have

(cos 6 + i sin 6)
n = cos nd + i sin nd,

and if Qx represents cos d + i sin d, then the points Qi,Q2 ,...Qn ,

which represent the different powers of cos d + i sin d, are all on

the circle of radius unity, and so that the ai'c between any two

consecutive points of the series subtends an angle d at the

centre 0.

181. In accordance with the theory of indices, supposing n to

i

be a positive integer, the expression (x + iy)
n denotes a number

of which the nth. power is x + iy. Now since the ?ith power
of the modulus of a number is the modulus of its nth power,
and since the modulus of any number is real and positive, the

modulus of (x + iy)
n

is y/r, where y/r is the real positive nth root
i

of r. Suppose that y/r (cos <j> + * sin 0) is a value of (x + iy)
n

,
then

we have
r (cos $ + i sin $)

n = r (cos d + i sin d),
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or cos ncf) + i sin
ii(j>

— cos 6 + i sin 6
;

therefore cos n(f>
= cos 6, and

sin
n(f>

= sin 6, or nfi = 6 + 2stt. where s is any positive or negative

integer including zero; hence a value of

l

(x + iy)
n

. ( 6 + 2S7T . . 6 + 2STr)
IS yV V < cos h % sin — > .v

(
n n

J

since the ??th power of this expression is equal to x + iy. The

above reasoning shews that every value of (x + iy)
n must be of this

form.

If we give s the values 0, 1, 2, ... n — 1, the expression

0+2S7T . . d + 2STT
cos 1- 1 sin

n n

has a different value for each of these values of s, for in order that

it may have equal values for two values su s.2 of s, we must have

0+2^ d + 2s,7r , . + 2sl7r . d+2s,7r
cos = cos —

,
and sin = sin -

,

n n n n

whence = 2A-7T =
,

or st
— s» = nk,

n n

where k is some positive or negative integer ;
this cannot be the

case if sx and s2 are both less than n, and unequal, therefore the

values are all different.

If we give s other values not lying between and n— 1, we

shall obtain no more values of (cosO +is'm0)
n

,
for if s, be such a

value of s, it is always possible to find a number s
x lying between

and n — 1, such that s1
—

s., is a multiple of n, and therefore

the value of the expression for s = s
1
is the same as for s= s2 .

We see then that all the values of (x + iy)
n are given by the

series of n numbers

6 . . 0\ „ . ( + 2tt
.

. . + 2tt>

n{/r (cos- + ism
-J, {/rfcos

— hi sin

( + 2(w-lW . . + 2(n-l)'rr)
?/r\cos

v -^— + isin- —— >
,

where %/r is real and positive.

182. If 6 be the principal value of the argument of x + iy, that

is, that value of the argument which lies between — it and it, we
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may regard y/r (
cos - + i sin -

J
as the principal value of (x + iy)

n
.

We may consider

. . 6 + 27T . . <9 + 2tt 0+4tt . . + 4tT
cos - + % sin - ,

cos - - + i sin
, cos - + % sin

n n n n n n

as the principal values of the nth roots of

cos#+tsin0, cos(0+27r)+tsin(0+27r), cos(0+47r)+tsin (0+ 47r)
i

respectively. The different values of (w + iy)
n are then the

principal values of the corresponding expression in r and when
n different values of the argument are taken, the principal value

i

of (x + iy)
n

. being considered as that expression in which has

its principal value.

The two values of a2
, where a is a positive real quantity, are

v'a(cosO + isinO) and Ja(cos ir+tsin it), that is Ja and —>Ja, where s'a is

the positive square root of a. The values of (-a) 2
,
in which case 6= tt,

are ^a (cos \v+i sin \ir\ *Ja (cos §ir+i sin § ir), or i s!a, -i s!a. The

principal value of a 2 is *Ja, and of (-a)2 is i^/a.

183. The nth roots of unity are obtained from the expressions

in Art. 181 by putting r = 1, 0=0; they are therefore

27T . . 27T 4-7T . . 4-7T
1. cos h * sin — ,

cos \- 1 sin—
,

n n n n
'

2(n-l)7r . . 2(w- 1)tt
cos — h i sin .

n n

9 f)

If we denote by &> the root cos —-+ i sin
,
the whole of the

J n n
roots are given by the series 1, to, to

2
,
... to"-1 .

Since

0+2r<7r . . ^4-2r7r / . . 0\ f 2rir . . 2nr
cos 1- 1 sin = cos - + i sin - cos - - + t sin

/i ?i \ n n! \ n n
l

it follows that, if \/x + iy denote the principal value of (x + iy)'
1

,

then all the values are given by the series

\/x + iy, to Vx + iy, to
2Vx + iy, to"-1 *Jx + iy.

Examples.

(1) Find all the values of (
-

1)* and of (
—

1)°.

(2) Find the values of (
1 +V - 1 )* .
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184. We shall now shew how to represent geometrically the

nth roots of a complex number; the method will give an

intuitive proof of the existence of n different values of the ?ith

root. Without any loss of generality we may take the modulus

to be unity, so that we have to represent the values of

1

(cos + i sin 0)
n

.

Let a point P describe the circle of radius unity starting

from A, at which = 0, then in any position of P for which the

angle POA described by OP is 6, the point P represents the

expression cos + i sin 0. Let another point p start from A at

the same time as P, and let its angular velocity be always equal

to 1/n of that of P, so that the angle pOA is always equal

to 0/n, then p represents cos- +i sin-. When P reaches any

position P1
for the first time, let p be at pls then the angle

P,OA is n times the angle pxOA, therefore Pj represents the >/tli

power of the number represented by p„ or conversely />, repre-

sents an ??th root of cos 0, +isin 0,. Now let P move round the

circle until it again reaches P„ so that it has described the angle

6
1 + 2tt, then p will be at />,, where paOA is equal to (0, + 2w)/n ;

it 7
J

proceeds to make another complete revolution, when it again
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reaches the position Plf p will be at p3 ,
where p3OA = (01 + 4nr)/n,

and so on. The points p x , p2 , ...pn are the angular points of a

regular polygon of n sides inscribed in the circle. When P makes

more than n complete revolutions round 0, the point p will again

reach the positions p1}p2,.... Each of the points pl ,p.2 , ...pn repre-

i_

sents a value of (cos 6l 4- i sin 6,)
71

,
since the nth power of the

expressions represented by any one of these points is the expression

represented by the point P. The point p x represents the value

for the smallest argument 6^. We have thus obtained the

n values of (cos l + is'm d^1

, and we see that these values are the

different values of cos -^— - 4-t'sin-5—
-, when s = 0, 1,2,...

ii n
n — 1.

185. To obtain graphically the ?ith roots of any number

x + iy, we must be able (1) to divide an angle into n equal parts,

and (2) to inscribe a regular polygon of n sides in a circle, and (3)

in order to construct the modulus, we must be able to construct a

straight line whose length is the nth. root of the length of a given

line. In order to obtain all the nth. roots of unity, it is only

necessary to solve the second of these geometrical problems, since

in this case the angle to be divided into n parts is zero. The

problem of inscribing a regular polygon of n sides in a given circle

is therefore equivalent to that of obtaining the numerical values

of the roots of the equation x11 — 1 = 0. This geometrical problem
can be solved by a method involving the construction only of

straight lines and circles in the following cases :

(1) When n is a power of 2
;

for example n = 4, 8, 16, 32.

(2) When n is a prime number of the form 2m + 1
;

for

example, when n = 3, 5, 17, 257. This was proved by Gauss in his

Disquisition.es arithmeticae.

(3) When n is the product of different prime numbers of

the form 2m + 1, and of any power of 2
;
for example, when n= 15,

85, 255.

The proof of Gauss' theorem would lead us too far into the

theory of numbers
;
we have however considered the special case

n = \7 in Art. 85, Ex. (4), where sin-7r/l7 is found in a form

involving radicals.
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De Moivres theorem.

186. For all real values of m, cos m0 + i sin m0 is a value of

(cos + i sin 0)"
1

.

This theorem, known as De Moivre's theorem, has been proved

in Arts. 180 and 181, in the two cases ??i = n, and m = \jn, where

n is a positive integer. To complete the proof, we have to consider

the cases when m =
p/q, a positive fraction, when m is a positive

irrational number, and lastly when m is any negative real number.

p 1

It is clear that (cos + i sin 0)«
=

(cospO + i s'mp0)«, and one value

of this is cos— -M'sin— . Therefore the theorem holds when m
<7 9.

is a positive rational number.
p

It should be remarked that all the values of (cos + i sin 0)Q

are given by the expression

p(0 + 2sir) . . p(0+2stt)
cos— + i sin

r—
,

where s = 0, 1, 2, ...q
—

1, when p/q is a rational fraction in its

lowest terms.

When m is not a rational number, it can always be denned in

an indefinite number of ways as the limit of a convergent sequence

of rational numbers m x ,
m 2 ,

... ms ,.... Such a convergent sequence

is characterized by the property that, if e be an arbitrarily chosen

rational number, as small as we please, s can always be so deter-

mined that ms differs arithmetically from each of the subsequent

numbers ms+l ,
mg+2 > ••• hy less than e. If r is any positive real

number, the principal value of rm is defined as the limit of the

convergent sequence rm\ r'"2
,
... rm*, ..., when each of the numbers

is real and positive, rw « having its principal value. It is known 1

that this sequence is convergent, and that it has a limit which is

independent of the particular sequence of rational numbers em-

ployed to define the irrational number m.

If z denotes the complex number r(cos + tsin 0), a value of

z"\ when m is an irrational number, is defined as the limit of the

sequence of numbers rm >

(cos + i sin 0)
m

>,
rm*

(cos + i sin 0)'"\ . . .

1 For a proof of this, see the author's Theory of functions of <i real variable,

p. 44. In Chapter i of that work, a full discussion of the theory of irrational

numbers is given.
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rm»
(cos + i sin 6)™*, ..., where rm» has its principal value,

and corresponding values for all values of s are assigned to

(cos + i sin 0)
m

». In accordance with this definition, one value

of zm is the limit of the sequence rm >

(cos m Y + i sin m^ 0),

rm*
(cos m»6 + i sin m.2 6), . . . rm»

(cos ms + i sin ms 6), .... Since

?•'"» converges to r'", and cos ms + i sin ms 6 converges to

cos m0 + i sin m#, on account of the fact that cos m0, sin m0 are

continuous functions of m, we see that one value of zm is

rm (cos m0 + i sin mO) ;
and one value of (cos + i sin #)"

1
is

cos m0 + i sin in0. Thus De Moivre's theorem is established for

a positive irrational index.

The general values of (cos + i sin 0)
m are

cos m (0 + 2s7r) + i sin m (0 + 2stt),

where s denotes any positive or negative integer. Since m (s.
— s.2)

can never be an integer when m is irrational, we see that

(cos + i sin 0)
m lias an indefinitely great set of values.

It can be shewn that the definition of zm
,
in accordance with

which its values are those of rm {cos m (0 + 2s7r) 4- i sin m (0 + 2s7r)}

is such that the laws of indices applicable to real indices still hold

for irrational indices.

In case m has a negative rational or irrational value — k, we

have (cos + i sin 0)
m = l/(cos + i sin 0)

k
;
and one value of this

is always l/(cos k0 + ?'sin k0), or cosA;#— i sink0, which is equal

to cos m0 + i sin md. Thus De Moivre's theorem holds for any

negative index.

187. The theorem

(cos 0! + i sin X ) (cos 0.2 + i sin 0„) . . . (cos n + i sin n)

= cos (01 +0,+ ... + n ) + i sin (0 1 + 0,+ ... + n ),

used in the proof of De Moivre's theorem, affords a proof of the

theorems (28), (29), (30) of Art. 49. We may write the left-hand

side of this identity in the form

cos X
cos 0.2 . . . cos n (l + i tan 0^) (1 4- i tan 0.2) ... (1+i tan n) ;

hence equating the real and imaginary parts on both sides of the

identity, we have

cos (0i + 0<+ ... + 0„)= cos
X
cos 0.2 ... cos n {\ —t, + ti

—
...).

sin (0t + 0,+ ... + $n )
= cos ^cos 0.2 ... cos n (t 1 -t3 + t5 -...),
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where ts denotes the sum of the products of the n tangents taken s

at a time.

The theorems (39), (40), (43), of Art. 51, are obtained at once

from the theorem cos nd + i sin n0 = (cos + i sin 0)'\ by expanding
the right-hand side of the equation by the Binomial theorem, and

equating the real and imaginary parts on both sides of the

equation.
When n is a positive integer, we have (cos# + *'sin d)

n = cos nd + i sin nd,

and therefore also (cos 8 -ism 6)
n = cosnd — zsin n6; thence we obtain the

formulae
cos nd= h (cos d+ i sin d)

n + $ (cos 8 — i sin d)
n

,

i sin nd=\ (cos d + i sin d)
n -

\ (cos 6-i sin d)
n

.

The first of these equations is really an expression of the fact mentioned in

Art. 51, that 1 + xcosd-\-x-cos2d-\-...+x
n cosnd+ ... is a recurring series of

which 1 - 2.c cos 6 + x2 is the scale of relation. Denoting cos nd by un , we have

«„— 2 cos . «»_! + »„ -2= 0; to solve this equation assume, as usual in such

cases, v.„=A/t
n

,
then we obtain for k the quadratic k- - 21- cos 6+ 1 = 0, of

which the roots are k= cos6±isin 6, hence

un=A (cos 0+i sin 6)
n+B (cos 6-i sin 6)

n

is the complete solution of the equation for tin . Putting n= \, and n=2, we

find A = B= ^, and thus obtain the expression given above for cos nd. The

expression for sin nd may be found in a similar manner.

Factorization.

188. We are now in a position to resolve xn —(a + ib) into

n factors linear with respect to x. The expression vanishes if x is

i

equal to any one of the values of(a + ib)
n

;
if qlt q2,...qn denote

the n values of this expression, we shall have

x1 ' -
(a + ib) =(x- 0,) (x

-
q2) . . . (x

-
qn),

for since xn — (a + ib) vanishes when x — q s
= 0, x — qs must be a

factor without remainder; thus we obtain n different factors and

there can obviously be no more. Put a = r cos 6,b = r sin 6, then

the expression for xn — (a + ib) in factors becomi is

•-*- 1
f / 6 + 2.57T . . + 2stt\

n \x
—
pi cos 1- 1 sin

«=o I \ n )l

where p = 1/r = (a
2 + &-)' ".

From this result several of the factorizations already obtained in

( hup. vii may be deduced.
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(1) Let a = 1, b = 0, we then obtain

*=»-!/ 2S7T . . 2S7r\
71 — 1= II

(
x — cos «sin

,

o=0 \ n n J

, . 2.S7T 2 (??
—

s) 7T
and since h — = 2tt,

n n

this gives us, if n is odd,

n i / iN
S=i n_1

V 257r • • 2$tt\/ 2stt . . 2stt\
xn—l = (x—l) 11 a;— cos 1 sin- - he— cos - +isin

*=i V n n } \ n n J

•=*0»-D/ 2S7T _\= (a-l) IT a;
2 -2a; cos hi]

«=i \ n J

and xn -l=(x-l)(x+l) n a2 - 2a; cos—- + 1 ),
s=i V n J

if n is even.

(2) Let a = — 1, 6 = 0, then we obtain the formulae

s=i(«-3)/ C2s + lW \
«« + 1 = (« + 1) 11 U-= - 2x cos

k
v
;7r + 1

J
, (n odd),

xn + 1 = n a2 - 2« cos
v ; + 1

] , (n even).
«=o V n J

.(3) a~n - 2a" cos + 1

= (a
,n — cos 6 — i sin 6) (x

n — cos 6 + i sin 0)

* =V7 0+2S7T . . + 2S7r\ / 6+2.STT . . + 2.S77\= 11 [x— cos rsm ike— cos htsin —
«=o V n n ) \ n n J

*=A~7 > o + 2STT \= 11 a2 - 2a; cos hi,
5 = V 11 J

or writing x/y for a;, and multiplying both sides by y
m

,
we have

a;
2'1 -

2a?'^
n cos + 2/

2n = II (a2 -
2an/ cos— + if

j
.

(4) From the last result we have

xn + x~n — 2 cos 6 = IT a; + x~ l — 2 cos
«=o V » /

Tut a' = cos 9 + 1 sin 9, then a;
-1 = cos — i sin

<£,

and xn = cos
ncf> + i sin.

11(f),
x~n = cosn(f>

— i sin
ncf>

therefore, changing 6 into nd,

cos ?i© - cos 118 = 2 rt_1 II -! cos cf>
— cos # + —: - •

.

*=o {

T
\ n J)
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Properties of the circle.

189. Certain well-known properties of the circle may be ob-

tained by means of the factorization formulae of the last Article.

Let A) A.2A 3 . . . A n be a regular polygon of n sides inscribed in a circle

of radius a, and let P be any point in the plane of the circle, its

distance from 0, the centre of the circle, being denoted by c. Let

the angle POA, be denoted by 0, then the angles P0A 2 ,
POA 3) ...

are 6 + 2tt/)i, 6 + 4sir/n, . . , respectively. Then

PA,2
. PA*. PA 2 ...PA n

2 =~U \a2 - 2ac cos Id + —\ + e
3
i ,

hence we have the theorem

PA
,

2
. PA? . PA,2

. . . PA, 2 = am - 2ancn cos n6 + c
2n

,

which is known as Be Moivre's property of the circle.

In the case when P is on the circumference, the theorem

becomes pAi PA ^ pA% . , PAn = 2an sin i nft

In the case when P is on the radius 0A l} we have 0=0, and

the theorem becomes

PA 1 .PA,...PA 1l
= an ~c\

Again if P lies on the bisector of the angle A nQAu we ha.ve

Q = irfn, and the theorem becomes

PA
i
.PA 2 ...PA n = an + c

n
.

The last two cases are known as Cotes properties of the circle.

190. Examples.

(1) Express xm_1/( i + xn)
in partial fractions, m being an integer less

than n.

If a be a root of the equation xn + 1 = 0, the partial fraction corresponding
am-l l 1 am-n

to the factor x — a is - —7. ,
or -

; taking the two fractions cor-
nan

~
l x - a n x—a

2?"+ 1 2?" + 1

responding to the conjugate values of a, cos- - n±is\n it, together,

we obtain the fraction

2r+l, N 2/-+1 .

2x cos - - (n — m) ir - 2 cos —— (n - m + 1
) tv

1 n n '

n ., a 2r+l
x1 — 2x cos it + I

n

cos(2r+l) it — x con (2r-\-\) n
2 n n

or
»' 20 ~r+i

, 1x^ — 2.r cos — - 7T + 1

71. T. 10
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(
— l)

n-m
if n is odd, we have the additional fraction . , -.-

; hence when n is odd
n(.v+ l)

jii _ 1 7W,

xm-l (_l)»-m 2 f=i('^) COS(2r+1)~¥" 7r ~ d7COS(2r
"fl) »'

r

l+.r» «(#+l) » r=0 2
_ 2r+l

ap - 2.r cos 7r + 1

and when n is even

,.m-l ,_ ,. ?/i

, „ i , cos(2r + l)- - 77 — x cos (2/-+ 1)
— it

xm-\ ^ 2 r=in~ 1_____n v ' n

\+xn
~
n r=0 „ 2/-+1

, ?#2 - 2x cos 7T + 1

(2) Express xm ~ 1
/(x

n —
1) mi partial fractions, m &«'??(/ ^ess ^an n

(3) Prove *Aa£

fa± 2r7r

x»-a»«»n0 1 r=n-i x-aco«^
+—

2
x2» _ 2x"a" cos n# + a2n nsB_1 r=( xz - 2xa cos

The denominator of the fraction —^-
——- —

; ==' is resolved into
x2n - 2xnan cos «0+ a-"

factors, and the fraction corresponding to each factor can then be determined

as in Ex. (1).

(4) Prove that

, ,
nsmn<9 1 '=*-* 1

si'w^
'

cos n# - cos n<f> r=o cos 5 — cos (0 + 2rn-/n)
'

n2 sm n# sm n0 1 r=
2.
_1 sm (0 + 2r7r/n)

^ '
sin 6

'

(cos n# — cos n<£)
2

r=0 {cos (9
- cos (<£ + 2r7r/n)}

2
'

The expression on the left-hand side in (a) is an algebraical function of

cos#, and can therefore be resolved into partial fractions, as in Ex. (1); the

equation (b) is obtained by differentiating both sides of (a) with respect to
</3,

or what amounts to the same thing, by changing <£ into
cf> + h and equating

the coefficients of k, on both sides of the equation.

(5) Skew that if

cos 6 + cos
(f) + cos

\j/
=

0, and sin 6 + sin <p + si?i ^= 0,

then cos 36+ cos 3(f)+ cos 3\jr
— 3 cos (6 + (p + \lf)=0,

and sin 3d + sin 30+ sin 3\jr
— 3 sin (6 + (p+ \j/)

= 0.

This is an example of the general method of deducing trigonometrical

theorems from algebraical ones, by substituting complex values for the

letters. If a + b+ c= 0, we have a3+ b3 +c3 -3abc= 0; let a= cos 6 + i sin 6,

b= cos
(f>
+ i sin

(f>,
c= cos

\js+ isin \^,
then we have given that if

(cos # + cos + cos\|/-) + £ (sin # + sin <p-\-
sin \^)

= 0,

(cos 3d+ cos 30 + cos 3\^) + i (sin 36+ sin 30 + sin 3\^)

- 3 {cos (0 + + ^) + i sin (<9 + + ^)}=O ;

equating to zero the real and imaginary parts separately in each equation,

the theorem follows.
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EXAMPLES ON CHAPTER XIII.

i r> xu x /l+sind> + icosd>\ n
,. ,L Pr°Vetbat

(r+ sin^- J:cos ^)
-«»(W—)+i«n(H—««.

2. Evaluate

{cos 6
- cos

<f>+ i (sin 6 - sin 0)}
B+ {cos 6

- cos
<f>
- i (sin 6 - sin #)}

n
.

3. Prove that

!^*=^+ta!^+t^ (,+«=).
where r=\(n- 1) or |»- 1, and ^4 is 1 or n, according as n is odd or even.

4. Prove that

4 sin | (/3-y) sin |(y - a) sin £ (a
-

/3) 2 sin (pa+ qfi+ry)

=sin{(»+l)a-£03+'y)}sin£(/3—y)+...,
where 2 denotes the sum taken for all positive integral values of p, q, r

(including zero), such that p+ q +r=n.

5. If p is a positive integer and a, /3, y ... are the roots of the equation
xp=

\, and n is any numerical quantity greater than unity, shew that theIII /

only real value of a" + Bn + y
n + ... is tan - / tan — .

nf pv

6. If (l+x)
n=p +p1x+p2x)t+ ,

prove that Po~P2+Pi~ =2a w cos£»7r,

P1-P3+P5- = 2^
M
sin J«7T.

7. If
a'j,

x
2 , ...x„ he the corresponding roots selected from the conjugate

pairs of roots of the equation .r
2" - 2xn cos nd+ 1 =0, and if

r=n / r7r\

f(a)= 2 .XV COS (a+— ),
r=l \ n /

prove that

/(«.)/(a2) /(ap)
= (^0"- 1

[/{^(«i
+ a 2 +.

..+«,)}]".

8. If a, 0, y, 8, t he any five angles such that the sum of their cosines

and also the sum of their sines is zero, shew that

2 cos 4a= £ (2 cos 2a)
2 - i (2 sin 2a)

2
,

2 sin 4a= 2 sin 2a . 2 cos 2a.

9. If
fj, t.

2 ,
... tn be the .sum of the products of the n quantities tan x,

tan 2x, tan 2V, tan 2" -1
./;,

taken I, -2, 3, ... n together, prove that

l-t. + ti -tn + ... = -1" sin a? cos (2"-l).rcosec 2"r,

ti-h+t:,- •• 2n sin# sin(2
n
-l)#cosec2

B #.

L6 -2
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3
10. If cos(/3--y) + cos(y-a)+ cos(a-j3)= — „, shew that

Zi

cos na+ cos nfi+ cos ny

is equal to zero unless «. is a multiple of 3, and if n is a multiple of 3, it is

equal to 3 cos \ n (a + [3 + y).

11. Prove that the values of x which satisfy the equation

n(n — 1) „ n(n— 1)(« — 2) .
, 1N i re rM +i)

. (4r+l)«- ,are #=tan -—-—-—
,
where r is any integer.

12. Prove that

r=n
/ lV._iSinVaCOS

2re - 3
?-a_ (2n-\-\)x

where
2»+l

13. If 8Pr denotes the sum of the products taken s together of the

quantities
tan2 7r/(2w+l), tan 2

2n7(2>i + l), tan2
?i7r/(2« + l),

the quantity tan2m/(2n+ l) being omitted, and if

A r
=

(
-

l)
r - 1 sin2 m/(2n+ 1) . cos2 '1

" 3
rirj(2n+ 1),

prove that 2^4 r . sPr
= 0, the summation extending to all values of r from 1 to

n, and s having any value from 1 to n.

14. A regular polygon of n sides is inscribed in a circle, and from any

point on the circumference chords are drawn to the angular points ; if these

chords are denoted by c1? c2 ,
... cn (beginning with the chord drawn to the

nearest angular point and taking the rest in order), prove that the quantity
c1 c2+ c2C3+... + c,i_ 1 crt+ cn c1 is independent of the position of the point from

which the chords are drawn.

15. If A
X
A 2 ... A 2n + \ are the angular points of a regular polygon in-

scribed in a circle, and is any point on the circumference between A
x and

J 2n + 1 , prove that the sum of the lengths OAi, 0A 3 ,
... 0A 2n + i is equal to

the sum of 0A 2 ,
0A t ,

... 0A 2n .

16. If pi, p 2 , ... pn are the distances of a point P in the plane of a regular

polygon from the vertices, prove that

n 1 n
2 -a-
! p

2 r~ - a
'

r2" - 2r11 an cos nd+ a->1
'

where a is the radius of the circle round the polygon, r is the distance of P
from 0, and 6 the angle OP makes with the radius to any vertex of the

polygon.

17. Straight lines whose lengths are successively proportional to 1, 2,3... n,

form a rectilineal figure whose exterior angles are each equal to 2-nr/n ; if a

polygon be formed by joining the extremities of the first and last lines, shew

that its area is

«(« + l)(2n + l) ^ 16 ,.77 „7T— cot - +— cot - coscc- -
.

24 n n 11 n
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18. The regular polygon A X A 2A 3 ... A 2m has 2m sides; shew that the

product of the perpendiculars from the centre of the circumscribed circle on

Ai A 2 ,
A X A 3 ,

... AiAm is (|-a)"
l_1 V»i.

19. Shew that ii A
l
A 2 ... A 2n , Z?i Z?2 • • • #>.. be two concentric and similarly

situated regular polygons of 2n sides, then

PA 1 .PA 3 ....PA 2n . 1 PB
x .PB3 ....PB,n _ x

l'A.2 . PA t . ... PA 2n PB, . PBi . ... PB2n
'

where P is anywhere on the concentric circle whose radius is a mean propor-
tional between the radii of the circles circumscribing the polygons.

20. A point is taken within a circle of radius a, at a distance b from

the centre, and points Px ,
P2 , ... Pn are taken on the circumference so that

P
X
P2 ,

P2 Pz, ... PnP\ subtend equal angles at
; prove that

0P
1 + 0P,+ ... + 0Pn

=(a*-V)(0Pr 1 + 0P2
-i + ... + 0Pn

- 1
).

21. Prove that if n is a positive integer

cos nd= 1 + 2n sin - cos— 1

——
{

—' 2- sin 2 - cos —K——-

+ — ^j-
23 sin3 - cos —^—-+....

22. Shew that the number m of distinct regular polygons of n sides which

can be inscribed in a given circle of radius r is equal to half the number of

integers less than n and prime to it.

Shew also that the product of their sides is equal to >•"> \Jnj\/n
-
2m, or

rm
, according as n is, or is not, the power of a prime number.



CHAPTER XIV.

THE THEOKY OF INFINITE SERIES.

191. We shall, in this Chapter, give some propositions con-

cerning the convergence of infinite series in which the terms are

real or complex numbers, or variables. Anything like a complete

account of the theory of such series would be beyond the limits of

this work
;
we shall therefore confine ourselves to what is absolutely

necessary for the purpose of discussing the nature and properties of

trigonometrical series.

The convergence of real series.

192. Let rt
: ,

a 2 ,
a3 ,

... an ,
... be a sequence of real numbers

formed according to any prescribed law, and let

Sn = a1 + a2 + as + ... + an .

If Sn has a definite finite limit S, when n is indefinitely increased,

the infinite series ^ + a 2 + a3 + ... is said to be convergent, and S
is said to be its limiting sum, or simply its sum.

We shall, in this Chapter, use the notation LSn to denote the

limit of Sn when n is indefinitely increased, whenever that limit

exists.

The condition that LSn = S is that, corresponding to each

arbitrarily chosen positive number e, as small as we please, a

value ne of n can be determined such that the arithmetical value

of S — Sn is less than e, for every value of n which is = n e .

When the series at + a2 + a3 + . . . + an + . . . converges to #, the

series an+1 + an+2 + . . . is convergent, and its limiting sum is S — Sn ,

which may be denoted by Rn . The number Rn is called the

remainder of the convergent series a1 + a2 +...+an + ... J after

n terms, and the remainders Ru R2 , ... Rn ,
... form a sequence

of numbers such that LRn = 0. It should be observed that it is
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only on the assumption of the convergence of the series that the

remainders Rn have any meaning.
The number an+1 + an+, + ... 4- a,l+m may be denoted by R llt ,n ;

and the numbers Rnl , R„ t2 , R ll>3 ,
... are called the partial re-

mainders of the series after n terms. It will be observed that

these partial remainders Rn
,
m exist as definite numbers for all

values of n and m, whether the given series is convergent or not.

The limiting sum of a convergent series a1 + aa +...an +... is
00

frequently denoted by 3!a.
i

193. A series a
x + a, + a 3 + . . . -t a n + . . . may be such, that the

numbers Sn have no definite limit as n is increased indefinitely.

The following cases may arise :

(1) It may happen that, corresponding to each arbitrarily

chosen positive number k, as great as we please, a value nk of n

can be determined such that all the numbers Sn ,
8n +1 , ... Sn +m ,

...

are of the same sign, and are all numerically greater than k. In

this case Sn increases indefinitely with n, either in the positive or

in the negative direction
;
the series is then said to be divergent.

The fact of the divergence is then sometimes denoted by LSn = go
,

or LSn = — co . as the case may be.

(2) If, as in the last case, Sn increases arithmetically in-

definitely with n, but however great nk may be chosen there are

both positive and negative numbers among Sn ,
Sn +1 , ... Sn +m , ...,

the series may be said to oscillate between indefinite limits of

indeterminancy. It is however, in this case, usually spoken of as

divergent, and its behaviour may be denoted by LSn = ± co .

(3) It may happen that, although Sn has no definite limit as

n is indefinitely increased, it is possible to select a sequence of

increasing values of n, say nu n.2> ... np ,
... so that Sn converges to

a definite limit provided n is restricted to have only the values in

this sequence.
In this case the series is said to be an oscillating series; but

oscillating series are sometimes spoken of as divergent. An

oscillating series in which Sn is lor every vdHwe of n numerically

less than some fixed positive number is said to oscillate between

finite limits of indeterminancy.
It is easily seen that if the terms of a series have all the same
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sign, the series is divergent in accordance with case (1), unless it

is convergent.

The series 1 + 2+ 3+...+«+..., 1/1 + 1/2+ .. . + ljn+...

are both divergent, since in each case Sn increases indefinitely with n, and is

of fixed sign.

The series 1-2 +3-4+ 5—... oscillates between indefinite limits of in-

deterrninancy. For Sn= —
hn, when n is even, and Sn= ^(n + l), when n is

odd
; thus Sn increases in numerical value indefinitely as n increases, and

LS„= too-
The series 1 + 1-2 + 1 + 1-2 + 1 + 1 — 2 + . . . oscillates between finite limits

of indeterminancy. Sn has the value 1, 2, or according as n is of the form

3/-+1, 3r+2, or 3/-.

The series sinu + sin2a+ ...+sin?ia + ..., where a has any fixed value

which is neither zero nor a multiple of n, oscillates between finite limits

of indeterminancy. In this case

(w + l)a . Tla a 1
f

a / 1\ ) a
>S„
=sm —- sin — cosec - = -

-jcos
- - cos I n+ -

\ a> cosec -
.

It is thus seen that Sn does not converge to a definite limit, since cos (n +i) a

has no definite limit when n is indefinitely increased
;
but Sn is numericallv

less than, or equal to,
-

f 1 +cos =
]
cosec -

,
for every value of n.

193 (1)
. The necessary and sufficient condition for the convergence

of the series a1 + &2 +... + a« + ••• is that, corresponding to each

arbitrarily chosen positive number r), as small as we please, a value

n,, of n can be determined, such that all the partial remainders

after n,,
terms are arithmetically less than r)

To shew that the condition is necessary, let us assume that

the series is convergent, so that S exists. A value n
n
of n can

then be determined, such that

are all arithmetically less than \rj. This is an expression of the

fact that LSn = S, when arbitrary values of n are taken into

account.

Now

"n
v+l

+ ^+2 + • • - + a a
v+m

= (S
—

8,1,, )
—
(S
— S

nr)+m ) ;

ui id it then follows that, since S — Sn ,
S — Sn +m are both

numerically less than \t), a
ni)+1

+ aw +2 + •• +a>i
v+m is numerically

less than v; and this holds for all the values 1, 2,3, ... of m.

Next, to shew that the condition is sufficient, we have recourse
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to a principle known as the General Principle of Convergence
1

,
in

accordance with which a sequence of numbers S1} S.2 ,
... Sn ,

... has

a definite limit, provided that, corresponding to each arbitrarily-

chosen positive number 77, a value nv of n can be determined such

that all the numbers

are arithmetically less than
77.

To see the sufficiency of the

condition we have then only to observe that Sn +m — Sn is equal
to the partial remainder R,

lrl
,
m ,

or a,
i7)+1

+
a^+a + ... + a^+m .

If we take m = l, the condition includes that an+1 may be

made arbitrarily small by taking a large enough value of n
;

it

follows that a necessary condition of convergence of the series is

that La n = 0. This condition is however not by itself sufficient.

The rapidity of the convergence of a convergent series may be

measured by the least value of n corresponding to a given value

of e, which is such that all the partial remainders Rn>m are

arithmetically less than e; that is by the number of terms which

it is necessary to take in order that the partial remainders may be

all numerically less than some assigned number.

In the case of the geometrical series 1 +x+x2
... which converges to the

value 1/(1
—

#), when x is numerically less than unity, we see that

_xn (l-xm)

^n + 1 1" • • • "r tt» + to
—

i _ )

and supposing x to be positive, this will be less than * for all values of m,
xn

if <e ;
in this case a suitable value of n is the integer next greater than

1 — x

—° *

,
—si ^_

. The value of n increases as x increases, thus the rapidity
logo,-

of convergence of the series diminishes as x increases
;
when x approaches

unity n increases indefinitely ; thus the convergence of the series becomes

indefinitely slow. When x=l, the series is, of course, divergent.

194. Let us next consider the case of a convergent series

ax +a2 + ... +au + .. in which there are an indefinite number of

positive terms and also an indefinite number of negative terms.

Denoting by \an \

the numerical value of an ,
so that \an \

is equal

to On or to — an , according as an is positive or negative, let us

consider the series

", + |a2 |

4- \a3
\

+ ... +|«„.|+ ...

In case this last series is convergent the original convergent
1 See the author's work On the theory of Junctions of a real variable, p. 36,

where this fundamental principle is discussed.
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series is said to be absolutely convergent, whereas, if the series

2£
j

an
j

is divergent, the series San is said to be semi-convergent, or

conditionally convergent, or accidentally convergent.

The series l _2 -2 _2+ 3 _2+ ... is absolutely convergent, since the series

l-2_|_2 _2+ 3 _2 + ... is convergent ; but the series 1 _1 -2 _1 + 3 _1 - ... is only

conditionally convergent, as the series l -1+2-1+3-1+ ... is divergent.

A series aj
— a2 + as

—
..., in which the terms are of alternate signs, is

always convergent (either absolutely or conditionally) if each term is

numerically greater than the next following, provided also Lan
= 0. For

(
—

l)".ttn,m
=

(a re + l
— a

ra + 2) + (
a

re + 3
— an + r) + ••• =am + l

_
(an + 2

— an + 3)
-

•••>

hence (
—

l)
n
i?„jm is positive and less than or equal to an + 1

. It follows that

11 may be chosen so great that
[ /?„,„, | <e, for all values of m, however small e

may be chosen
;
and thus the series is convergent.

195. In a conditionally convergent series the order of the

terms cannot in general be deranged without altering the sum.

Let Sp be the sum of the first p positive terms, and S'q the sum of

the first q negative terms with their signs changed, then if the

series be re-arranged so that the sequence of the positive terms

is unaltered, and also that of the negative terms, but so that of

the first p + q terms, p are positive and q are negative, the sum of

the series so re-arranged is the limit of Sp — S'q , when p and q are

indefinitely increased. Now the two series Sp , S'q each consists of

positive terms, hence the limits of Sp and of S'q are each either

finite and definite or else infinite; by hypothesis they are not

both finite and definite, as the given series is not absolutely con-

vergent, hence one at least of the limits Sp ,
S'

q
is infinite

;
if both

are infinite the value of L (Sp
— S'

q )
will depend on the two

sequences of values of p and q.
If one only of the limits Sp ,

S'
q

is infinite, L(Sp — S'q) is infinite and the original series was not

convergent. If in the original order a
1
— a2 + a3 ... of the series

the signs are alternately positive and negative, p and q become

indefinitely great in a ratio of equality, but if, for example, we

write the series a^ + a3
— a 2 + a5 + a7

— a4 + . . .
, p and q become

indefinitely great in the ratio 2 : 1, and the limits of S,
q
— S'

q ,

and S
q
— S'

q
when q is indefinitely increased, are in general not

equal.
As an example, consider the semi-convergent series 1 — | + a~j + ...;

denote its sum by £, then

S, =1-1 + 1-1+ _—

i \4»-3 4>i-l 4w-2 4w/'



THE THEORY OF INFINITE SERIES 251

Let S' denote the sum of the series 1 + ^
— |+$ + 1 - } + ... in which the

order of terms in the series S has been altered, we have

fi
"
3tt==

? (^=3
+4^1" Si)'

hence ^-^(-L._^

when n becomes indefinitely great, we have therefore S' = %S. This example
was given by Dirichlet, who first pointed out that the sum of a semi-con-

vergent series depends on the order of the terms.

196. Riemann has shewn that the terms in a semi-convergent
series may be so re-arranged that the limiting sum of the new
series may have any given value a.

Suppose a is positive ;
take first p positive terms, p being such

that $p_i < a and Sp > a; then take q negative terms, q being so

chosen that Sp — S'q^ > a, and Sp — S'
q < a; next take p positive

terms such that $p+J,<_,
— S'

q < a, and Sp+p > — S'
q > a, then q negative

terms such that Sp+P '
— S'q+q

' < a, and Sp+P' — $'9+9'_i > a, and so

on. Proceeding in this way, we obtain a series such that its sum
differs from a by less than its last term, hence when we make the

number of terms indefinitely great its sum will converge to a.

It can also be shewn that the terms may be so re-arranged

that the new series diverges, or that it oscillates.

The convergence of complex series.

197. Suppose 2U z.>, z3 ,
... za ,

... to be a sequence of complex

numbers; thus zn denotes xn + iyn ,
where xn and yn are real

numbers. Let

Sn =z1 + z2 + ...+zn ,
sn = x

1 +x.2 + ...+xn ,
s'n = y, +y2 + ... +y«;

thus Sn = sn + is'n .

If Sn has a definite limit S, itself a complex or real number,

when n is indefinitely increased, the infinite series

z
x + z, + . . . + zn + . . .

is said to be convergent, and S is called its limiting sum, or

simply its sum.

The condition that S= LSn is that
|

S — Sn
| converges to zero

as n is indefinitely increased
;
thus if

S — Sn = pH (cos 6n + i sin #„),
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we must have Lpn = 0. If <S = s + is', when s and s' are real, we

have s — sn = p„. cos 6n ,
s' - s'n = pn sin 6n ;

it then follows that, if

Lp n
= 0, we also have L(s — sn )

= 0, L (s
— s'n) = 0, or sn ,

s'n

converge to s and s respectively. It thus appears .that in order

that the series zx + z2 + % + ••• may De convergent, it is necessary

that the two series xx + oc2 + scs + , . .
, y1 + y2 + ys + ... should both

be convergent. Conversely if these latter series are convergent,

the series of complex numbers is also convergent, for

| (s + is')
—

(sn + is'n) I

^
I

s— sn
1
4-

1

s' — s'n
I

;

if now Lsn = s, Ls'n = s', we can choose a value ?i e of n so large

that \s
— sn |<^e, \s —s'n \<^e, provided n^ne . It follows that

|
(s + is')

—
(stl + is'n) I

= e
>

if tc = n e ;
and since e is arbitrary we

therefore have L (sn + is'n)
= s + is', and thus the series of complex

numbers is convergent. In case the limiting value of either

of the sums %x, 2/y is not finite, or in case either of these series

oscillates, the series S^ is not convergent.

Suppose zn = rn (cos 6n + i sin 6n), then we shall shew that the

series S^ is convergent provided the series Xr, in which each term

rn is the modulus of the corresponding term zn ,
is convergent.

The given series 2rn (cos w + isin n) is convergent provided each

of the series 2rn cos#n , Srn sin n is convergent; now each of the

numbers rn cosdn ,
rn smdn lies between the numbers ±rn ;

also

the number S)l+m
— Sn is for either of the series JLrcosO, 2rsin#

numerically less than the corresponding partial remainder for

the series 2r. If then the latter series is convergent, so is each of

the former ones
;
hence the series %zn is convergent.

The converse is not necessarily true
;
thus the series

2rn (cos 6n + i sin 6n)

may be convergent, whilst Srn is divergent.

If the series %rn formed by the sum of the moduli is convergent,

then the series 1rn (cos 6n + i sin 6n) is said to be absolutely con-

vergent.

For example, the series of which the general term is n~ 2
(cos nd+ i sin ?id)

is absolutely convergent, since the series 2>i -2 converges, whereas the con-

vergent series of which the general term is n~ 1
(icoand+tsinn$), (2n>8>0),

is not absolutely convergent, since the series 2u~ l is divergent.
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Continuous functions.

198. Suppose f(z) to be a function of the complex variable

z = x + iy, which has a single finite value for every value of z which

lies within an}' given limits; this function will then have a single

value for every point in the diagram, which lies within a certain

area; this area may be any finite portion of the plane of repre-

sentation of z, or the whole of that plane.

Such a function is said t-o be continuous at the point z = z
x ,

if a positive number t) can alivays befound such that the modulus of

f (z)
— f (Zj) is less than an assigned positive number e, taken as small

as we please, for all values of z which are such that the modulus of
z — z

x is less than 77.
For each value of e a value of t) must exist.

A function which satisfies this condition at every point within

any given area, is said to be continuous in that area. The boundary
of the area may, or may not, be included.

Uniform convergence.

199. Let fn (z) be a function of z or x + iy, Avhich is continuous

in any area
;
then if the series

/i(*) +/.(*) + .»+/.(*)+•.

is convergent, we may denote its limiting sum by F(z). Suppose

/i(s)+/2(*) + •..+/»(*),

where n is any fixed number, is equal to Sn (z), then the limiting

sum offn+^z) +fn+2(z) + ... is called the remainder after n terms,

and may be denoted by Rn(z) ',

we have therefore

F(z) = Sn (z) + Rn {z).

Now suppose that, corresponding to any given positive number e,

however small, a value of n, independent of z, can be found, such

that for all values of z represented by points lying in any given

area, the modulus of Rm (z) is less than e, where m is equal to or

greater than n, the series is said to converge uniformly for all values

of z represented by points in that area. The integer n will depend
in value upon e.

If as z approaches indefinitely near any fixed value z
x in the

area, in order that the moduli of all the remainders Rm(z) may be

less than e, it is necessary to suppose n to increase indefinitely,
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then in the neighbourhood of the point z1} the series does not con-

verge uniformly and is said to converge infinitely slowly. A
point Zj for which e can be so chosen that this happens is said

to be a point in the neighbourhood of which the convergence
is non-uniform, or sometimes simply a point of non-uniform con-

vergence in case the series converges at that point itself. For any
space including such a point it is impossible to assign any fixed

value of n, such that for all values of z within that space, the

moduli of Rm are less than the sufficiently small positive number
e; and thus the series does not converge uniformly throughout
that space. When z is equal to z1} the series may be either

convergent or divergent.

We may state the matter as follows :

Suppose that as z approaches some fixed value zx a positive
number e can be assigned such that the number of terms n of the

series /1 (^)-f/li (2')+ ... which must be taken, in order that mod.

Rm {z) < e, where m is equal to or greater than n, depends on the

modulus of z — z-t in such a way that n continually increases as

mod. (z
— z

x ) diminishes, and becomes indefinitely great when mod.

(z— zx) becomes indefinitely small, the series is said to converge

non-uniformly in the neighbourhood of z1 .

In the neighbourhood of such a point, the rate of convergence
of the series varies infinitely rapidly, and when mod. (z

— z x) is

diminished indefinitely, the series converges indefinitely slowly.

It should be observed that a convergent numerical series

cannot converge infinitely slowly; thus when z is equal to zu the

convergence of the series fi(z1)+f2(zl)+ ..., if it is convergent, is

not indefinitely slow
;

it is only when z is a variable such that

mod. (z
—

z,) is indefinitely diminished, that the series

converges infinitely slowly. It is consequently more exact to speak
of the non-uniform convergence of a series in the neighbourhood of

a point, than at the point itself. The number of terms n that must

be taken in order that the modulus of the remainder Rn {z) may be

less than the sufficiently small number e, increases as z approaches
the value zx ,

becomes indefinitely great when mod. (z
—

z^) becomes

continually smaller, and then, if the series is convergent at the

point Zi, suddenly changes to a finite value; this number n is

therefore itself discontinuous in the neighbourhood of such a point.
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If in any area A we have, at every point of the area,

!/,(«) |

^ th, \Mz) J

^ a 2 ,
... \fn(z) |

S o», ...,

where a„ «*, ... aWl ... are fixed positive numbers such that the

series Oj + a*+ . . . + a.n + . . . is convergent, then the series

/i(«) +/.<«) + ..

is uniformly convergent in the area J.. This theorem affords a

test of uniform convergence which is of great value in application

to particular cases
;

it is known as Weierstrass's test. To prove it,

we observe that, if e be an arbitrarily chosen positive number, n€

may be so chosen that an+1 + an+2 + ... + an+m is, for every value of

m, less than e, where n ^n e . The modulus of

\fn+i(z) +fn^{z) + ••• +fn+m{z) I

is, for every value of z, not greater than an+1 + an+2 + ... + an+m ,

and is therefore less than e. Since this holds for every value of m,

we see that the complex series is convergent, and that for every

value of 2, \Rn (z)\>e, provided n^n e . Therefore the series

converges uniformly in A.

By some writers, a series is defined to be uniformly convergent in a

given area, when a number n can be found such that for all values of 2, the

modulus of the remainder Rn is less than e. The definition given in the text

is more stringent than the one here mentioned ;
it is possible to construct

series which converge uniformly according to the latter but not according to

the former definition.

200. If the functions fi(z), f» (z), ... are continuous for all

values of z represented by points lying in a given area A, then

the function F{z) which represents the sum of a convergent series

%f(z), is a continuous function for all values of z represented by

points lying in the area A, provided the series 2f(z) converges

uniformly in the whole area A.

For we have F(z) = Sn + Rn ,
n being such that for all values

of z to be considered, the modulus of Rn is less than e
;
let z

receive an increment Zz, and let BF(z), 8Sn ,
BRn be the corre-

sponding increments of F(z), Sn ,
and Rn . Then, since by supposition

the moduli of Rn and Rn + 8Rn are both less than e, the modulus

of BRn is less than 2e. Also since Sn is a continuous function

of z, if the modulus of %z be small enough, the modulus of BSn is

less than e
; hence, provided mod. Sz is less than a certain value,

the modulus ot cSa + BR
lif
or of BF(z) is less than 3e, since the



256 THE THEORY OF INFINITE SERIES

modulus of BSn + SR tl is not greater than the sum of the moduli of

BSn and 8Rn . Now 3e can be made as small as we please, there-

fore mod. SF(z) can be made as small as we please by making
mod. 8z small enough; that is to say the function F(z) is continuous.

It will be observed that for this proof, the less stringent definition of

uniform convergence, given in the note to Art. 199, is sufficient.

201. For a value zx of z, for which the series converges non-

uniformly in the neighbourhood, the sum of the series is not

necessarily continuous
;

in this case the reasoning of the last

Article fails. The limiting value of the function /«(/)> when z = zly
00

is fn(zi)> but it does not follow that S [fn{z)—fn(z\)} converges to
i

n

zero as z converges to zx . We may denote the sum 2 \f(z)—f{z\)}
i

by F(n, z — zx), a function of n, and of z — zx ',
now the limiting

value of F(n, z— z
x ) when z is first made equal to zx ,

and then n is

afterwards made infinite, is zero
;
but if n is first made infinite,

and afterwards z — zx is made zero, the limiting value of F(n, z — z
x )

is not necessarily zero.

As an example of this phenomenon, Stokes considers the real series

l+5x x(x+ 2)n
2 + x(4 — x) n+ \ —x

2(1 + j?)

"*
n(n+l){[n-l)x+l}(nx+i)

when x= 0, this series becomes

1 1

Now the general term is

1 2x
+

or

n(n + l)
'

{(n- 1)^+1} (n^+ 1)'

I-
2

|

f 1
_2_|

therefore the sum of the series is 3, whatever value different from zero x may

have; the sum of the series -—- + ^—^ + ... is however unity, and thus the

sum of the series is discontinuous in the neighbourhood of the value of x= 0.

1 2
The remainder after n terms is + - —=- : putting this equal to e, wen+\ nx+l

find

n= {x + 2-e(x+l) + \/{* (x+ l)- (x+ 2)}
2 - Atx (e

-
3)}/2«p,

which increases indefinitely as x becomes indefinitely .small
;
thus the series

converges infinitely slowly when x is infinitely small ; this is the reason of the

discontinuity in the sum of the series.
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The discovery of the distinction between uniform and non-uniform con-

vergence of series has usually been attributed to Seidel, who published his
" Note iiber eine Eigenschaft der Peihen welche discontinuirliche Functionen

darstellen
"

in the Transactions of the Bavarian Academy for 1848
; the

theory had, however, been previously published by Stokes, in a paper
" On

the Critical Values of the sums of Periodic Series1
," read on Dec. 6, 1847,

before the Cambridge Philosophical Society. Although the theory is in some

respects stated more fully by Seidel than by Stokes, the latter must be

considered to have the priority in the discovery of the true cause of dis-

continuity in the functions represented by infinite series 2
. The distinction

between uniform and non-uniform convergence has played a very important

part in the modern developments of the subject.

The matter is summed up by Seidel in the following theorem :
—Having

given a convergent series, of which the single terms are continuous functions

of a variable z, and which represents a discontinuous function of z : one must

be able, in the immediate neighbourhood of a point where the function is

discontinuous, to assign values of z for which the series converges with any

arbitrary degree of slowness.

The geometrical series.

202. Consider the geometrical series 1 + z + z" + . . . + zn
~ l

.

where z = x + iy
= r (cos 6 + i sin 6). We have for the sum of this

series the value

1 - zn 1 — rn(cosn9 + isinnd)
or :

*

1 — z 1 —r (cos 6 + i sin 6)

put 1 — 7- cos 6 = p cos
<p,

r sin 6 = p sin
(p,

then p
= + Vl - 2r cos 6 + r\

the sum then becomes

1 rn { )-
(cos (p + ism <f>) jcos (nd

+ (p) + i sin (n0 + <f>)\',

and when n is made indefinitely great, the modulus of the second

term in this sum becomes indefinitely small, if r< 1
; but if r > 1,

it becomes infinite. Thus the infinite series

l+Z+ Z2 +...+ Z n
~

l + ...

converges if the modulus of z is less than unity, and its sum is

then

1 , ,
. .

, x l—r cos 6 + i.r .sin 6-
(cos d> + % sin 0) =— r

; ,

If the modulus of z is greater than unity, the series is divergent;
1 See Stokes' Collected Works, Vol. i.

2 On the history of this discovery see lleiff's Qachichte der unciidliclien

lieihen.

II T. 17
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and if mod. z is unity it is also not convergent, since the sums of

the two series 2 cos nO, % sin nO, which have been found in Art. 74,

do not approach a definite value when n is indefinitely great.

We have, by equating the real and imaginary parts of the

series and the sum,

2 f- fjog
- = 1 + r cos + r- cos 2$ + . . . + rn cos nd + ...,

1 — 2r cos + r

r sin
- = r sin + r2 sin 20 -f . . . + rn sin n0 + . . .;

1 — 2r cos + r2

these series hold for all values of r lying between + 1, excluding
r = 1 and r= — 1, for which the series are not convergent. To see

that this is the case, we need only write — z for z in the original

series.

The geometrical series is uniformly convergent for all values of

z of which the modulus is ^ 1 — rj, where rj is any fixed positive

number, arbitrarily small. For the remainder after the first n

Z71
. (l—7l)

n

terms is . and the modulus of this less than
;
the

1 — Z 7)

series will then be such that for all values of z of which the

modulus is ^ 1 — rj,
|

Rn (z) |

< e, if

(1
—

77>
n

.. log r] 4- log ev—^- < 6, or if n > fi '

Ar- .

V log (I-77)

Hence, since it is possible to choose n so that for all values of z of

which the moduli are ^1— rj, the remainders after n terms are

less than e, and since this clearly holds for all greater values of n,

the series converges uniformly for all such values.

It has thus been shewn that the geometrical series is uniformly

convergent in the area bounded by any circle concentric with and

interior to the circle of radius unity with the centre at the. origin.

Series of ascending integral poiuers.

203. We shall now consider the general power-series

a + a
x
z + a»z2 + ... + a n z

11
-f

where a0> au a2 ,
... are complex numbers independent of the com-

plex variable z. Let r denote the modulus of z, and a,,, a1} a2 ,
...

the moduli of a
,
a1 ,a2 ,

The series of moduli is

a + a
x
r + a2r

2 + . . . + an r" + . . .
;
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when this series is convergent the series in powers of z is absolutely

convergent. If the series of moduli converges for any value of r

it is convergent for all smaller values of r
;
and if it is divergent

for any value of r it is also divergent for all greater values of r.

As regards this series a + a
x
r + a.,r- + ...

,
three cases may arise.

(1) The series may converge for some values of r different

from zero, and diverge for other values
;
there then exists a positive

number p such that the series converges when r < p, and diverges
when r > p. When r = p the series may either converge or diverge,
as the case may be.

(2) The series may converge for ail values of r; it is con-

venient to express this by p = oo .

(3) The series may diverge for all values of r except r =
;

this may be expressed by p = 0.

In order to determine the number p in any given case, we consider
i

the values of an
n

- It may happen that, as n is indefinitely in-
i

creased, an
n
converges to a definite limit A

;
in that case, if e be an

i

arbitrarily chosen positive number, as small as we please, an
n

lies

between A + e and A — e for all values of n with the exception of

a finite number of such values. More generally, it may happen
that a positive number A exists, such that, for all values of n

i

except a finite set, an
n < A + e, and such that for an infinite number

i^

of values of n, an
n lies between A + e and A — e. In either case, the

number p is equal to 1/A. To see this it will be sufficient to

prove that the series converges if r < 1/A, and that it diverges if

r > 1/A. For all values of n except a finite set aH r
n < (A +e)

nrn
,

where e may be arbitrarily chosen
;

if r has a value < 1/A, we can

choose e so that (A + e)r< 1. All the terms of the series, except
a finite set of them, are then less than the corresponding terms of

the geometric series of which the common ratio (A + e) r is less

than unity ; consequently the series is convergent. If r > 1/A, we
can choose e so that (A — e) r > 1, and thus an r

n >(A— e)
n rn > 1,

for an infinite number of values of n; the series is consequently

divergent.
i_

If on
n
converges to the limit zero, as n is indefinitely increased,

the series converges fur every value of r. For, in that case,

17—2
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an r
n < e

nrn
,
where e may be so chosen that er < 1

;
and this holds

for every value of n except a finite set of such values. Each term

of the series, Avith the exception of a finite number, is then less

than the corresponding term of a convergent geometric series;

consequently the series is convergent. In this case p = oo .

If an
n has indefinitely great values, that is, if no number exists

which is greater than all the numbers an
n

,
the series diverges for

all values of r except t = 0. In this case p — 0. For, if r have

any given value except zero, there are an infinite number of terms

of the series each of which is greater than unity, and thus the

series is divergent.

204. In the last Article it has been shewn that a number p

exists, which may however be zero, or may have the improper
value oo, which is such that the series a + o.^r + a2r

2 + ... is con-

vergent for each value of r which is < p, and is divergent for each

value of r that is > p.

About the point 2 = 0as centre, describe a circle of radius p;

this circle is called the circle of convergence of the series

a + a x
z + a.z z- + ...,

and its radius is called the radius of convergence of the series.

The radius of convergence may be finite, or zero, or infinite.

It will be shewn that the series a + a-^z + o«z2 + ... is absolutely

convergent for any point z in the interior of the circle of con-

vergence, and that it is divergent for any point z exterior to that

circle. No quite general statement can be made as regards the

convergence of the series for a point on the circumference of the

circle of convergence.
That the series is absolutely convergent if mod. z<p follows

from the fact that the series of moduli is then convergent. That

the series is divergent if mod. z has a value r > p is seen from the

fact that the necessary condition of convergence L \

an z
n

J

= is not

satisfied. For \anz
1l

\

=
(r/p)

n anp
n

;
and for an infinite number of

values of n, anp
n > (

1 — pe)
n

;
hence if e be so chosen that

r(i-e)>l,

we see that I an z
n

I > 1, for an infinite number of values of n.
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205. It will next be shewn that the series a + a x
z + a2 z- + ..

converges uniformly in any circle of which the radius is less than

the radius of convergence, and of which z — is the centre. Suppose

p
- k to be the radius of this circle, and let p^ be a fixed number

between p and p
— k; let p

— k = p 1
— h. The modulus of the

limiting sum of a n z
n + a n+1 zn+1 + ... does not exceed the limiting

sum of the series

anrn +ctn+1r
n+1 + ...,

or «nPl
»
(r/Pl)

n + an+lPl
n+l

(r/Pl )
n+1 + • • • •

Now the numbers an p l

n
,
an+1 /o1

n+1
, ... are all less than some fixed

number K
,
since the series is convergent when r = pr ;

thus the

sum of the series is less than K {(r/ /
o1)

n + (r/pi)
n+1 + ...}, or than

K(rlpl)
n
(\
-

r//»,)
-1

;
and this is less than K{\ - h/p^pjh. If e

be an arbitrarily chosen positive number, a value n
x
of n can be

determined such that K(l —h/p 1 )
n
p 1/h< e, for n = n

x . Hence the

modulus of the remainder Rn {z) of the series a + a1
z + a,z-+ ...

is less than e, for n = ^ ,
and for all values of z such that

mod. z ^ p
— k

;
therefore the convergence of the series is uniform

in the circle of radius p
— k. This is true however small the number

k (> 0) may be taken to be, but it would be incorrect to assert

that the convergence is necessarily uniform in the circle of

convergence.

Denoting by F{z) the sum of the series a + a Y z + a.,z*+ ... for

values of z of which the moduli are less than the radius of con-

vergence, it follows from Art. 200 that F(z) is a continuous

function of z, for all points lying in the interior of the circle of

convergence. If the radius of convergence is infinite, F(z) is

continuous for all finite points in the plane.

The series 1 + z + s2 + z* + . ..
,

z 22 i3

1+
T
+

2
+

3
+-

have the radius of convergence unity ; their sum-functions are continuous

functions of z in the interior of the circle of radius unity.

2 Z Zn

The series 1 + r-r + ^-r + ...H—-. + ...
1 ! 2 ! n !

has the radius of convergence infinite ;
the sura-function is continuous for all

finite values of z.

The series 1 + 1 \z+ 2lz2+ ... + n\zn + ...

has the radius of convergence zero.
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206. The convergence of the series on the circle of conver-

gence itself has not yet been considered
;
we may without loss of

generality take the radius of convergence to be unity.

It can be shewn that the series aQ + ax z + a2 z- + ... , when the

coefficients are real, converges for points on the circle of conver-

gence, with the exception of the point z = l, if the coefficients are

all positive, and with the exception of the point z = —
1, when the

coefficients are alternately positive and negative, provided in

both cases the coefficients a
,
a1} a 2 , ... are in descending order of

absolute magnitude, and provided the limit of an ,
when n is

indefinitely increased, is zero.

Let Sn = Oo + &\& + «2^
2 + • • • + CLn-\Z

n ~X

and suppose the coefficients all positive, then

Sn(l- z)
= a Q

- an-\Z
n — z {(a

- ax) + (a^ —a2)z + (a2
- a s)z-+ ...

+ (o„_o
- an_!) zn

~2

} ;

now the series

(a Q
-

cti) + (a2
-

a.) + (a, -a3)+ ...

is convergent (see Art. 194, note), therefore the two series

(a
—

ai) -f («j
— « 2) cos + (a2

— a3) cos 26 + ...,

(a
—

«i) + (cd
— a2 ) sin 6 + (a.2

— a 3) sin 26 + ...

are also convergent, since the cosines and sines all lie between

+ 1, thus the series

(a
-

aj) + (f/j
-

a,) z + (a,
— as)z

2 + ...

is convergent when mod. z = 1
;

since
|

an_j z
n

\

has the limit

zero when n is infinite, we see that LSn (1
—

z) is finite when

mod. z=\; hence unless z—\, LSn is finite.

If the coefficients in the series are of alternate signs, change
z into — z, then this case is reduced to the last.

Whether the series is convergent when z— 1, or in the case of

coefficients of alternate signs, when z=— 1, has not been determined,

and depends upon the particular series. The series may be only

semi-convergent on the circle of convergence.

If the coefficients of the series are complex, we can divide the

series into two, in one of which the coefficients are real and in

the other imaginary ;
the two series can then be considered

separately.
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Z Z* g8
The series 1 + T + - + - + ...

is convergent when mod. 8=1, except when 2=1. Thus the two series

2-cos?*0, 2 - sin nd are both convergent, except that the first is divergent

when is zero or an even multiple of n.

207. Suppose F(x) is the continuous function of x which is

represented as the sum of the series a + ax x + a2 x- + . . .
,
with real

coefficients, which converges for real values of x, less than unity.

Let us assume that the series diverges when x > 1
,
but that the

series a + ctj + a, + . . .
, corresponding to x = 1, is convergent.

It will then be shewn that the sum of the series a Q + «
2 + a 2 + ...

is the limit of F(x) when x increases from values less than unity

to unity as its limit. Thus the continuous function F(x) defined

for x=l by F(l)=LF(x) continues to represent the sum of

the series when x=l. This theorem was given by Abel 1
.

Let sn = a + «i + a.2 + ... + an ;
s = a . In virtue of a theorem

which will be proved in Art. 209, since the two series

&Q "J
-

^'l& ~j~ (tow" ~J~ • • • *T~ CvjiJls T" * • >
y

l+x + x2 + ...+xn + ...

are both absolutely convergent when x< 1, their product, formed

by multiplication,

S() ~\~ S\ CO ~^r Sod)' "7" ... -f" S)i*x) ~\~ • «

is convergent, and its limiting sum is F(x)/(1
—

x), the product of

the limiting sums of the two series. Denoting Lsn by s, the number

n can be chosen such that sn ,sn+1> sn+„, ... all lie between s + e and

s — e, where e is an arbitrarily chosen positive number.

The limiting sum of snx
n + sn+1 x

n+1 + ...
,
for such a value of n,

lies between (s + e) x
n
/(l

—
x) and (s

—
e) xn/(l

—
x). Therefore

F (x) lies between

(s + e) x
n + (1

-
x) (s + s,x+ ...+ Sto-j^""

1

)

and (s
—

e) x
11 + (1

—
x) (s + s^ + . . . + 5n_i^'

l_1
).

It follows that
j F(x) — s

|

is less than

e +
| a\ (1 -xn) + (1

-
x) ( |

s
1
+

]
*!

|
+ ... +

1

sn-i \
\

The number n having been fixed, corresponding to e, we can

choose a value of x, say xly such that i F(x) — s\ is numerically less

than 2e, for 1 > x = x
x ,
since 1 — x and 1 — xn may be taken as small

1 See Crelle's Journal, Vol. l
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as we please by properly choosing x. Since 2e is an arbitrarily

small number, it follows that s is the limit of F (%) for x=l.

If a , a,, a2 ,
... are complex numbers, we may divide the series

into two parts, one real and the other imaginary, and the theorem

applies to each part separately ;
hence it holds for the whole series.

Next let F (z) be the continuous function which represents,

when mod. z<\, the sum of the series do + c^z 4- a,z'2 + ..., where

z is the complex number r (cos 6 + i sin 6). The series may be

divided into the two parts

a + a
x
r cos 6 + a.2r

2 cos 26 + ...

i(a x
r sin 6 + a2 r- sin 26 + ...),

and the theorem holds for each of these two series. Therefore if

the series a + ax z + a 2 z'
2 + ... is convergent when z — cos 6 + i sin 6,

its sum is the limit for r = 1, of F(z), the value of 6 being kept

constant. The function represented by the series is then con-

tinuous at the point on the circle of convergence with the values

on the radius of the circle of convergence through the point.

In order that the necessity for the investigation in this Article may be

seen, we remark that a similar theorem would not hold for the series obtained

by altering the order of the terms in the series a +a1x+a2x2 +.... For

example, consider the two real series

a?-^2+i«3-i«4
+... and x-\-\x--lx'

i +\x*+ }x' -\x^ + ...;

as long as x< 1, the series are absolutely convergent, and they have the same

sum ; when however x=\, the sums of the series are not equal, as has been

shewn in Art. 195. The sum of the first series is continuous up to the value

x= 1, of x, but that of the second is not so.

208. There cannot be two distinct series of powers of z,

a o + a
1
2' + a2 0- + ...,

b + bx z + b.,z
2 + ..,

which both converge to the same value F (z) for all points in a

circle of radius k (> 0). For since they converge to the same

value for z = 0, we must have a = b
;

and thus the series

a^z + a 2z
2 + ..., b

1z+b2z
2 + ... converge to the same value when

mod. z £ k. This is impossible unless the two series

0,! + a 2 z +a3 z
2 + ... , b1 + b.2 z + b3 z

2 + ...

are both convergent and have the same limiting sums for

< mod. z £ k. The radii of convergence of these two series are

each = k, and their sum-functions are both continuous within their
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circles of convergence. Since their sum-functions are identical for

each value of z except z = 0, in the circle of radius k, it follows

from the continuity of those functions that they are identical when
z=

;
therefore a 1

= b1
. By proceeding in this manner, it can be

shewn that all the corresponding coefficients in the two series are

equal, and thus that the series are identical.

Convergence of the product of two series.

209. Let S, S' denote the limiting sums of two absolutely

convergent series

a1 + a2 + a3 + ... +an + ...,

b1 + b, + b3 + ..+bn + ...;

then it can be shewn that the series

tti&1 + (a 1 &2 + ao& 1)+ ... + («i bn + tt26„_i + ... +an b1) + ...

obtained by multiplying together the given series is convergent,
and that its limiting sum is SS'.

Denote by sn the sum of n terms of the product series, and let

a, /3 be the moduli of a and b respectively. Since the series S, S'

are absolutely convergent, the series of moduli are convergent;
denote their sums by 2, £', and let

0-n = aifr + («!& + a2 ft) +... + (ai/3» + *-2 fin-i + • • • + a»ft).

We have SnSn
' — sn = a.2 bn + asbn^ + ... +an b tl ;

hence mod. (Sn8n
' - sn) ^ a2 /S„ + a8£n_i + . . . + a„/3n

'n-^ii "n-

Now <rn < S«2n' < o"anj because a2n contains more terms than the

product 2nS ft', whereas <rn contains fewer; hence the limit of an ,

when n is indefinitely increased, is finite, and therefore since the

limits of crn ,
<rm must be the same, each is equal to SS' ;

thus the

limit of mod. (SnSn
' —sn) is zero, or s = SS'.

More generally it can be shewn that it is sufficient for the

validity of the theorem that the convergence of one only of the

series a x + a2 + . . . ,
b

l -t- b., + . . . should be absolute, that of the other

being conditional. In case the two series are both only conditionally

convergent, the product series a
1 b 1 + (a 1

b.i + a.J) l) + ... is not neces-

sarily convergent, but it can be shewn that in case it be convergent,

its sum is the product of the sums of the two given series 1
.

1 For proofs of these results, see the author's Theory of functions of a real

variable, pp. 500, 501.
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The convergence of double series.

210. Let us consider a double sequence of positive real

numbers a,.jg

^1,1, &l,2, Ofja, ... cc
liS ,

...

02,1, 02,2, °k,S,
•

«V,8,

Let us assume that the numbers in each row when added

together have a definite limiting sum; and let sl3 s2 ,
...s r ,

...

denote the values of this limiting sum for the first, second, ... ?'th

rows. Let it be further assumed that the series s1 + s»+ ... +sr + ...

is convergent, and has 8 for its limiting sum. It will be shewn

that the series aM + a
2iS + ... + ar,s+ ••• obtained by adding the

numbers in any one column is convergent, and that if its limiting

sum be denoted by sg ,
the series 2j + 2

2 + s3 + ... is convergent,

and has S for its limiting sum.

That a
1)S + a2)S + ... + ar,s+ •• is convergent follows from the

fact that each term is less than the corresponding term of the

convergent series s1 + s.2 + ... +sr + — An integer p may be so

chosen that the r numbers
n=p n=p n=p

2i- S ct
n>1 ,

22
- 2

a,,,.,, ...s,.- 2 a
)l>r

are all less than e/r. Therefore 2
2 + 2

2 + . . . + 2,. is less than

€ + s1 + s2 + ... +sp ,
or than e + S; and since this holds for every

value of r, the series % + % + . . . is convergent and its limiting

sum is ^ S, since e is arbitrarily small. Also the integer q may
be so chosen that the r numbers

n = q n—q
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terms of a convergent double series of positive numbers and S is

said to be its sum. In accordance with the theorem proved, the

limiting sum of the series is the same whether the summation be

taken first with respect to s and then with respect to r, or in the

converse order. Thus
CO 00 CO CO

2 2 Ori8
— 2 2 a,.
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without altering its limiting sum, provided the series

S1 + S2 + Ss +...

is convergent, where Sr denotes the limiting sum of

I ar.i |

+
| «r,t| + |ar,«| + ....

An important case of this theorem, of which we shall afterwards

make use, is the following :

If a + a
l
z + a 2z

2 + ... be a convergent series of which the

limiting sum is F(y,z), and if aQ ,
au a2 ,

... are the limiting sums

of the absolutely convergent series

ho + KiV + K*y~ + h*f + •••

Ko + hii/ + h^f + hhsy
3 + •-

ho + Kiy + h*y* + h*y3+•

then, if the series A + A x
\

z
|
+ A.2

1

z
j

2 + . . . is convergent, where

A r denotes the sum of the series
J

&
r>0 [

+
|

brAy \

+
|

b
rt2y- 1

+ ...,

the series

(b ,o + bi,
z + h z2

+...) + (&o,i + b
ltl

z + b.
2>1

z° + ...) y

+ (b ,2 + bh2z + b,
t2
z2 + . . .) y- + . . .

,

which is obtained by substituting for a0) a1} a.2 ,
... in the given

series, and arranging the terms as a series in powers of y, is

convergent, and its limiting sum is F(y, z) the same as that of the

original series.

The Binomial theorem.

211. A very important case of series in ascending integral

powers of a variable is the series

.,
m (m — 1 ) „ vi (m — 1 ) (m — 2 )l+mz +—
iyj
—V+—^ ^ 'z3 +....

In the particular case in which m is a positive integer, the

series is finite, and its sum is (1 +z)
m

,
the ordinary proof of this

being applicable to a complex value of z.

We shall suppose z to be a complex number, but shall confine

ourselves to the case in which m is real. In this case an/an+1 is

n + 1
equal to , the limiting value of which is unity; the radius^ n— m ° J

of convergence of the series is therefore unity. The series con-

verges absolutely at any point z interior to the circle of radius
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unity, and uniformly in any circle of radius less than unity.

Denoting the limiting sum of the series by f(m), and applying
the theorem of Art. 209, we find for points within the circle of

convergence f^ x/(m2) =f(m1 + m 2),

and thence f{rih)f{m^) . . .f(mq) =f(m1 + m 2 + . . . + mq).

First suppose m to be a positive fraction p/q in its lowest

terms, then putting m
l
= m., = ... = m

q
=

plq, we have

[f(p/q)]
q =ApI

therefore /(p/g) is a 5th root of/(p), that is of (1 + z)
p

. Let

1 + r cos 6 = r, cos
(f>,

r sin = rx sin </>,
then

(1 + z)
p = 1\

P
(cos pxp + i sin p(f>),

and the values of the 5th roots of this are

?
( p(f> + 2stt . . pcf>+ 2stt

rj i cos h 1 sin——
( q q

where s has the values 0, 1, 2, ... q
— 1. We have

rx
= + Vl + 2r cos 8 + r2

,

v sin
and we may suppose </>

to be that value of tan-1 — —J which

is acute (positive or negative); such a value exists, for cos
</>

is

positive for all points within the circle of convergence. We see

then that/(p/g) is a value of fyr-P \ cos — 1- i sin —?—

and s must always have the same value, since we know that

f(l>'q) is a continuous function for all points within the circle of

convergence.

To find the value of s, put (j>=0, then /(p/q) is real, and must

therefore be equal to a real value of

2S7T
,

. ^ 2stt)

2

and therefore s = 0, or s = \q in case q is even; if r is sufficiently

small, /(-) is certainly positive; hence s cannot be equal to \q

and must therefore be zero.

We have thus proved that the sum of the series, when m is a

positive rational number p/q, is the principal value of (1 +z)m,

that is /nth nd>\

(1 + 2r cos 6 + ry/2?

(cos
£2 + i sin

' P
J

,

2/r-P xcos— + 1 sin -
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where the expression (1 + 2r cos 6 -f rz)
p!

'

2q has its real positive value,

and <b is the numerically smallest value of tan-1 ^, where^ J
l + rcos#

z = r (cos + i sin 6).

Next let m be a positive irrational number
;
we consider it to

be defined as the limit of a sequence mlt m.2 ,
... m r ,

... of positive

rational numbers. It will then be shewn that/'(m) is the limit of

the sequence f(vh), f(m 2), ... f(mr), ..., or f(m) = Lf(mr). We
have, for any point z in the interior of the circle of convergence,

ft \ i . ,mr (mr —l)
f(m f)

= 1 + m rz + & + .

+
(n-1)!

~ +-«nW.

where |i?M (.z)|
is less than the limiting sum of the convergent

series

N(N+l)...(N +n-l ) N(N+l)...(N + n)

n\ l

*
1

+ '

(n + 1)!
' '

+ -'

where iV is a positive number greater than all the numbers

m x ,
m2 ,

... mr ,
— For all sufficiently great values of n, we have

|

Rn (z) !

< e
>

f°r au the numbers m r , where e is an arbitrarily

chosen positive number. It is clear that the limit of the sum of

the finite series

as mr converges to m, is

m(m — 1) m(m — 1) ... (m — to+ 2)
1 + mz + V

2 ,

*2 + • • • +
(

—
[yj

>
J-h.;

and this is therefore the limit of f(m r)
— Rn (z). In accordance

with the definition of an irrational power given in Art. 186, the

limit of the principal value of (1 +z)
m

>- is (1 + z)
m

. Since

\Bn (z)\<€, for all the numbers mXi m 2 ,
... mr , ,.., L \Rn (z)\,

which must have a definite value, is ^ e.

It follows that

_ m(m— 1) m(m —
1) ... (m — ?i + 2)1 _l

??j2 J i v2 i _i i / V / zn-l+ +
2!

*+ — +
(n-1)!

differs from the principal value of (1 + z)
m
by a number of which

the modulus is not greater than e, for all sufficiently large values



ADDENDUM.

Insert on page 271, above the third line from the foot of the

page :—

To shew that when m > —
1, the absolute magnitude of an ,

diminishes indefinitely as n increases indefinitely, write s for the

positive number m + 1, and denote the product of a certain fixed

number of factors in the expression for \an \ by k
;
we have then,

if r is the integer next greater than s,

K|=&(i-i)(i

>[K)(n

s

r+1

<k

< k

r+1 )...(
1 +

1+s
1 1

r r + 1
+ ...+

n

The sum of the first r terms of - + - —
,

r r + 1
+ T2 + is >i,

that of the next 2r terms is also > £, and so on
; therefore, for a

sufficiently large value of n, the sum of the series exceeds a pre-

scribed multiple of £ ;
and thus the sum of the series increases

indefinitely as n does so. It follows that \an \

diminishes in-

definitely as n is increased indefinitely. When m = —
1, the terms

of the binomial series are alternately 1 and —
1, and thus the

series does not converge.
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of n
;

therefore the convergence of the Binomial series to the

principal value of (1 + z)
m has been established for the case of a

positive irrational number.

Lastly, let m be a negative number — m x . We have then

f()n)f(in i)—f(0)=l. Hence f(m) = l/f(m1 ),
or f(m) is the

reciprocal of the principal value of (1 + £)'"', or is the principal

value of (l+z)
m

.

We may state the complete result as follows -

The sum of the series

,
m (m — 1) „ m(m -

1) ... (m — n-f 1)

2 ! n !

fur all values of z of which the modulus is less than unity is the

principal value of (1 + z)"\ which, is

(1 + 2r cos 6 + r2)^
m

(cos m^> + i sin m<£),

when m is any real number, i being the modulus and 6 the

r sin u
argument of z, and

<\> being that value of tan~l—
-„ which

lies between ±\tt

This result was obtained by Cauchy, and will be found in his

Analyse Algebrique.

212. It now remains for us to consider the case when

mod. z = 1.

Denoting the terms of the series

m(m — l) m(m—l)(vi—2)1+™ +—2T— +— 3!
+"

by a
,
alt a 2 , ..., we have an+1/an = (m— n)j(n + 1) ;

when n>m
this ratio is negative, therefore the terms of the series are alter-

nately positive and negative, after a fixed term
;

the series is,

by Art. 194, convergent if the terms diminish in absolute magni-
tude and become ultimately indefinitely small. This will be the

case if n. —m < n + 1, that is, ifm > — 1
;
thus the series is a semi-

convergent one, if m >— 1, whereas if ra< —
1, it is divergent,

since the absolute magnitudes of the terms increase indefinitely.

From the proposition in Art. 200, it follows that the series

mlm — 1) , , , i ,

1 4- mz -\
^— z-+... converges when mod. z=\, provided

m>— 1, and z^—1.



272 THE THEORY OF INFINITE SERIES

When z — —\, all the terms of the series are, after a certain

terra, of the same sign ; applying the known test

Ln(l + an/aw-i)> 1,

the series will be convergent if

Ln {1
—

(n
— m —

l)/n] > 1, or if m > 0.

According to the theorem in Art. 207, whenever the series

m(m —
1) „l+mz+ v —V+ ...

converges on the circle of convergence, its sum is the value of

(1 + 2r cos + r-)^
m
(cos mcf) + i sin m<£)

at the point. We may state the complete result as follows :

The series

2 ' n !

converges when mod. z = 1, if m is positive, for all values of z ; also

if m is between and —
1, for all values of z except z =— 1, in

which case the argument of z is it. The series diverges when

m= — 1, and when m< — 1. For all values of z for which the

series converges, its sum is (2 + 2 cos 6)%
m

(cos |m0 + ism £m<9),

where 6 has a value between ± it.

The Binomial Theorem has been considered generally, for complex values

of m, by Abel, in a memoir published in Crelle's Journal, Vol. I.

The circular functions of multiple angles.

213. An important application of the Binomial Theorem in

its generalized form, is the expansion of (cos 6 + i sin 6)
m

,
of which,

by De Moivre's Theorem, the principal value is cos m0 + i sin mO,

if 6 lies between ± tr. Writing (cos 9 + i sin 6)
m in the form

cosm 6 (1 + i tan 6)
m

,
we have

V^pL) tal «+
...J

cos m6 + i sin mO = cosm

• f /i m(m—l)(m —
2) j . n V

+ % hn tan 6 ~f
'
tan3 0+ ...[

provided the series is convergent ;
this condition will be satisfied

if 8 lies between the limits ± \tr, whatever be the value of m,

and also when 6 = ± \tt, provided m > — 1.
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(1) Suppose m positive, then we have

cos m6 = cosw \l
- m(7?

","
1)

tan 2

+,(--i)(»-D(»-«)^_ <H
|

(1)j

sin md = cos™6 Li tan - m (m ~

^
(m " 2)

tan3
6> + . . .1 (2),

for all values of m, provided lies between + \ir, and they hold

for 0= ± \tt. These results are an extension of those obtained

in Art. 51, for the case of in a positive integer, in which case

there is no convergence condition.

(2) Suppose ra negative, then changing m into — m we have

cos md cos"10=1- m (^+l) tan 2

+ m(»
+ l)(m + 2)(« + 8

)tm<tf_ (3)

sin mS cos" =m tan 6 -
™ (?" + * )

,

("t + 2)
tan'g+ (4),

which hold for all positive values of m, provided 6 lies between

± \tt. These results hold for 0= ± \tt, only if m lies between 1

and 0.

214. The formulae (1) and (2) of the last Article have, in the

case when in is a positive integer, been applied in Chapter vn to

obtain expressions for cos mcf>, sin
ni(f>,

in series of ascending powers
of sin

<f>.
We proceed now to find similar expressions, when m

is not a positive integer.

We have proved that, when m is an even positive integer,

, , m2
. . ,

m" (m2 - 2 2
) .

cos m<f>
= 1 — „-, sin2

<p -\ -r- sin4

<p

m2
(m

2 -22
)(m

2 -42
) . „ ,

-^ -^sin^+ (5),

and that, when in is an odd positive integer,

m(m2 - l 2

)
.

sin
vi(f>

=rn sin
<p

sirr'
<p

wi(m
a -ls)(ms

-3»)+ kT -sin8^- (G).

n. t. 18
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These series were obtained from the expressions for cos m<f>,

sin m(f), in powers of cos
cf>

and sin
<£, by substituting for powers

of cos
cf>, powers of 1 — sin2

(j>, expanding each of these by the

Binomial Theorem for a positive integral index, and arranging
the result in powers of sin

<f>.
The same series will be obtained

when m is any positive integer, not limited as to evenness or

oddness, provided cos
<j>

is positive, which will be the case if
<f>

lies between ± ^tt ;
the powers of 1 — sin2

<£ will no longer

necessarily be integral, but the Binomial Theorem is still applicable

since all the series will be convergent. Since all the series of

powers of sin2

<f>
are absolutely convergent, and since the original

expression for cos m(f>,
sin m<p each contains only a finite number

of terms, by Art. 210, we may arrange the result of the expansions
in a series of powers of sin2

<£.
Thus we see that if m is any

positive integer, each of the series (5), (6) holds, provided <f>
lies

between + \ir ;
the first series does not consist of a finite number

of terms unless m be even, and the second not unless m be odd.

Let/(m) denote the limiting sum of the series

. . .
,

. m2
,. .

, .„ . m (m2 — l 2
) . . .

, ...

1 + m (i sin
</>) + -q\ (* sin 9)" 9 "*

o~i (l sm ?)* + •-•>

where the series on the right-hand side is obtained by adding the

series (5) to the series (6) multiplied by i. When m is a positive

integer, we have
t/'(m)

= cosm^> + isin?)i0, if
<f>

lies between

+ \tt. Now when mx and m2 are positive integers, we have

f(m x ) x/(«i2)
=

(cos wi,^i + i sin mx <f>) (cos m.2 (f) + % sin m2 (f>)

= cos {m x + m2) <$> + i sin (v^ + m,) <j>

=f(m1 + m2).

The product of the two series /(wii), /(wi2)
will be of the same

form, whatever mlt m., may be
; thus, employing the theorem of

Art. 209, we conclude that the equation

/("'1) */(w»i) =/(w i + ^2)

holds for all values of wij and m2 ,
since the series are absolutely

convergent. We have consequently

f(m 1)f(m 2)...f(mq)=f(m1 + m,+ ... +mq)',

let 7?i!
= w, ... = niq^p/q, where p and q are positive integers, we

get then
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1

hence f(pjq) is a value of \f(p)}
q

,
and is therefore of the form

jt?$ + 2S7T . . M<£ + 2S7T
cos ^- h i sin -r

-,
q q

where s is some integer. Now when
<f>
=

0, we have f(p/q)= 1,

hence since the sum f{pjq) varies continuously as increases

from -i7r to +$ir, we must have s = 0, if lies between these

limits; hence in that case

/(p/q) = cos + * s i n— •

Next let m be a positive irrational number defined as the
limit of a sequence of irrational numbers mlt m2 , ... mS) .... We
have then

f(m s)
= 1 + w, (i sin 0) +~ (i sin

<£)
2 + ...

,
w,(7» g

2 -P)... (w/-2r-3l 2
) / . . JX ,

(2r-l)!
-(isin0)-'-

1

m.'(nta»-2')...(w,»-27=2|') ,. •
,w , p

(2r) !

-(uin^-^iJ,

where
|

R
|

is less than the modulus of the limiting sum of the

convergent series

N(N* + 1*)...(N*+W^l\*). . ,, ,

; i , -. x ,

— sin <f>
2>+*

(2/- + 1)!
ri

,
iV7iV

2 + 2 2

)...(iY
r2
+27|

2

), . ,, ^+
(2^+2)1

U
l**4>\

M + ..'.

iV denoting a positive number which is greater than all the

numbers m1} m 2 , .... For each fixed value of
<£,

r may be so

chosen that
|

R I < e, where e is an arbitrarily chosen positive

number, for all the values ra1} in 2 ,
... of m8 .

The limit of/(ms) or cos mg </>
+ i sin mg $, as .9 is indefinitely

increased, is cos
?»</> + i sin

??*<£. It then follows that

m-
1 + in (i sin <£) + = -

(i sin 0)
2 + . . .

ra(ra
2 -l 2

)...(ra
2 -2r-3j 2

)+ ~ ^ _ i m -(isin^)-'
»

(2r-l)!
ra2

(m
2 -2 2

)...(m
2 -27^2| 2

) .

+
-(27)1

(* sm *)

differs from cos ra$ + * sin ?n<£ by a number of which the modulus

18—2
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does not exceed e. Since e is arbitrary, it has thus been shewn

that for each value of $ between + \ir, the infinite series con-

verges to cos m(f> + i sin mcf).

Lastly let m be a negative rational or irrational number — m1 .

Since f(m) x/(mj) =/(0) = 1, we have

f(m) = 1 /(cos m 1 (f)
+i sin m^) = cos m<f> + i sin m<j>.

We have shewn thus that the two series

m2
. „ . m2 (m2 — 22

) .
t , .„.

cos m0 = 1 — Q-:
sin2

<f> H
— sin4

d> — (5),

. . m(m2 -l 2
) .

3sin m(p = m sin <p
— sin3

<p

m (m2 — l2
) (m2 — 32

) . . .

+ -

-yp-
~sm5 0- (6),

hold for all values of
</> lying between + \ir, whatever real number

m may be.

The series (5), (6) converge absolutely when
<f>
= ± \ir. For,

denoting by ar the absolute value of the general term of the first

series, we have

ar _(2r + l)(2r + 2) /

+ J3_ + JL
ar+1 (2r)

2-m2
V 2r 2r2

J \ 4r2

therefore L r [
—-— 1

)
= -

,

\ar+1 J 2

and thus in accordance with a known test, the series is con-

vergent. The series (6)' may in a similar manner be shewn to

converge. In accordance with Abel's theorem in Art. 207, the

series (5) and (6) converge to the values cos ^ nnr, ± sin ^ mir, when

4>
= i i 77"-

A similar proof will shew that the two series

, , m2 -l 2
.

, ,

cos m<fi]cos 9 = 1
<j-j

— sm-
<p

(m
2 -l2)(ma -32

) .
l

.

+ -

^ ^sin4

</>- (7),

J. / J. J.
m (1U2

- 2') •
! J.sin ?n<p/cos <p

= m sm
<p
— ——— sin3

<f>

m(m2

-2'-)(m
2 -42

) . „
.

+ — ^f -sin 5

0-... (8),

hold for all real values of m, provided (f>
lies between + ^tt.

The series (7), (8) are not valid when
<f>
— ± ^tt.
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The series (7) terminates only when m is an odd integer, and

(8) only when m is an even integer.

215. If we take the series for cos m<f>+i sin ??i<£,
from (5) and (6),

and put z= i sin
</>,

we have, since (cos <f>
+ i sin <£)

m = (J\ + z2 + z)
m

,

the expansion
, m- m(m2 —l 2

) , ??i
2
(?n

2 — 2 2
) ,

(Jl+z2 + z)
m = l + mz

+Yl
Z + ~S\ +_

4!
i«*+...

m(//r-l
2

)...(m
2 -2s-3j 2

) „_,+
(2^-1)!

Z

m2
(m

2 -22
) ... (m2 - 2s-2|

2
) „+

(5)1
Z + ""

In a similar manner we have from (7) and (8)

, i— v , /= -.
m2 —l 2

n m (m 2 — 2 2
) ,

(v/l + *2 + z)
m
lJl + z2 = 1 + wis + —

2j-
z2 +—^ -

;
*8 + . . .

w(m 2 -2 2

)...(m
2 -2s-2 2

) 2g_1+
(2s- 1)!

(m
2 - l 2

) (m
2 - 32

) . . . (m
2 - 2s - 1

1

2
) „s

It can be shewn that these expansions hold for all real values

of ??i, provided the modulus of z is less than unity. By some

writers, these expansions are investigated directly, and then the

series (5), (6), (7), (8) are deduced. It is however not easy to

investigate these series by elementary methods, except when the

modulus of z]J\ + z2 is less than unity ;
we should, with that

restriction, obtain the series for cosm<f>, sinm<£, only when <£ lies

between + \ir, which is the same restriction that applies to the

series (1) and (2). However, by employing the principle of con-

tinuity, it is seen that the above expansions are valid in the

region |

z
\

< 1 of convergence of the series.

216. If in the series (5) and (6), we change <f>
into \ir

—
<f>,

we

obtain the following series which hold for values of
<f>

between

and 7r,

fir ,\ , m2
„ , ,

ra2

(ra
2 -2 2

)
cos m f

^
-

</>
J
= 1 -

g-j
cos +—

hjTT
— cos ^ ~— (9 )'

fir \ . m(m2 —l 2
) , ._..

sinm I ^
— $

j

=mcos <p s-j
cos <p + (10).

We can now find series which express cos m§, sin m<f>, when <£
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has any value 1
. If

<f>
— i"7r + (f> , where <£ lies between + \ir, and

r is an integer, we have

cos mcf)
= cos mrir cos m<fi

— sin mr-rr sin m<f> ;

also sin
(f>
= (— l)

r sin $ , thus we have, if
<f> lies between (r + ^) it,

cos wi<£
= cos mrir (l — =- sin 2

c/>
+ . . .

j

f ?7Z ( T72.
2 —~ 1") )— sin (m — 1) rir \m sin <£

— —^-=-: sin3

</> + . . . Y ...(11).

Similarly

1 —
~-j

sin2
<f) + . . .

j

(
. m (m2 — l 2

) )+ cos (m— 1) ?*7r jm sin<£
^— sin3

<£ + ...V ...(12).

From (9) and (10), we obtain in a similar manner

7T ( Wl2 )

cos??i<£
= cos?>i(2r + 1)

— <1 — -^ cos2

<£ -f- ...>

+ cos(ra-l)(2>- + l) ^j?»icos0 ^y- -cos3

4> + ..A (13),

sin
??i</>

= sin to (2r+ 1) 9 j
1 — ~- cos2

</>
+

...[

• / ,\/n tvTI , TO(TO
2 -1 2

) ]+ sin(m-l)(2/-+l) g j»*cos0 *-=-j
cos3 +

...^ (14),

where
(/>

lies between ?'7r and (r + 1) 7r.

217. Series of some interest may be derived from (5) and (6),

(7) and (8), by giving m particular values 2
. Let

</>
=

\ir, we have

then, writing x for to, in (5) and (6),

,
_ x2 x2

(x
2 -2 2

)
cos \irx = 1 -

2"j
+

4~T ^ 15 )'

sin \ttx =x ^—-—- + -*
-9 -

• • • (1G).o ! o !

Again letting ??i = 2x, <f)
=

^tt, in (5) and (8), we have

, x2 x2 (x2 -l 2
) x2

(x
2 -l 2

){x
2 -22

) ,,,_,.

cos|7ra; =l--+ V

4 ,

' --*
g^

* + ... (17),

. ,_ f
x (x2 -

1-) x (x
2 - P) (x

2

-2-) ) ,_ oxsini7™ = J
rv

/

3Jtf--
L

g-j

—- + — ^y --..j
(18).

1 The formulae (11), (12), (13), (14) were given by D. F. Gregory in the

Cambridge Mathematical Journal, Vol. iv.

2 The series in this Article were obtained by Shellbacli, see Crelle's Journal,

Vol. xlviii. ; they have also been discussed by Glaisher in the Messenger of Mathe-

matics, Vols. ii. and vn. Series equivalent to (15) and (16) are given by M. David

in the Bulletin de la Soc. Math, de France, Vol. xi.
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Various series may be found for powers of tt, by expanding cos|;r.r,

sin \irx, ... in powers of x, and equating the coefficients of the powers of x

to those picked out from the above series
;
for example from (16) we have,

by equating the coefficients of x3
,

n 3 11 11.3/ 1\ 11.3.5/ 1 1\

Expansion of the circular measure of an angle in powers

of its sine.

218. If in the expansions (5) and (6), for cos mcp, sin nuf>,
in

powers of sin
</>,

we arrange the series as series of ascending

powers of m, as we are, by Art. 210, entitled to do, since the

series

1 +
«-j

sin- <p H
j-j

sin4

cp + ....

. . in (in2 + I s
) .

,
.m sin

<p 4-
—^— sm 3

<p + ...
o 1

are convergent, we may equate the coefficients of the various

powers of m, to the corresponding coefficients in the expansions

of cos
ni(f>,

sin mcf),
in powers of

<f> ;
we thus obtain from (6)

.
,

1 sin3 6 1.3 sin 5 $

,
l'.3.5...(2r-l)sJn»"»0 nQ,

2.4.6...2r 2r+l
+ ^''

and from (5)

2 sin4
<f> 2.4 sin'

;

<b
I • •

+
3.5...(2r-l)~7"

+ {
~U) '

these hold for values of
(j>

between + J-7T, or when
cf>
= ± ^7r. We

may also write them

sin-1 a? = a; 4- -
-^ +^—

- -+ (19),

(sin-^-)
2 =

^+3-2 +
3-.5 ;y

+ (20 )'

where sin-1 a?, in either equation, is the positive or negative acute

angle whose sine is equal to x.

The series (19) was discovered by Newton; the method of

proof is that of Cauchy.
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219. By changing x into x + h in the series (20), and equating
the coefficients of h on both sides of the equation, which process

is equivalent to a differentiation with respect to x, and may be

justified by employing the theorems of Arts. 210 and 208, we

obtain the series

sin-1 a; 2 , 2 . 4 „ , _,\= x + ^x* + 7r
--x' + (21),STZ* "3 '3.5

or putting sin
</>

for x,

2 2 4.
<£/sin </>

cos
<f>
= 1 + 5 sin2

<£ + ~—_- sin
4

</>
+ (22),o o . O

or writing 2<j>
=

6,

0/sin 9 = 1 + ]\{1
- cos 6) +^| (1

- cos 6)~ + ...

which may be written

6 cosec = 1 + \ vers + \~ vers2 + (23).
o o . O

Again, in (22), put tan
<f>
=

y, and we obtain the series

tan-1

2/=-^-il +--1—+-^- f* +. ..[...(24).
!+?/-( ol+?/' 3.5(1+2/-) j

Expression of powers of sines and cosines in sines and cosines

of multiple angles.

220. We shall now shew how expressions of the form

cosm0sin,l # may be conveniently expressed in cosines or sines

of multiples of 6. We shall in the first instance confine our-

selves to the case of positive integral values of m and n. Let

z — cos + i sin 6, then z~x = cos 6 — i sin 6, hence 2 cos 6 = z + z* 1

,

2i sin 6 = z — z~l
,
and

(2 cos 6)
m

(2i sin 6)
n =

(z + z~ l

)
m

(z
- z~l

)
n

;

if we expand the expression in z, in powers of z and z~ l

,
we can

arrange the result in. a series of terms of one of the two forms

k (z
r + z~r

), k(z
r — z~r

), where & is a multiplier depending on in, n,

and r
;
now zr = cos rd + i sin rO. and z~r = cos rO — % sin rO, by

De Moivre's Theorem, hence

k (z
r + z~r

)
= 2k cos rd, 2k (z

r - z~r
)
= 2ik sin rd,

thus we have the required expression for coswt 0sin'"0 in a series of

cosines or sines of multiples of 6.
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Example.

Express sin^dcos^d in series of multiples of 6.

We have (2iski6)° (2 cos 6)
6=(z-z- ^(z + z- 1

)
6=

(2*
- a-^^ + s" 1

)

which is equal to (z™-5z6+ \Oz2 -lOz- 2 + 5z- 6 -z- 10
)(z+ z- 1

),

or 3U+a9_537_526+ 102S+103r 103- 1 -10«- 3+ 53- 5+53-*-3-0-3- 11
,

which is equal to 2t (sin 110 + sin 96 -5 sin 76 -5 sin 50 + 10 sin '36+ 10 sin 0),

therefore sin5 cos6 is equal to ^ (sin 110+sin 96 - 5 sin 76 — 5 sin 56

+ 10 sin 3(9+ 10 sin 6).

This process may also be arranged thus, writing c for cos 6, s for sin 6,

(2c)
6= l + 6 + 15 + 20 + 15 + 6+ 1,

(2«) (2c)
G=l + 5 + 9+ 5- 5- 9- 5- 1,

(2«)
2
(2c)

6=l + 4 + 4- 4-10- 4+ 4+ 4 + 1,

(2w)
3
(2c)

6=l+3+ 0- 8- 6+ 6+ 8- 0-3-1,
(2w)*(2c)

c= l + 2- 3- 8+ 2+ 12+ 2- 8-3 + 2 + 1,

(2*'s)
5
(2c)

c=l + l- 5- 5 + 10+10-10-10 + 5 + 5-1-1;
here the powers of 2 are omitted on the right-hand side, and a figure in any
line is obtained by subtracting from the figure just above it the one that

precedes the latter.

This very convenient mode of carrying out the numerical calculation is

given by De Morgan in his Double Algebra and Trigonometry.

221. We can obtain formulae for (2 cos 6)
m and (2 sin 6)

n
,

Avhen m is a positive integer, in cosines or sines of multiples of 6,

by the method we have employed in the last Article. We have

in (m — 1 )

(2 cos 6)
m =

(z + z~ l

)
m = zm + mzm-* + —^—'

zm~* +...+ «r»

hence

2»n-i cosm0 _ cos m + m cos (m - 2) 6 + - - -— - cos (m - 4)0 + . . .
,

where the last term is

1 m m! a
or —= =— cos 0,

2(£m)!(£m)! (£m-l)!(£w+ l)!

according as m is even or odd.

From

(2ismer={z-z-
l

)»
i =zm-mzm-*+—'™~-- zm-> -... + (- 1)'" z~

m
,

we obtain similarly
m

2™-i (_ l)*~sin
m = cos md - m cos (m — 2)0

„i (m — 1) , . ^ / i \? ™ !

+ -2T-" COs(wi
" 4^"- +(" 1)

"2(i,iO!(i»0!
when //t is even,
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m -1

or 2"1
"1

(- \)~^~ sinm = sin m,0 - m sin (m -2)0

m(m — 1) . , ., a ,
. _ x

—x- m . _
+—^—-sm(m-4)t9-...+(-l)

2 sin fl

2! (im-l)!(im+l)!
when in is odd.

These formulae have already been obtained in Chapter VII.

222. We shall next consider the expansions of cosm #, sin"l #

in cosines and sines of multiples of 0, when m is any real number

greater than — 1. We have from Art. 212,

2m ( + cos
l-<f>)

m cos m (h<j>
-

kir)

m (m — 1) „ ,
in (m — 1 ) Cm — 2)= 1 + m cos

</>
+ v —7

cos20 +—— ., ,

—
cos3d>+...,

lt\ o !

2m (+ cos
ic/>)

w sin m
(i</>

-
kir)

m (in — 1) . _ . m Cm -
1) (in — 2) . „, .= msm</> + —±y 'sm2^+ —^ ;

sin3</)+ ...,

where
</>

lies between (2&
—

1)tt and (2&+ 1) ir. Multiplying the

first series by cos a, and the second by sin a, and adding, we get

2m (+ cos
%(f))

m cos (a
—

hiicj) + mkif) = cos a + m cos (a
—

</>)

in (m — 1 ) , _ . N m (m — 1 ) (m — 2)+-~—- cos (a- 2c/))+^ ^ -cos(a-3<£)+...,

where
(/>

lies between (2k
—

1) 7r and (2& + 1) ir. Let
t/>
= 20, then

corresponding to the two cases of k even (= 2s), and k odd (= 2s + 1),

we have

2m cos'n cos (a
- md + Imsir)

= cos a + m cos (a
-

20) + --^j
—- cos (a

-
40) + . . .

,

where lies between 2s7r — \tt and 2stt + \tt\ and

2m (- cos b)
m cos (a

- md + m±s+\ir)
Til i'D'l

— 1 )= cos a + m cos (a
-

20) + -^-
—- cos (a

-
40) + . . .

,

where lies between 2s7r + ^tt and 2s7r + 07r.

In these results, put a = m0, then we have

2m cosm cos 2msir

= cos ra0 + m cos (m - 2) +
7ZM™ Z_J cos (m _

4) # + _ (25),
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where 6 lies between 2sir — ^tt and Isir + ^tt ;
also

2m (- cos 6)
m cos (2s + 1) tott

= cos md + m cos (m -2)6 + "i

~
cos (m - 4) 6 + ... (26),

where 6 lies between 2s7r + hir and 2s7r + §7r.

Again, put a = md + \ir, then we have

2W cos'" sin 2 msvr

= sin mO+m sin (m -2)6 +
" l

^ — '

sin (m - 4) 6 + ... (27),

where 6 lies between 2stt — \-n and 2sir + \ir ;
also

2W (- cos 0)'" sin (25 + 1) imr

??& ( '1)1/ "^" 1 )= sin w0 4- m sin (m -2)6 +—~— sin (to.
-

4) 6 + . . . (28),

where 6 lies between 2sir + hir and 2s7r + §7r.

Next change 6 into # — |7r, and then put a=m6, we then have

2w sin"'0cosm(2s + £)7r
tn (vi 1^= cos m6 — m cos (to -2)6 -\ ^——- cos (m — 4) 6 - ... (20),

— 1

where 6 lies between 2s7r and (2s + 1) it
;
also

2m (- sin 6)
m cos m (2s + §) tt

= cos m6 — m cos (m — 2)6-\ ^-=-—- cos (m- 4)6 — ... (30),

where 6 lies between (2s- + 1)it and (2s + 2) it.

Lastly, put a = md + ^ir, and change 6 into 6 — \irt
we have then

2m sin'" 6 sin to (2s + £) tt

= sin ?/*# — to sin (to
—

2) 6 H ^rr~ - sin (^ — 4)
—

. . . (31 ),^ 1

where 6 lies between 2s7r and (2s + l)7r; also

(- 2 sin 0)
m sin to (2s + f) tt

= sin to<9 - to sin (m - 2) 6 +
m
^~

1 )
s in (m _

4) # _
. . . (32),

where lies between (2s + l)7r and (2s + 2)7r.

These series are convergent for all values of 6, if m is positive.

If to lies between and —
1, the extreme values of 6, 2sir ± ^ir or

2s7r, (2s + \)tt must be excluded, as the series cease to be conver-

gent for those values of 6.

The eight formulae of this Article were given by Abel, in his memoir
on the Binomial Theorem, and n

j >j
><-.i r to have been overlooked by subsequent

writers.



CHAPTER XV.

THE EXPONENTIAL FUNCTION. LOGARITHMS.

The exponential series.

223. Let us consider the infinite series

the limiting sum of which we shall denote by E{z), where z is a

complex number x + iy. If r is the modulus of z, the series

yVl2

l + r + — + ...

is convergent for all values of r, since the ratio of the (n + l)th

term to the nth is r/n, which diminishes continually as n increases
;

consequently the original series is absolutely convergent for all

values of z. This series is called the exponential series, and is

uniformly convergent in any circle with centre at z = 0.

224. If we multiply together the two exponential series corre-

sponding to Zi and z2 ,
the term of the mth degree in zL and z2 is

-, m ? m—i » v m—2 „ 2 „ m
A>1 &\ 6*2 ^\ ^2 2

ml
+
(m-1)! \\

+
(m - 2) ! 2~!

+ '" +
ml

which is equal to — (z l + z2)
m

, by the Binomial Theorem for a

positive integral index. We have therefore for the product of the

two series, the series

2 ! m !

which converges to E(z1 + z.2 ). Now by the theorem in Art. 209,

since the exponential series are both absolutely convergent, the

product of their sums is equal to the sum of the product series as

above formed, therefore

E{zl)xE{z.2)
= E(z1 + z.^ (1).
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From this fundamental equation we deduce at once

E{z,) x E(z„) ... x E(zn) = E(z, +zs + ... + zn)

and thence {E(z))
n = E(nz) (2),

where n is any positive integer
1
.

225. If in the equation (2), we put z= l, we have

E(n)={E(l)}n,
where E(l) denotes the limiting sum of the series

Till.
It will later on be shewn that the number ^(l) is an irrational

number 2 ,

718281828459...; it is usually denoted by e. We have

therefore when n is a positive integer, E (n)
= en.

Again in (2), let z=p/q, where p and q are prime to one

another, and let n = q, we have then {E(p/q)}v = E (p), hence

E(pjq) must be a </th root of E(p) or ep
; since E(p/q) is real

and positive, it follows that E(p/q) is the real positive value

of %/e
p

,
which we call the principal value of eplq .

The exponential series is a particular case of the power series con-

sidered in Arts. 203—208. Its radius of convergence is infinite,

and consequently the series converges uniformly in any fixed circle

with its centre at the point z = 0. Moreover, in accordance with

the theorem proved in Art. 200, the function E(z) is continuous

at any point z. If x be any given irrational positive real number, it

can be defined as the limit of a sequence x
x ,
x2 , ... ocm , ... of positive

rational numbers. In accordance with the definition in Art. 186,

the principal value of e* is the limit of e
x>» when the integer m

is indefinitely increased; it is known that this limit exists and

has a value independent of the particular sequence of rational

numbers employed to define the given irrational number x. Since

E(z) is a continuous function, it follows that E(x) is the limit of

E(xM ) when m is indefinitely increased. Hence since e
x™ — E(xm),

for every value of m, it follows that ee =E(x), when e* has its

principal value.

Next if x be any negative real number, since

E(x)E(-x) = E(0) = l,

we have E(x) = l/e~
x = e

x
,
where ex

,
e~x have their principal values.

1 This investigation is due to Cauchy, see his Analyse Algtbrique.
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We have thus proved that for any real number x, the sum of
x* . .

the limiting sum of the series l + x + ^ + ... is the principal value

of ex
,
where e is defined by E(l) = e. This is the exponential

theorem for a real exponent.

226. We shall now shew that whatever complex number z is,

the number E(z), the limiting sum of the exponential series in

powers of z, is equal to the limiting value of (1 +z/m)
m

,
where m

has positive integral values, when m is indefinitely increased. We
have

(1 + z/m)
m

z m(m — l)z- m(m—l)...(m — s+l)zs

7)1 2 ! 771" S ! 771
s

. 1+ , + (
1 _i)^ + ... + (i_i)(i_i)...(i_!zi)«;+....

V 771/2! V nil \ inJ \ m J si

Now if a, b, c, ... be any positive real numbers, less than unity,

we have

(1 -a)(l -b) >1 - (a + b)

(1
-

a) (1
-

b) (1
-

c) > (1
- a - b) (1

-
c)

> 1 - (a + b + c)

Hence

(l-a)(l-b)(l-c). , < 1, and >1 ~(a+ b + c + ...),

say =l-6(a + b + c+ ...),

where 6 is some number between and 1. Hence we have

(
1 _IV1_!W1 _i)_i_ ft (I +

! + ... + £)V 771/ V v '/ V m J \" 1 m 771/

-i-e..
' l' +1)

.s
^ni

'

where 6S is some number between and 1.

We have now
Z" zs zm

(l+z/m)
m = l + z + ~ + ...+- + ...+— +R,v ' 2 ! s ! 77i !

where R denotes

z1 L /, z n z 1
„ zs

„ zm ~-

2m
i + * •

X
+ & •

2]
+ • • • + 0.+1

7j
+ ... + e in_,^ -^

The sum of the series in the bracket has a modulus less than the

z\ _ \z
I *l«

limiting sum of the convergent series 1 + -^ +
-—- + . . .

;
and when

J- — -
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m is indefinitely increased, z-/2m converges to zero. Therefore the

limiting value of {1 -f z/m)
m

,
tvhen m is indefinitely increased, is the

function E(z). The number e is the limiting value of (1 + l/m)
m

.

227. The theorem proved in the last Article gives us the

means of finding the value of E (z), where z = x + iy, a complex
number. We have

E(x + iy)
=L(l+^y ;

put 1 + xjm = p cos
<p, ylm = p sin

<p,
then

1 + - —-
) =pm (cos (p + i sin (p)'"

= p
m
(cos m<p + i sin m<}>),

by De Moivre's theorem. Also

/, 2x x- + y
2

P =J l + — +
» >r V m ni-

ii

and 6 is the principal value of tan-1 —-—
. The limiting value of

1 r x + ni
°

p
m

is that of

m/ { (x + m)
2

r ,4m

orof ^>{
1 +

«»(Vm+ «r/Vi»W
'

now suppose that r is a fixed positive number less than \fm + xj*Jm,

then the limit of

if- ) %m
1 +

»i (\/m + x/\/m)-)

is between unity and that of

( mr-)

or between 1 and e^ '
r

;
now r may be made as large as we please,

subject only to the condition r < \/m + x\s]m, hence the limit of

\ ^(x + mf\

is unity, and therefore that of p
m

is E{x), which is the principal

value of e
x

. The limiting value of m tan" 1 —
f-

- is that ot ——
,

l + - £
J
=ex

(cosy + i sin y),

where e* has its principal value; thus

A'(« + iy)
= e* (cos 2/ + i sin y).
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Expansions of the circular functions.

228. If in the last result we put x = 0, we have

E (iy)
= cos y + i sin y,

hence cos y + % sin y = 1 + iy
—

I-,
— i k-. + . .. ,

or, equating the real and imaginary parts on both sides of the

equation, we have

cosy = l-£ + £-...+(-iy (̂ l

+ (3),

s.n y = y-^, + f,...4(-l)- l

-
TI^

+ (4),

the series for cos y and sin y expanded in powers of the circular

measure y ;
these series have already been obtained in Art. 99.

We may also write these results in the form

cosy = ±{E{iy) + E(-iy)} \

sin
y=^{E(iy)-E(-iy)}j

(5) '

The exponential values of the circular functions.

229. If z is a real number, the expression e
z
, as defined in

Algebra, is multiple-valued except when z is a positive integer.

If z is a fraction p/q in its lowest terms, evlq has q values, the 5 th

roots of ep
;
of these values, that one which is real and positive is

called the principal value of e
z

,
and is equal to E (z). When z is

an irrational real number, the principal value of ez is defined, as in

Art. 186, as the limit of the sequence formed by the principal values

of ez >, e
z
>, ... eZr, ..., where zu z2 , ... zr ,

... is a sequence of rational

numbers of which z is the limit. We shall in general understand

e
z to have its principal value E (z).

When z is not a real number, no definition of ez has as yet been

given, and it is so far a meaningless symbol.

It is convenient however to give by definition a meaning to

the symbol ez or ex+iy. At present we give only a partial defi-

nition of the meaning we shall attach to e*
;
we define only what

may be called its principal value, and shall shortly proceed to a

more general definition.
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The principal value of the function ez we define to be the function
E (z), or 1

,
what amounts to the same tiling, the limit of (1 + z/m)

m
,

when m is indefinitely increased through positive integral values.

It should be observed that this definition of the principal value

of e
x+iy is such that the function satisfies the ordinary indicial law

this follows from the theorem (1) of Art. 224 We shall in

general, when we use the symbol e*, understand it to have its

principal value E (z) as just defined.

230. With this understanding as to the meaning of the symbol
e*+iy, we have, by Art. 227,

ex+iy _ e
x
(CQS y -\-i Sin y)f

and putting x = 0, eiy = cos y + i sin y.

The theorem (5) may now be written

cos y = h, (e
uJ + e~ {

y)
'

sin y = —. {e
iy — e iy

)

.(6).

2i

These are called the exponential values of the cosine and sine.

The student should bear in mind that these theorems (6) are

nothing more than a symbolical mode of writing the equations

(3) and (4) which have also been written as in (5).

The only advantage of the symbol eiy over the symbol E(iy) is that the

former one reminds us more readily of the law of combination given in

Art. 224. The theorem (1) is of the same form as that for the multiplication
of real exponentials ;

we therefore find it convenient to introduce exponentials
with imaginary indices, for which the law of combination shall be that

expressed by (1).

230 |1J
. The function ez being defined as above, for any complex

value of z. as the limiting sum of the exponential series

1 +z + z*/2\ + * :

'/3 ! + ...,

z2 zg

we see that ez = 1 + z +
-^-
+ ...+ — + Rs ,

where
|

jRs
[

is not greater
8

z
\

8+1
I z

\

s+2

than the sum of the infinite scries y-
—

^r-, + ——^r— + It
(.9+1)! (5+2)!

1 The latter form of the definition is that introduced by Schlomilcli, see

X. ilrhrifi fiir Math. Vol. VI.

II. T. 19



or than f-± 1 N
f

e' zi
. In case

|

z
j

< 1, we see that

g \*+i

R\ <r[V^-. ^l-+-[^i-l-|^|
2

-H-

z \s+i
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follows that
|
jR,

|

is less than i£J!lL ji + \ s I + IfJ! + Li!! +J (s + l)! I

' 2! 3!

I12l<

or
I

-K
I

<
/1 '

(s + 1) ! 1 —
| s|

We have thus shewn that ez =I+z + =-, + ... + —, (1+ uX
2 ! tS !

I z ''

where
|

us
|

< '— e lzl
;
and thus

|

us
| converges to zero as

j

z
|

does

so. In particular, by taking s = 1, we have the theorem

e* = 1 + z(l + i^), where \u x
\ <^\z \e

lzl
;
and thus 1^1 converges

to zero as
|

z
|

does so. We may express this result in the form

L tl-L
|z|=0 z

gZ
+ h qZ

From the last result we have L —j =e2
,
and thus the function es is

such that it is equal to its own differential coefficient.

The function e8 may be introduced into Analysis by defining it as that

dtL
function u which satisfies the conditions -=- —u for every value of a, and

u= \ when 2= 0. If it be assumed that there exists a series a + «iS+#222+ ...

which is convergent for every value of z, and such that the derivative series

a
1 + 2a 2 z + 3a3 z

2 + ... has the same property, both series converge uniformly

in a circle of any finite radius. Denoting by u the sum of the first series,

dn
that of the second series is, in accordance with a known theorem, -j- . If

(ill

then -y = «, we can equate the coefficients of corresponding terms; thus
ciz

a
x
= a

,
2a2

= a
1 ,...nan

— an _ l ;
and thence we find are

= an/?i!. It follows

f s2 zn )

that m= « ^1+s+ ", + ...+ —: + ...>•; and it is easily seen that this series

actually satisfies the assumed conditions of uniform convergence. It follows

CL1L

that the sum of this series satisfies the condition -j- = u. If u=l when
az

2 = 0, we must have a = l. In this manner we are led to the series

z2 zn

!+*+-+ ...+_+...,

with the investigation of which we have commenced in the text of this

(

lhapter.
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Periodicity of the exponential and circular functions.

231. We have shewn that E (z)
= ex (cos y + i sin y) ;

now cos y,

siny are unaltered if 2&7r be added to y, k being any positive or

negative integer, consequently E(z) = E (z + 2iXV) ;
or E (z) is a

periodic function, of period 2i7r. Since e2 = ez+2kin
,
the exponential

e? is periodic, with the imaginary period 2iir
;

also eiz = ei {z+ 'kn)
,

or e iz as before denned, is a periodic function of z, with a real

period 2tt.

We have thus seen that each of the two functions e2 , e
iz

is

sinr/ly periodic, the first having an imaginary period 2iir, and the

latter a real period 2tt. The student who is acquainted with the

elements of Elliptic Functions will know that it is possible to

construct functions which have both a real and an imaginary

period ;
such functions are called doubly periodic.

232. The circular functions cos y, sin y were first introduced

by means of a geometrical definition, and we have regarded them, in

the earlier part of this work, as functions of an angular magnitude
measured in circular measure. We can however drop the idea of

the angular magnitude, and regard them as functions of a variable
;

a value of the variable of course measures the magnitude in

circular measure of an angle by means of which they were defined.

The main importance of these functions in Analysis is derived

from their property of single periodicity ;
it has been shewn by

Fourier and others that all functions having a real period can,

under certain limitations, be represented by means of a series of

these circular functions. It would however be beyond the scope

of the present work to enter into this most important branch of

Analysis.

Analytical definition of the circular functions.

233. It is possible to give purely analytical definitions of the

circular functions, and to deduce from these definitions their

fundamental analytical properties, so that the calculus of circular

functions can be placed uponabasis independent of all geometrical

considerations; these definitions will include the circular functions

of a complex number".

19 2
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We can define the cosine and sine of z by means of the

equations
cosz = ${E(iz)+ E(-iz)}

'

= ±-.{E(iz)-E(-iz)}\
j

" (7) '

sin z

where E(z) denotes the limiting sum of the series 1 + z+ ~ + ...
& i

In other words, we define cos z as the limiting sum of the

z2 z*
series 1— ^- + j- ..., and sin z as the limiting sum of the series

z—
Q-T + -F1

• ••• We may regard this then as the generalized

definition of the cosine and sine functions, and it includes the case

of a complex argument, which was not included in the earlier

geometrical definitions.

For real values of z, the functions cos z, sin z are in accordance

with the earlier geometrical definitions, because the series which

they represent agree with those obtained, in Art. 99, from the

geometrical definitions.

z*

By employing the theorem ez = 1 + z +
^~,
+ . . . H—; + Rs > where

z s+1

|

Rs
|

< — J—— e'
2

', proved in Art. 230 (1)
,
we see by changing z into

(s + 1) .

iz and -
iz, letting s = 2m + 1 and adding the expressions so

obtained, that

z- z4 z-
m

a** = i -
Tl

+
ri
- ... + (- vr

(2 ,-r,

+ rj,

I g i2m+2

where
|

RJ I < th— -srn e lz|
. In particular, we have cos z— 1 + R \

'

(zm + Z)]

I

z I

2 1
where

|

jK
'|
< —~- e iz|

,
and cos z = 1 — ~ *2 + ii/, where

z?
In case

|

z
\

< 1, we have also \R
'

\< ^-^
—— and

-Ri'
I

<
*'

41(1-1*1)'

Similarly we see that

z
n.m+\

Sin * = Z ~
3!

+
5!

" "• + (
" 1)m

(2^+1)"!
+ ^'
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- -2111+3

where \Sm'\ < ———-

T
---e lzl

;
and in particular sin z = z + JR ', where

'

(2m + 3) !

r

W\<4r* igl
> and sin z = z - \z* + 22/, where

j
SJ I < SrJV 1

. If

\z I

3 ' ' ~ '"

j

*
|

< 1, we have also
1
3/

j

<
ft n

—
v,

I
&'

I

< - 7

8(l-|jr|V
' *'

o!(l-|^|)-

234. From the definitions given in Art. 233, we can now
deduce the fundamental properties of the two functions. We
have

cos z + i sin z =E (iz), and cos z — i sin z — E{— iz),

hence cos2 z + sin8z = E {iz) E (- iz)
= E (0)

= 1.

Also

cos (zx + za)= £ {2? (?>! + i22) + 2? (— iz1
—

iz*)}

= I {E(iz,) E (iz2) + E(- iz,) E (- iz2)}

= I {E (iz,) + # (- &,)) {#(i*) + tf (- t>2)} + | {#(<*,)

-#(-^r)] {E(iz2)-E(-iz2)\

or cos (^ + 22)
= cos zY cos £2 — sin zx sin #2 .

Similarly sin (zx + ^2)
= sin z, cos #2 + cos zx sin 2.2 .

Thus the addition theorems follow from our definition.

235. Let us now consider the equation E(z) = 1. In the first

place this equation has no real root except z ~
;

for it is clear

from the definition of E(z) by means of the exponential series

that the equation has no positive real root
;
and it can have no

negative real root — x since the positive number x would then

also be a root, as is seen from the relation E(—x) E(x) = 1.

Also the equation E(z) = \ can have no complex root a -ft/3,

where
|

a
j

> 0. For, if a + ?'/? were a root, so also would be a — i/3,

and therefore E(2a) = E (a + i/3) E (a
—

z/3)
=

1, which is im-

possible, since 2a cannot be a root.

It thus appears that, in case the equation E(z) = l has roots

other than z = 0, they must be purely imaginary. In order to

shew that the equation has such a root it will be sufficient to shew

that the equation E(i/3)
— E (- i/3)

=
0, or sin/3 = 0, has a real

root other than zero; for, if /3 be such a root, we have

E(2i/3)={E(iJ3)}>= l,

and thus 2 i/3 would be a root of E(z) = 1.
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It will be shewn that, if /(ft) denote the continuous function

represented as the limiting sum of the series
P

3!
+

5! TI^"''

then f(ft) is positive for all values of ft such that S /3 S 3, and

that it is negative when ft
= 4. From this it may be concluded

that /(ft) is zero for one value of ft between 3 and 4, or for an

odd number of such values
;
and in any case that the numerically

smallest positive root of f(ft)
— is between 3 and 4, in case the

equation has more roots than one.

If ft is positive and < V20, each term in the series for f(ft),

with the exception of the first, is numerically greater than the

ft
2

ft
4 86

next following term. We have therefore /(ft) > 1 — ^- + v-:
—

=-.,
o ! o ! 7 !

for values of ft between and some number greater than 3.

Denoting 1-^ +—-^ by <f>(ft),
we find that 0(3) = 17/560,

which is positive, and
<f> (0)

= 1
;

also the derived function

<£' (ft)
= —

2ft (

^-
—~ +—

J
is negative when ft is between

. . . . 1 2/3
2

,
3/3

4 1 2/3- 11 2.3 2
_ „

and 3, since --_+—>-__>--_ > 0. Hence

<j>(ft) steadily diminishes from 1 to 17/560 as ft increases from

to 3
;
and it follows that /(ft) cannot vanish for values of ft

between and 3. We have also

. //IN , 42 44 46 48

,
8 7 256 .

/w<i-8i+rrri +
9i
<1 -i6-!i-i® < ^

and therefore, /(4) being negative, there exists at least one root

of /(ft) between 3 and 4.

Denoting the numerically smallest root of /(ft) = by it, we

see that 2iri is a root of E(z)= 1, and that there is no root of this

equation with smaller modulus, except z = 0.

From the present point of view the number it is defined as the

number such that E (2tti)
= 1, and such that no number, different

from zero, with smaller modulus exists as a root of E(z) = 1. If

k be any integer, positive or negative, E(2k-ni)= {E(2iii))
k = 1

;

and hence 2kiri is also a root of the equation E (z)=\. Also there

can exist no root 2p-tri, where p lies between k and k + 1
;
for in

that case we should have

E (2p7ri
-

2kTri)
= E (2pm) E (- 2fari)

= 1
;
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and 2 (p
—

k) iri, which has a smaller modulus than 2iri, would be

a root of E(z)=l, contrary to the supposition that 2iri denotes

the root with smallest modulus.

It has thus been shewn that all the roots of the equation

E(z)=l are of the form 2kiri, where k is a positive or negative

integer, and ir is a definite number which has been shewn above

to lie between 3 and 4.

The number ir being thus introduced into the analytical

theory, we have, for any value of z,

E(z + 2iri)
= E(z)E (2iri)

= E (z) ;

and therefore the function E(z) is a periodic function, with the

imaginary period 2iri.

It follows from the definitions of cos z and sin z that they are

also periodic, their period being 2ir
;
hence cos 2ir = cos 0=1 and

sin 27r = sin = 0. We have of course not verified the identity of

ir as here defined with the ratio of the circumference of a circle to

its diameter. This may however be done by considering the case

of a real angle for which the period of the cosine or sine is 27T,

according to either definition of the number ir.

236. We have also, E(iir) x E{iir) = E(2iir) = 1, hence E(iir)

must equal
—

1, since it cannot equal + 1, as iir is not a root of

E (z)
= 1

;
also E (— iir)

— — 1
, hence we have cos ir = — 1, sin ir — 0.

Again E (£ iir) x E(hiir) = E(iir) = -1,

and E (| iir) xE(-h iir)
= 1,

hence E(^iir) = ± i and E(— hiir)
= + i,

therefore cos \tt
= 0, and sin \tt

= ± 1
;
to remove the ambiguity,

we remark that if z is real, sin z is essentially positive between the

values 2 = and z — ir, as has been shewn in Art. 235
;
therefore

sin^7r = + l. Having now obtained the values of the cosine and

sine of 0, \tt, tt, 2ir, we can, by means of the addition theorems,

prove all the ordinary properties of the cosine and sine functions.

The functions tan z, cotz, sec z, cosecz will now be defined

by means of the equations tan z = sin z/cos z, cot z = cos z/sin z,

secz= 1/cos.z, cosec z = 1/sin z, and we can then investigate the

properties of these functions in the usual way.

All the properties of the circular functions investigated in Chapters IV,

v, and VII, are deduced from the addition formulae and the property of

periodicity ; it follows that all the properties which are there proved for real

arguments hold also for complex arguments.
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237. A very important case is that in which the number z is

entirely imaginary, and equal to iy ;
we have then

i ey — e~y
cos iy

= $(ey + e y
),

sin iy
=
^(e

y - e~y ), tan iy
= i—

,

ey — e~y
the expressions \ (e

y + e~y), \ (e
y - e~y

),
— are called the

hyperbolic cosine, sine and tangent of y, and are written cosh y,

sinh y, tanh y respectively ;
thus we have

cosh y = cos iy, sinh y = — i sin iy, tanh y = — i tan iy.

We shall consider these functions in a special Chapter.

Natura I logarithms.

238. If u = E(z) which is a single-valued function of the

complex variable z, we may define z = E~ 1

(u) to be the logarithm
of u to the base e

;
this system of logarithms is called the natural

system of logarithms. Since E(z) is periodic with respect to z,

the inverse function E~ x

(z) will be multiple-valued to an infinite

extent
;

if log u is one value of z, the general value Log u will

be given by Log u = log u + likir, since E(z) = E(z + likir), Avhere

k is any positive or negative integer. In particular, the logarithms
of a real positive number x will be log x + 2ikir, where log x

denotes its ordinary real logarithm.

239. Let ux
= E(z1 ), u2

= E(z2), then since

E(zx ) x E(z2)
= E(zx

4- z2)

the logarithms of the product MjW2 are the logarithms of E(z1 + z.2),

that is zx + z2 + 2ikir, or we have

Log Hi + Log U2
= Log (WjWg) + 2i&7T.

We may suppose the expression 2^7r included in Log (u^u.,), hence

we may write this equation

Log «! + Log m2
= Log (w^a)

in which the particular value of one of the logarithms is deter-

in iiK.'d when those of the other two are given.
Now let u = p (cos </>

+ i sin
</>)

where p is real, then by the

result just proved, we have Log u = Log p + Log (cos </> 4- i sin
<£),

and

since E(i<f) = cos
cp + i sin

<p, icp is a value of Log (cos cp + i sin
<f>),
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and log p + 2ifoir is the general value of Log p, we have therefore

Log u — log p + i(cf> + 2/itt) for the general value of Log u, where

by log p we mean the real value of Log p.

If 4> is restricted to be between the values — it and it, we shall

call logp + i(f>
the principal value of Logu and shall denote it by

log u ;
we have then the general value Log u given by

Log u = log u + 2ik7r,

where logu is its principal value, and k is any positive or negative

integer.

We may write this result

Log (x + iy)
= \ log (x- + y-) + i

(tan"
1 ^ + 2/ctt

J
(8).

The principal value of the logarithm of a real negative number
— x has not been sufficiently denned, since the argument of such

a quantity may be either it or — nr
;
we shall however suppose, for

convenience, that for its principal value the argument is it, so

that its principal value is log x + iir, and the general value of

its logarithm is log x + (2k + 1) iir.

The general value of the logarithm of a real positive number

x is given by Log x = log x + Log 1 = log x + 'lihir, the principal

value being log a?.

The principal value of Log i is \tzi, hence Log i = (2k + ^) iir
;

the principal value of Log (—i) is — ^-m", hence Log(— i)
= (2k— h)i7r.

It is also possible to consider the logarithm of u as a single-valued function

of the modulus p and the argument cp, the latter being supposed to go through

all values from - oo to + oo
,
not being restricted as above to lying between it

and -it; the logarithm of u is then the single-valued function of p and
</>,

logp + i'<£,
and every time

<f>
increases by 2tt, the logarithm increases by 2iir,

and the numerical value of the number %i becomes the same as before. The

student who is acquainted with the theory of Riemann's surfaces will appre-

ciate the full force of this mode of considering a multiple-valued function as

converted into a single-valued one.

The general exponential function.

240. If a be any number, real or complex, the symbol a2
may

be defined to mean K(zLog a), where Loga has any of its infinite

number of values; when Log a has its principal value loga, we

sliall call K(z log a,)
the principal value of a,

z
.
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o • t-. / t \ •. z Log a (z Log of ,

Since E(z Log a) = 1 +—
=|

+ —91 '

we have the general exponential theorem

„*_-, ,
^Logq ^(Loga)

2

and the principal value of az
is given by

.slog a £2
(loga)

2

a=1 + -fh +
2!

+ ""

In the case in which a and z are both real, we have the

ordinary form of the exponential theorem

~
1! 2!

which gives the principal value of ax.

241. In the particular case a = e, we have

Log e = log e + 2ikir = 1 + 2i'&7r,

and the general meaning of the symbol e
z

is E(z~Loge) or

E (z + likirz) ;
the principal value of e

z
is E{z), and this is in

accordance with the definition of the principal value of e* given in

Art. 229. The general value of ez is therefore

E(z) (cos 2kirz + i sin 2kirz).

We shall still continue to use the symbol e
z for its principal value.

242. The general value of az
,
as above defined, is equivalent

to E{z(\ogr + i0+2ikir)}, where a = r(cosd + ismd) = a + ifi, 6

being between - it and it
; writing z = x + ty, we thus have for the

general value of (a + i^)
x+Uj the expression

Z? [x log r
— 6y- 2kiry + i (y log r + xd + 2tt}cx)}

which is equal to

ex\ogr-ey -2!cny
|
cos^ \Qg r + xq + 2ukx) + % sin (y log r + xd + 2-irkx)}.

The principal value of (a 4- ifi)
x+iy is therefore

esiogr-ty|cos (^ i g r + x0) + i sin (y log r + ##)},

where r = Va2 + yS
2
,

= tan-1 /8/a.

The value of tan-1 /3/a, to be taken, is not necessarily its

principal value as defined in Art. 38.

If r=l, we have for the principal value of (costf+i'sin 0)
x + i

^ the function

£ {id (x+i'y)} which maybe written cos (x + iy) 6 + sin (x+ iy) 6; this is the

extension of De Moivre's theorem to the case of a complex index.
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243. In order that the equation a? > x az* = aZt+z* may hold,

we must suppose that the values of aZl
,
az

°-,
as i+z* are those

corresponding to the same value of Log a
;
in that case we have

az, x a -., _ e{zx (log a + 2iktr)} x E
{z.2 (log a + 2ikir))

= E {(zx + z2) (log a + 2ikv)}
= a~i{

.

but this will not hold if we take different values of k in the two

functions az\ az\ In particular, the equation a- 1 x az - = az
*
+z* is

true of the principal values of the functions.

244. The expression (a-
1

)
02 is not necessarily a value of aZiZi

,

but every value of a~>~ 2 is a value of (a
2
')**,

for

a*i*« = E(zx
z2 Log a) = E {zxz2 (log a + 2ikir)}

and (a
s
i)
z* = E [z2 Log a* 1

}
—E [z2 {zx Log a + 2ik'ir)}

= E \zYz% (log a + 2ikif) + 2i . k'irz^,

hence the values of aZlZ* are only those of (a
Zt
)
z* in the case k' = 0.

If in every case we take the principal values, then the equation

azi*a =
(a*')

2* holds.

If we use the symbols az
,
ez as equivalent to their principal

values E(z\oga), E(z), as is usually done in practice, then we

may, as we have just shewn, perform operations in expressions in

which these symbols occur, according to the ordinary rules for

indices, as in common Algebra.

Example.

If A, B, C, D, ... be the angular points of a regular polygon of n sides,

inscribed in a circle of radius a and centre 0, prove that the sum of the angles

that AP, BP, CP, ... make with OP is tan- 1—— —
-, where OP= r, and

a" cos n0 — r" '

the angle AOP = 0.

.„
3=7.-1

ffl+— )
We have rn -a"em = n {r-ae^ n '

},
8=0

hence taking logarithms,

log (r*
— an cos nd — ian sin n6)

= "V log
{r

- a cos
(«+*=)-

** sin
(*
+^)} ,

and equating the coefficient of i on both sides of the equation,

• /„ 2^\
. . asm 0+

,

"" sin«0 «=>i-i V 7t /
tan -1

3 = 2 tan -1

an coand-rn s=0 ('a ^n\ '

a cos ( + — -

)
- r
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corresponding values of the inverse functions being taken
;
the expression on

the right-hand side is the sum of the angles OP makes with AP, BP, ...
,

a'1 sin nd
hence this sum is tan x

(/"cos nd — rn
'

Logarithms to any base.

245. If the principal value of az
is equal to u, then z is called a

logarithm of u to the base a, and may be written Loga u, Now the

principal value of az
is E(z\oge a), where loge a is the principal

logarithm of a to the base e, and if E(z\oge a)
= u, we have

z loge a = Loge u = loge u + 2ikir, therefore

Log« u = Loge u/\oge a = (loge u + 2ikir)l\oge a.

The principal value of Loga u we regard as loge u/\oge a, and can

denote it by loga u
;
hence the general value is

Loga u = loga u + 2ik7r/\oge a,

a multiple-valued function in which the different values differ by

multiples of 2i7r/loge a. In the particular case a = e, the above

definition accords with that in Art. 238, giving loge u + likir for

the general value of Loge zt.

Gen eralized logarith ms.

246. We may give the following definition of a logarithm,

which is more general than that given in the last Article.

If any value of az
is equal to u, then z is a logarithm of u to the

base a, and may be written [Loga u] to distinguish it from Log« u

as used in the last Article. The most general value of az
is

E(z~Loge a), and if this is equal to u, we have

z Loge « = Loge a, or z (loge a + 2ilc7r)
=

loge u + 2ikir,

where k and Jc are integers. Hence the general value of [Log« u] is

Loge i<l~Loge a or (\oge u + 2ikir)/(\oge a + 2ik'ir), which is multiple-

valued to an infinite extent, in two ways. The logarithms Loga u

are therefore included as the particular set of values of [Logtt u]

obtained by putting k' = 0. We may call [Log« u] the generalized

logarithm of u to the base a.

247. If a = e, we have [Log,, u]
=

(loge u + 2ik-rr)/(l + 2ik'-rr)

which is the expression for the generalized logarithm of u to the
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base e. In the more restricted logarithm Log,, u, we have defined

z to be a value of Log,, u when the principal value of e2 is equal

to if, but in the generalized logarithm [Log,, u], we consider z to

be a value of [Log,, u] when any value of e
2
is equal to u.

The generalized value of [Loge 1] is 2ikir/(l + 2ik'ir), and of

[Log,(- 1)] is (2k + 1) iir/(l + 2ik'ir).

The expression (\oge u+ 2ikir)j(l + 2ik'ir) may be considered from another

lopM+2iX-7r

point of view. The principal value of {E(l + 2ik'n)} l+2tfcV
is, by the theorem

(2), E(\ogu+ 2tkir) which is equal to u, hence Q.ogu+ 2ikn)l(\ + 2ik'ir) may
be regarded as the logarithm according to the definition in Art. 238, of u to

the base E(\+2ik'n) which is the principal value not of e but of e
l+ '

2l!c
'n

^
s0

that we have in fact [Log u] equal to the values of Log^,,1+2^,n.^<, for

different values of k'. Thus we may regard the generalized logarithms to the

base e, as ordinary logarithms to the base not e but e
1+2l/'"'r

,
which though

numerically equal to e, has different arguments according to the value of k'.

248. The question was at one time frequently discussed, whether a

negative real number can have a real logarithm ;
thus for example whether

£ can be regarded as the logarithm of —•Je, the fact being borne in mind

that e* has the values + s!e. The answer to this question depends on the

definition we take of a logarithm ;
if we take the ordinary definition in Art.

238, that z is a logarithm of u when the principal value of ez is equal to u,

then a negative real number can never have a real logarithm ; but if we

define a logarithm as in Art. 246, that 2 is a logarithm of u, when any value

of e* is equal to u, then a negative real number may have a real logarithm.

If r be a positive real number, we have

rT .. logr+(2£+l)z7T {logr+ 2£'(2<fc+l)7r
2
} + ;{(2£+ l)7r-2£'7rlogj-}

[Log-r] = r_^_- = -

1 +4W
and th is is real if log r= (2k+ l)j2k'. If therefore r be such that log r is of the

form (2k+ \)j2k\ where k and k' are integers, a value of [Log(-r)] is real; if

logr is not of this form, we can always find a number r
x differing as little as

we please from r, such that [Log(-r1 )] has a real value; for a fraction p/q

in its lowest terms can always be found which differs by as little as we please

from log/-; let \ogr'=p/q, if q be even then [Log (-?')] has a real value, and

2<p+l j_ _ J_
r' = r

1 ,
but if q be odd, we have r' — e 2*? xe 2*3, and e 2s? can be made as

near unity as we please by taking « large enough, or log / can be made to differ

by as little as we please from ~'^
—

;
therefore a number

|-—-=logr!

can be found, which differs as little as we please from log/-, such that a

value of [Log(-r 1/)J
is real. We conclude then that although there is not

for every value of r, a value of [Log (-»•)] which is real, we can always find a

number r
x
such that r

x
— r Lb as .small as we please, and such that a value of

I

''"'-r
(
-r

i)]
i ,s rea,l-
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The logarithmic series.

249. The principal value of (1 + z)
m

is E [m loge (l + z)}, but,

by Art. 211, the principal value of (1 + z)
m

is the limiting sum of

the series

m(m —
1) . m (m — l)...(ra

— s + 1) „

l + mz +—^ ' ^ + . . . +— —± zs + ...
2 ! si

provided this series is convergent, which is the case if the modulus

of z is less than unity, and also if it is equal to unity, provided

m >
;

it also converges on the circle of convergence, except at

the point z = — 1, when > m > — 1. Now it has been shewn in

Art. 210, that we are entitled to arrange this series in powers of

m, without altering its sum, provided the series

\m\ (I vi
|

+ 1), ,„

|
m|(|ml + l)...(|ml+a-l) ,

,

sl

is convergent ;
and this is the case if

|

z
\

< 1.

Since E [m loge (1 + z)} stands for the sum of the series

x
m2

{loge (l +z)}
2

1 + m loge (l+z)+ X 8e

2

V

,

^ + • • •
,

we are, by Art. 208, entitled to equate the coefficients of powers
of m in the two series

;
hence

log, (1 + z)
= z-^+ ^3- ... + (- I)*-* 1^+ (9).

This series, which gives the principal value of Loge (1 + z), is called

the logarithmic series
;

it has been proved to hold when mod.

z<l; also according to Art. 207, the series has still log<;(l+^)

for its sum, when mod. z=l, provided the series is convergent,

which is the case unless the argument of z is ir.

249 (1)
. Assuming that \z\< 1, the series (9) shews that

log, (1 + z)
= z - \z- + lz3 - ... + (- I)

8'1 -zs + Rs>
s

where
|

Rs
|

cannot exceed the sum of the convergent series

L-L+ 1—
-^

+ ...
;
and thus

|
22,

|

<
'^-j-j

(1 + | z\ + \z\> + ...) or

I z
\

s+1 1
I Rs < r ^ ;

—
i

•
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We have thus shewn that when
|

z
\
< 1,

loge (1 +z)= z - \z* + ... + (—^- ?s O + v,\

o
I
&

j

where I v« I < 7 =-^—i

—
r ;

and thus I vs I converges to zero as I z I

s+ 1 I — |s|
' °

does so.

In particular, taking s=l, we have loge (1 + z)
= z (1 + Tjj), where

U I

i

vi
I

< 2 -p \i
and ^hus j^l converges to zero as \z\ does so.

L —
\ Z\

This result may be written in the form L &e = 0.

1*1=0 z

If 771 be any positive real number greater than \z\, we have

/ z \
m

( 1 + -- = g»«ioge(i+2/»«) = eza+wi) j
where

|
Wj

| converges to zero as

j z/m j

does so. Hence if m have assigned to it the values in any

sequence of positive real numbers which increase indefinitely, we

see that the limit of (
1 H— is e2. This theorem has been

V rnj

proved in Art. 226 only in the particular case in which the

numbers m are restricted to be positive integers. This restriction

has here been removed.

250. Writing z = r (cos + i sin 0), we have

loge (1 + z)
=

loge (1 + r cos + M" sin 0),

and this is equal to

£ loge (1 + 2r cos + 7-
5

) + i tan-1
{r sin 0/(1 + r cos 0)},

where the inverse tangent has its principal value
;
we have then

the two series

, l< »ge(l + 2r cos + r2
)
= r cos -

£r
2 cos 20 + h-3 cos SO - . . .(10),

tan"1

[r sin (9/(1 +r cos 0))
= r sin 0-£r

2 sin 20 +-*r
3 sin30- . ..(11),

where r < 1, or where r = 1 and =£ ± 7r.

If we put 7- — 1, we have

loge (2 cos £ 0)
= cos -

\ cos 20 + J cos SO - (12),

£0 = sin 0-^ sin 2<9 + i sin 30- (13),

where lies between ± it, and cannot equal ± ir.

If in (11) we change 8 into 28, we have the theorem

log cos 8 = -log 2+cos 28 -£ cos 40+ J cos 60- ...

which holds if 8 lies between ±i?r.
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Changing 6 into \n - 6, we have

log sin 6= -
log 2 - cos 20 -

-J
cos 40 - £ cos 60 - ...

which holds if 6 lies between and jr.

The series (13) furnishes an example of discontinuity, owing to the series

becoming indefinitely slowly convergent as 6 approaches the value ir
;
when

6= tt, the sum of the series is zero, but when 6 is less than n by as small

an amount as we please, the sum of the series is \0.

Gregory s series.

251. We have loge (cos 6 4- i sin 6)
= i6, where 6 lies between

+ 7r, hence logc cos + loge (1 4- i tan 6) = id, or

\oge cos 6 4- i (tan
-

$ tan3 6 + \ tan
5
0. . . )

4- (i tan 2 - i tan4 + *..)= #,

provided tan 6 lies between + 1, which is the case if 6 lies between

+ \tt, and may equal + \ir ;
hence we have, since cos 6 is positive,

loge c°s = —
\ tan 2 + -J

tan4 6 — ...

and = tan#-itan3 0+£tan
5 0- (14).

The latter series is called Gregory's series, and holds if 6 lies

between 4 \ir, both limits being included.

Change 6 into ^tt
—

6, then we have

£7r-0 = cot0-i cot3 d + i cot5 -
. . .

which holds when lies between ^7r and f it. The general expres-

sions for any angle 8 are

6 = nir + tan 6 — | tan3
4-...

or 0= (ft 4- 1) 7r — cot # + ^cot
3 # -

...,

where in the first series n is an integer such that — nir lies

between 4 \ir, and in the second such that 6 — nir lies between

\tt and § it.

Gregory's theorem may be also written in the form

where # lies between 4 1, and tan-1 x has its principal value.

The series for sin -1 # in powers of x, obtained in Art. 218, may be deduced

from Gregory's series. Let #= sin -1 .r, then we have

a? . x5
-L i

5

i "1

sn\~ i
u! =—

,

—
•• ., + -

(l-^)i (l-a?
2
)$ (l-tf

8
)*

I #2r + *

+ (_1)r
2M-"T(l-.r

2
)M2

)-+i) + -
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if x is less than unity, the series obtained by expanding

x,2r + 1

2r+l (l-^i^+D
in powers of x is absolutely convergent, and the series

(l-x'^h (l-*2
)$

6

(\-x*)§

is convergent if |d7|<— ;
we are therefore entitled to arrange the series in

V2

powers of x. "We find for the coefficient of (
-

l)
rx2r + 1

,
the expression

If. 2r+l
, (2r+l)(2r-l) (2r+l) (2r-l)...l

] ,

2r+l \ 2
+

2.4
"
t
"
V ; 2.4.6...2r J'

the expression in the brackets is the sum of the first r+ \ coefficients in the

expansion of (1 -?/)l(
2r+ 1 ) in powers of y, and this is equal to the coefficient

of y
r in (l-y)

_1
(l-y)^ (2r+1) or (1 -3/)-

(2r_1)
,
which is equal to

(2r-l)(2r-3)...l
1 ; 2.4.6...2r

Hence the coefficient of x2r + 1 in the expansion of sin -1* is

1 1.3.5...(ar-l) .

ar+1" 2.4.6...2r
'

therefore

. ,
1 a-

3 1.3*6 1.3.5...(2r-l).r
2|

- + i

,n-»»-»+
s

.

3
+OT + + -

274T6^2T" 27?l
+ '

this proof only shews that this series holds for values of x between + 1/V2,

but by employing the fact that the sum of the series is continuous within its

circle of convergence, it can be shewn to hold if x is between + 1.

The quadrature of the circle.

251 (1)
. The famous problem known as that of "squaring the

circle," that is, of constructing a square whose area is equal to

that of a given circle, is equivalent to that of constructing a

straight line of length equal to that of the circumference of a

given circle. The construction to be employed in solving the

problem is a Euclidean one, involving only the construction of

circles and straight lines, in accordance with a Euclidean system

of postulates.

The problem may be stated as that of the construction ot a

straight line whose length is represented by the number ir, a given

finite straight line being taken to have the length represented by

unity. The fact, proved by Lambert, that the number it is irra-

tional, that is not represent able in the form p/q, where p and
</

are

integers, is not of itself sufficient to establish the impossibility of

n. t. 20
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constructing the line of length it, because a certain class of straight

lines of irrational length is capable of Euclidean construction.

A step of fundamental importance in this connection was taken

when Liouville 1 established the existence of transcendental

numbers, as distinct from algebraical numbers. An algebraical

number is one which is a root of an algebraical equation of any

degree n, with coefficients which are rational numbers; without

loss of generality these coefficients may be restricted to be all

integers, positive or negative. A transcendental number is one

which cannot be a root of any algebraical equation with rational

(or integral) coefficients. Liouville himself gave examples of

transcendental numbers, but the first case in which a number, well

known in Analysis, was shewn to be transcendental, was that of

the number e, the transcendency of which was established by
Hermite. Following Hermite, Lindemann 2

gave a proof that it is

a transcendental number. He proved the more general theorem

that, if ex = y, the two numbers x arid y cannot both be algebraical,

except in the case x = 0, y = 1. Simplified proofs that e and tt

are transcendental numbers were afterwards given
3

by Hilbert,

Hurwitz, and Gordan. A modified form of Gordan's proof will be

here given.

The proof that tt is a transcendental number is equivalent to

the establishment of the impossibility of squaring the circle by
means of any geometrical construction in which straight lines and

circles are alone employed ;
or more generally when any algebraical

curves may be employed. For any such construction amounts to

the exhibition of it as a root of some algebraical equation obtained

by combination of the cartesian equations of straight lines and

circles or other algebraical curves. The fascination which the

problem of
"
squaring the circle

"
has exercised for centuries upon

many minds is such that Lindemann's proof of the impossibility of

the problem under the assumed conditions is a result of great im-

portance in relation to a problem of historic interest.

251 ,2)
. To shew that the number e is transcendental, let us

assume, if possible, that e satisfies the condition

Ao + Ate + A.^-t- ... + A n e
n = 0,

1 I.iourille's Journal, Vol. xvi. 1851.

- Mathematisehe Annalen, Vol. xx. 1882.

3 Ibid. Vol. xliii. 1893.
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where A lt A 2 , ... A n are positive or negative integers, and A is a

positive integer. In order to shew that this assumption leads to

a contradiction, it will be shewn that a number K can be deter-

mined such that

KA = In + f ,
KA x e = I, +/, , KA,e2 = L +f.2 ,

. . . KA „ e
n = In +/„ ,

where I0i J1,Ia,...In denote positive or negative integers, and

fi,f-2, •••fn denote numbers numerically less than unity, and such

that fi+f>+ •••+fn is numerically less than unity, and where

I + I
I + ... + In is not zero. On multiplying the original equation

by K, we have the sum of an integer and a number numerically

less than unity equal to zero, which is impossible. To determine

the number K, let us consider the expression

(*)-
(-^y1

1(1 -«) (2-*) (8 -*)».(» -*))»,

where p is a prime number greater than n and greater than A Q .

We may denote <£ (x), when expanded out in powers of x, by
cp-! xv-

1 + cpxP + . . . + Cnp+p-! x
nP+p~l

. Denoting by

£'(*), 4>"(x), ... £«>(<»), ...<t>
n*+^{x)

the successive derived functions of
(f> (x), we see that

<^(0), (p
+1

(0), ...£»***-
1

'(0)

are all multiples of p ;
but </>*

-1)
(0) is not a multiple of p, since

(n !y is prime to p. Also, if m denote one of the integers,

1,2, 3, ... », we see that 4>(m), <f>'(m),
...

<f)
p~ l

(m) all vanish, and

<p
l'{m), <f>P

+1
(m), ...

</>'^
+y-1 (w) are all integers divisible by p.

r=np+p—l
Let Kp denote - r'.c,.

or
<f>

<p-v
(0) + <p (0) + . . . +

<f>

nP+P~ l

(0) ;

thus Kp is not a multiple of p, since <p
-1

(0) is not divisible by p.

It will be shewn that the value of Kp ,
for a sufficiently large value

of the prime number/), is the required number K.

Since A is prime to p, Kp A is not a multiple of p.

We have
r=np+p I

KpAmem = Am Z rlcr em
r=P -\

r -
tip + /)-\ (

— Am - cr <mr + rmr-1 + r(r-l)m r-* + ... +r\
r=p-i (

///'
,+1 m r+2

I+
f+l

+
(r + l)(r+ 2)

+
'"]'

20—2
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m r+1 m r+n-

Now the limiting sum of —-^-+ 7 lV7 ^ + ... is less than
r + 1 (r+ l)(r + 2)

\
m? }

that of mr

j

1 + m + — + . . . L or than mr
e
m

;
therefore the limiting

sum may be denoted by mr
r e
m

, where < 6 r < 1. We have then

KpA m e
m = Am {(/> (m) + 0' (to) + . . . + 0«w+p-i (m )}

+ Am e
m 1 cr rmr

;

r=p-l

the first term on the right-hand side is a positive or negative

integer divisible by p, and the second term is numerically less

r=np+p-l
than

|

Am
\

em X \cr \

mr
,
or than

r=p-l

•I Am I

e
"
(p-l)i

K1 + m) ( 2 + m) • • • (n + m))P,

which cannot exceed

np-i
I
^-

1 ^(^lyi^
+ aK2 +»)»•(»+ »)}*

By choosing p great enough, the number

[n (n + 1) (n + 2) . . . (w + »)}*/(p
-

1) 1

may be made as small as we please. Let K be the value of Kp

when p is so large that

a p-i

,
{(1 + ra) (2 + w) . . .(« + n)}* (j

4 X
|

e +
|

4 3
1

e
2 + . . . +

1

A n
j

e
n

)

is less than unity.

We have then K(A + A x e + A 2 e~ + ... -f A n e
n
) equal to the

sum of an integer which is not divisible by p, an integer which is

divisible by p, and a number numerically less than 1
;
and this is

impossible. Since e cannot be a root of an equation

A + A lx+...+ A nxn = 0,

with integral coefficients, it is a transcendental number.

251 ,3)
. If 7r were a root ofan algebraical equation with integral

coefficients, iir would also be a root of such an equation. Let us

assume that iir is a root of the equation

C (x
—

«i) (x
— a.2) . . . (x

— a8)
= 0,

with integral coefficients ;
thus iir is one of the numbers a, ,

a2 ,
. . . ag .

Since e
in =-l, we have (1 +ea

>) (1 + e°*)...(l +e
a
»)
=

;
on

multiplying out the factors, this is of the form

A + eP> + c F * + ... + eP» = 0,

where -A is a positive integer.
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It will be observed that all the symmetrical functions of

Cal} Ca.2 ,
... Cas are integers, therefore all those of C/31} C/32 ,--.C/3n

are integers. We take

* <•)
=
(^Syi

(Jnp+p
~1

{(x
~ A) (* ~ A) ••<*- &>»*>

where p is a prime number greater than all the numbers, A, n, C,

C*|ft&...&|.
Denoting <£ (a;) by cp_i a;?

-1 + cp x
p + . . . 4- Cnp+p-* #

Mp+p ~~1
,
we see

that
</>

p
(0), </^

+1
(0),... ^+^-1

(0) are all integral multiples of p,
and that <^

_1
(0) is not a multiple of p. Also, if m ^ n, (j> (/3,n ),

m=n m=n
f (/8OT),...^'-

1

(/3m) are all zero, and S ^ (/3m ),
2 <^+

]

(£m),m = l m=l
m = n
S <^

,+"^_1
(/3W) are integers divisible by p.

n»=l

Let
r=np+p-lKp

= S r\cr= <f>

,p_1)
(°) + <£

*>
(0) + . . . + n*+*-1

(0) ;

r = p - 1

thus A^J. is not a multiple of p.

Also ifp <*« = 2 cr /3,/ + r/3,/-
1 + . . . + r ! + ^-T

+ (r+^+ 2)
+ • •

]
= ^ <&»> + *' <&»> + • • • +^+"_1

<#»>

r=np+p— 1

»*=p— i

where the numbers
|

r
'

j

all lie between and 1.

r=vp+p- 1

2 cr 0/
| /3m |

|

is numerically less than
r=p-\

r=np+p—l
£ |cr ||/8m K

The number

r=p-l
or than

0>-l)!
where /3 is the greatest of the 'numbers

|
/^ |, |

/32 1,
...

j
/3n |.

We now choose p so great that

{«lfcl + «IW+... + «IWJ 7£^l
&****i(fl + \fii\)(fi+ \&\)...}'

is less than unity.

Taking the value ofKpfor such a prime jo as the value of K, we see

that K{A -\-e Pl +e Pi + ... + e3n)is expressible as the sum of a multiple

of p, an integer not divisible by p, and a number numerically less
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than unity; it is therefore impossible that it can vanish. It has thus

been shewn that it cannot be a root of an algebraical equation

with integral coefficients, and it is therefore a transcendental

number.

The approximate quadrature of the circle.

252. The problem of the quadrature of the circle, which is

equivalent to the determination of tt, can be solved to any required

degree of approximation, by taking a sufficient number of terms

in any one of a large number of series which have been given for

7r. The simplest series which we can obtain is got by putting
=

^7r, in Gregory's series
;
we have then

Itt— 1 —14- JL — 1 4-

which however converges much too slowly to be of any practical

use for the calculation of it.

253. If we use the identity \tt= tan-1 i + tan-1 ^, and substitute

for tan-1 \, tan-1 \ their values from Gregory's series, we have

— — 1 _ 1 f 1\3 4. 1 /XY5 _
4
—

2 3 \2) + 5 V2,>

This is called Euler's series.

Another series may be obtained from the same identity by

substituting for tan-1 ^ and tan-1 ^ their values from the series

as L 2 x2 2 . 4 / x2 V
)tan-1 x = J 1 + - = + ( .

— + ... }
1 + x2

{
3 1 + f 3 . 5 VI + a?) j

which we have obtained in Art. 219. We have then

1 4
f

2
2_ 2^4 [2_V I

4
7r

~10{
+

3
-

10
+
3.5UoJ

+
"'j

3 .L 2 1 2 . 4 / 1 V )

+
l0l

1 +
3-10

+
3T5Vl0j

+
-}'

254. Other series obtained in a similar manner have been

used by various calculators. Clausen 1 obtained his series from the

identity \tt
= 2 tan-1 ^ + tan-1 \, using Gregory's series

;
Machin's

series is obtained from

\tt
= 4 tan-1 1

— tan-1^ ;

1 See a paper "On the calculation of tt" by Edgar Frisby in the Messenger

of Math. Vol. 11.
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Dase used the identity

\tt
= tan- 1

1 + tan-1 \ + tan"1

\
.

A more convenient form of Machin's series was used by Rutherford,

who used the identity \ir
= 4 tan-1 \

— tan-1 7\ + tan-1
-fa. Hutton 1

gave the series

nA L 2 1 2.41
7r=2 -4

r
+
3-io

+ 3^io-2+
-

f 2 2 2 4 / 2 Y-
+ '56

|
1+

3-100
+
3t5lrdo)

+
-}

;

x-
this is obtained from the expansion of x tan-1 x in powers of -,

J. ~T" 00"

by putting #= ^ and £ = f, and using Clausen's identity.

Euler has given the series

W ~
10 | 3 UOO/

+
3 . 5 llOoJ

+ '

30336
f ,

2 / 144 \ 2.4/ 144 V
+

100000 {

T
3U00T)00/

+
3T5U000U0j

+ ""

which can be deduced from the identity

7T = 20 tan"1

{ + 8 tan"1

Y%.

The value of ir has been calculated by W, Shanks to 707

decimal places
2
.

1 l
2 32 52

The continued fraction -— -— =— -— =xtr was tnven in 1658 A. n. by
1+ 2 + 2 + 2 + ...

4 ° J

Lord Brouncker, the first president of the Royal Society. It is obtained by

transforming Gregory's series 1- A + -1-
—

-!• + .. . according to the usual rule.

1 1.22 33.4
Stern 3 has given the continued fraction hir = 1 + ^

— y— j-
—

7

An interesting account of the history of the subject of the quadrature of

the circle will be found in the article "
Squaring of the Circle" in the Encyclo-

paedia Britannica, 9th edition. See also an article by Glaisher in the Messenger

of Mathematics, Vol. III. "On the quadrature of the circle A.D. 1580—1630."

Trigonometrical identities.

255. It can bo shewn as in Art. 190, Ex. (5), that any identical

algebraical relation f(a,b,c...) = 0, between any number of

quantities a, b, c..., will lead to two corresponding trigonometrical

1 Phil. Trans. 1776.
2 See Proc Royal 80c. Vols. xxi. xxn.
3 Crelle's Journal, Vol. x. Bee also a note by Sylvester, Phil. M<nj. 18GD.
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sin (a

-
/3) sin (a

-
y) sin (/3

-
y) sin (j3

-
a)
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identities. These will be obtained by giving a, b,c... the complex
values

cos a + i sin a, cos /3 + i sin /3, cos 7 + 1 sin 7 . . .

and reducing the given identity to the form

</>(«, & 7 . ..) + *>(«.&?.. .)
=

<>,

whence we obtain the trigonometrical identities

<£O,/3, 7 ...)
= 0, f(a,ft 7 ...)

= 0,

which will involve the sines and cosines of a, f3, <y

The work of reduction will usually be shortened by using the

symbolical forms e™, e
1
^. . . instead of cos a + i sin a, cos ft + i sin /3

Example.

_
, . , . (x-b)(x-c) , (x-c)(x— a) (x-a)(x-b) ,

J'rom the identity -. r-r-. ; + n
-

,
,

—
; + 7 r~, ?rN

= 1,3
(a
-

b) (a
-

c) (b
-

c) (b
-

a) (c
-

a) (c
-

b)

deduce the identity

-v) ~ ,A n
sin (

-2{sin2(d-a)+-r-j-
y) sin

(,

«nV-a)rin(0-n
Sl7l{y-a) Sl/l(y

—
p)

Utx=e2ie
,
a = e

2;a
, b = e

m
, c = e

2i
\ then we have

(*-6) (x
-

c) («*»
- f#) (e™ - e"y) _ (e

1^ -r^ («"^-
"

^} ?* («-?

(a
-

b) (a
-

c) (
e
2ia- e

2
^) (e

2ic - e
2 ':

?) («*•"*- «-*«-") («*'•-*-«-<•-*)

sin (0-/3) sin (0-y) , . . . . _.,, ..

or -7 %—.
—r

-( {cos 2 ((9- a) + i sin 2(0- a)} ;

sin (a
-

/3) sin (a
-
7)

transforming each fraction in this manner and equating the coefficient of i to

zero, we obtain the identity to be proved.

The summation of series.

256. When the sum of a finite or an infinite series

a + «!# + a^x
2 + ...

is known, we may deduce the sums S
}
and &> of the series

a cos a + ax
x cos (a + 0) + a,x2 cos (a + 20) + . . .

,

o sina + «i#sin (a+ 0) + a.^
2 sin (a + 20) 4- ....

For suppose f(x)
= a + a

x
x + a.2x- + ...,

then e
!

'f(a:^) = 81 + iSa ,
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and also e~iaf (xe~
i0
)
= S1

- iS,
,

therefore S, = £ {e
ia
f(xe

ie
) + e~ /a

f (xe~
ie
)} ,

and S.2 = ± {e
iaf (we

49
)
-

er^/iaser*)} ,

the values of Su S2 thus obtained, can now be reduced to a real

form.

Examples.

(1) Sum the series

«>S a+ x cos (a+/3) + X2 cos (a + 2#) + ...+x»- 1 cos {a + (n-l)/3}.

We have -f^=l+x+a?+...+tin
- 1

.

l—x

Change x into xe^ and multiply by e
,a

;
we have then

l-xetP

and similarly we have

e
_ ig l-^n e

tn

=e -i* +xe-Ha+{i) +aJt e-H*+m +t j>+an- le -t(a+iT-i

1-xe-*

therefore the sum of the given series is

If, l-x»e™t ia ! -*»«-**
)

2 I

'

i-xe*
'

l-xe-* J

1 el
"

a
(1
- xn ein^) (1

- j»-^) +e-
ia

(l -xne~ inp
) (1 -:re'p)

2
~

(l-xe^)(l-xe-^)
or

which is equal to

COS a — X cos (a
-

/3)
—Xn cos (a+ ?l/3) +xn + • COS (a+ n— Iff)

1 -2.r cos #+.*''"

(2) £fam <Ae infinite series

.
, QN , x»«»(a+ 2ff)

,
x»«n(a+ n/3)

Si/la+ xsm(a+ /3)H g-j—
—+... + — —

j

———I-...,

We have e*=\ +# + *- + ... + -{+...,

put ^e'^ for #, and multiply by e'
a

,
we have then

gt^+iasaeia+xeHa+p) +
X
l_ et(« +S« + ... +^ eH« + «P) + ...

and similarly

hence the sum of the given series is
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or jLgXCOSjS f
6*(*sin/3+a) _ e -2'(.rsin/3+o)i

which is equal to

e-
rcos

^sin(a+A-sin/3).

257. We shall now give some examples of the application

of the exponential expressions for the circular functions to the

expansion of expressions in series.

(1) To expand (1
— 2#cos + x2

)~
l in a series of powers of x,

where x is less than unity ;
we have

(1
- 2x cos +<T2 =

(1
- xeie

)~
x

(1
- xe- iey\

which expressed in partial fractions is equal to

1 / e
ie e~ie

2% sin VI - xe i0 1 - xe-' e
J

'

expanding each fraction in powers of x, we have

CT . . . (eie + xe2ie + x2
e3ie + ... + xn

~l
eni

« + . . . )
zi sin 6

(e~
ie + xe~- ie + . + x 1l

~l e~nie
+...),

2i sin 6

which is equal to

cosec (sin 6 + x sin 20 + x" sin 30 + ... + xn
~l sin n0 +...).

It may be shewn, in a similar manner, that

1 — x2

=--K- —* o
= 1 + 2a; cos (9 + 2*-

2 cos 2^ + ... + 2xn cosn0 + ....
1 — 2x cos + x2

(2) To expand logt
, (1 + 2x cos + x'

2

) in powers of x, where x

is less than unity ;
we have

logc (1 + 2x cos + x2

)
=

loge (1 + xe ie

) + \oge (1 + xe~ ie
) ;

hence expanding each logarithm on the right-hand side, we obtain

the formula (9) of Art. 250.

(3) To expand e
ax sin (bx + c) in powers of x, we may write

the expression

2i
l

' •
I-

If we expand e'a+ib)x
,
e {a

~
ih]x in powers of x, we find the coefficient

of xn to be

i ~
{e

ic
(a + ib)

n - e~ ie

(a
-

ib)
n

] ;
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let b/a = tan a, then the expression becomes

=-. —
. (a

2 + b-)&
1

\e
i{c+na) - e *

<-<+"«>}
2i n !

l '

or —
(a

2 + 62
)*" sin (c + na) ;n !

this is the coefficient of #n in the required expansion.

(4) Having given sin x— n sin (x + a), to expand x in powers
of n, when w < 1.

We have e*'*
- e^ = n {e^

x+a) -
*-*«+•>}

or e
2ix - 1 = ?/e-'

a
{«*<+«»

-
1},

therefore €lix = —
;

1 — neia

taking logarithms and expanding the right-hand side, we have

n2

2i (x + kir)
= n (e

!a - e~ia
) + 9 (e

2ia - e~2ia
) + . . .

,

hence x + k-rr = n sin a + \n
2 sin 2a + \ n

3 sin 3a + . . . ,

where k is an integer.

If B be the angle of a triangle and be less than A, we can

expand the circular measure of B in powers of b/a; since

sin B = - sin (B + C),
a

we have, since in this case k = 0,

B = - sin G + A % sin 2(7 + 1 ^ sin 3C + ... .

EXAMPLES ON CHAPTER XV.

. ,
. , A+Bz

1. Prove that the general term in the expansion of tT^cos d>+ -
'"

powers of z is
A »™(n+V±+B »hin(

t> * and that the general term in the
1

sin<£

, A+Bz
• Niiansion of ——= -

srs is
1

(l-tozCOSQ+ Z*)
2

(n+ 3j sin (» + l) <£-(»+!) sin (» + 3)<ft ^ (w+ 2)sinwft

-
nsin(rc+ 2)(fr^

4sin :5 4siu :;

f/i

(^MZer.)
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2 If tan x= , prove that x= n sin a + * n 2 sin 2a + 1 nz sin 3a +
1 — n cos a

?i being less than unity.

3. If cot y= cot x+ cosec a cosec x, shew that

y= sin x sin a + h sin 2.r sin2 a +. 1

j
sin 3x sin3 a+ ... .

/I + a\^
4. If tan £0=( yzt~ )

tan l<£> shew that

2\2 2X3

=
<£ + 2\sin<£ +— sin 20+ -^-

sin 30 + ...,

a /«\ 3
~ /a\° «. /«

where X
=2 +

{V
+%) +5

\V
+"~

5. If tan = x+ tan a, prove that

6= a+X cos2 a - %x
2 cos2 a sin 2a— ^x

3 cos3 a cos 3a+ j#4 cos4 a sin 4a+ . . .

6. If (1 + m) tan 5= (1
- m) tan 0, when and are positive acute angles,

shew that
= (P~m sin

2<fi + J »i2 sin 40 - ^ to3 sin G<£ + ....

7. If tan a= cos 2m tan X, shew that

X - a= tan2
a> sin 2a+ 1 tan4 w sin 4a+ J tan

6
a> sin 6a +

8. If sin x= n cos (x+ a), expand x in ascending powers of n.

9. Shew that the coefficient of xp in the expansion of (1 —2x cos $+x2
)~

n

18 2 {ap cos pd + aiCtp-i cos Qo-2) ^+ a2«P -2 c°s Qo- 4) #+ ...},

where am is the coefficient of xm in the expansion of (1
— x)~

n
-

10. Prove that tt
2= 18 2

n=0 (2»+2)>

11. Prove that in any triangle

6 b2 b3

log c= log a— cos C- -

2
cos 2C-., 3

cos 3(7- ...,

supposing & to be less than a.

12. If the roots of the equation ax2+ bx + c=0 be imaginary, shew that

the coefficient of x11 in the development of {ax
2 + bx+ c)

~
l in powers of x is

q*
w
8in(w + l)g

c^
w+1 sin0

'

where 6 is given by b sec 5 + 2 \/«c = 0.

, n t, , (l + »i)
4 cos2 5+ (l-?0

4 sin2 5 ..
13. If w — ,,--:—-£s ., a ,

X («, oa, expand loge p in a series of cosines
'

(I +ny cos* 6 + (l—ny&m*d
of even multiples of 8.

14. Expand loge cos (0+ jjt) in a series of sines and cosines of multiples

of 6.
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15. Prove that

tt_17 713

4
_

21 81 . 343

16. Prove that

+ "* + 2n-l t» J

i_14.I_Jl4.J__Jl4.J__ = ____(-J_l)
7 9 15 17 23 25

""
8

17. Find all the values of (^ -
l)
v_ l

.

18. Prove that (a+a^-l tan 4>)
log« («*c*)-* V-i

js a real number, and

find its value.

19. If a cos 8+ b sin 8= c, where c> \/a
2
+b-, shew that

/i /, ,u ff
, -i

c+ \Ic
2-a2 -lr a

8 = (4n + l)-+ i\oge r=== tan J r-

20. From the expression for xn+ 1 in factors, deduce that when n is even

, sin nd
tan -1 - -

1 ± cos ?w

sin 28 — 2 cos - sin 8 sin 28-2 cos— sin 8
n , n

= tan _1 htan -1
(-....

1 + cos 28 - 2 cos — cos 8 1 + cos 28 — 2 cos
'

sin .
n n

21. From the identity
JL „ _ 1 _ =

(g_^_ ft)

deduce

cos (0+ a) sin (8- (3)- cos (_ +0) sin (_-_) = sin (a
-

/S) cos 2_,

sin(5+ a)sin(^-/3)-sin(^+i_)sin(^-a)
= sin(a-/3)sin2(9.

22. Prove that

tan"* a ^ tan"* £ tan"' y _ * V31o_2_W3_ 3
/, _ 1 J_ _ J_ . 1 _

~T~ + ~W~ ~7 2
+ T l0g2^73~ \ 7

+
13 19

+
25

'

where a, 0, y are the three cube roots of unity.

23. Express the logarithms of c+di to the base a + bi, in the form A +Bi.

24. If taum (J w + £^)= tan" (£« + £<£),
shew that

m tan
~ 1 —

.
— = ft tan l —r- .

i *

25. In any triangle, shew that

an cos nB+ bn cos n_l-=cn -Jia&cn
~ 2 cos (_

- B)

+
n (

w ~ 3)
gg_y-« cos 2 (_t- /?)-...,

71 being a positive integer.

26. If loge loge loge (a + z/3) =j?+ iq,

then «•*
cos * cos (_* si n j)

=
& log, (a

2 + /3
2
),

and e^^sin^sin^Htan- 1

^.
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27. Shew that the coefficient of xn in the expansion of e*cos.r in

ascending powers of x is —j-cos— .

28. Prove that

1
sec3 2X + ... + ( -l)

n 2 sec3 2X tan X(l+?i cos 2X) cos M0+...,
(l+ecos<9)

2

where 2X is the least positive value of sin -1 e

29. Prove that the series

1 1

1.3.5... (2m+l) 3.5.7...(2m+ 3)
+ . . . ad inf.

can be expressed in the form m
-,

—
,
where Am ,

Bm ,
Cm are whole

numbers, and _ (2m) !

Bm= (2m-l)Bm _ 1 -2(m-l)l

30. Prove that

sin" 8 cos n^>
= sin" $ cos ?i# + n sin"

- x

<f>
cos (?i

- 1 ) 8 sin (8
—

<£)

+ ^^-sin"-
2
0cos(?i-2)^sin

2
(^-0)4-...+sin»(^- 0),

ri being a positive integer.

31. Prove the identity

^ cos 2a „ . , .

sin|(a-/3)sini(a-y)sini(a-d)
" '

32. Prove that 1 + \ -\ -)-+ ... = JL- .

3 5 7 2 s '-2

33. Reduce tan -1
(cos 0+iain 8) to the form a + bi, and hence shew that11 TV
cos0— - cos 30 + - cos 58 - ...= + — .

3 .
r
>

—
4

the upper or lower sign being taken, according as cos 6 is positive or negative.

34. Prove that one value of Loge (l + cos20+isin 2d) is loge (2 cos 6)+ id,

when 8 lies between - h n and \ ir. Deduce Gregory's series.

Prove that one value of sin -1
(cos + i sin 8) is

cos -1 Vain 8 +i logc (Vsin 8 + y/l + sin 8),

when 8 lies between and \tt.

00

35. Find the sum of the series 2 ^4
rt

e(
2,l + 1

)
x sin (2n+ \)y in which

o

A =_2 1 L_
" 2»+l 2n-\ 271+ 3'

36. In any triangle, shew that if a <c
cosnA 1

f
a „ n(n+ l) a2 __

S =~=-(l + »-C03g+ V _T '
-. COS 25

o" cn
(

c 2 ! c2

»(»+lHH+2)ff3 „„ 1
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37. Prove that

ftan-.tf =^- i (1 +!}.,.< + ; ,1 + .+.).,«_...

+<zitY1+ i+...+
i w...

?i V 3 -Iit-lJ
where x lies between + 1.

38. If u^log^tan ( ~ + }2.A=x+a3x3 + a5x5+ ...,

prove that x= u - ct3 ti
3 + a5ub -

. . . .

39. Rationalize tan -uclog,,
——

j-.Y
.

40. Prove that

cos x cos 2a? cos nx _ 2n
~ J

( 1 + cos x)
n 1

(n - 1
) !""("» 4- 1

)
!

+
(n

-
2) ! (n+ 2) !

+ ' ' ' +
J2n)l

=

(2») !

" ~
2 (» !)

2
*

41. If ;t is a positive integer, and

S=l + ?icos2 8+... + . ,',7 'r,cos
r
-Mcos(?--l)^ + ....

(»
—

1)! (r— 1)!

prove that

aSBin»d={l+.(-l)
n
}(-l)^

n
cos^+{l-(-l)n

}(-l)*
{n_1) sin%ft

42. Prove that the expansion of tan tan tan ... tana?, (n tangents) is

a?+2»|y+4n (6*-l)f^
+ y (176^-84»+ 11)

— +....

43. If tan(ja
—
0) = tan3

ja, then shew that

<£= -sin a- —p sin 2a+ 5 sin 3a-....

44. Shew that, if tan 6<1,

tan2 6-\ tan4 + J tan
6 6 - ... = sin2 + A sin4 6+ J sin6 (9+ .. . .

45. Prove that, w being a positive integer,

w(ft-l ) (
« - 2) w (?*.- 1) (n

-
2) (w- 3) (n-4) (»

- 5
)

1 +~
31

~ + ~

6!

=
i{2.

+ (-l)».2c„s^l.
46. Shew that the equations

l -in2a+y
2 sin23+ s-sin2y-2y2sinO+ y)-22.rsin(y+ a)-2.rysin(a+^)=0,

^2a+y2 cos2/3+2
2
cos2y-2y£cos(/3 + y)-2z.rcos(y + a)-2.zycos(a+0)=O

are satisfied by any of the following values:

x:y:z:\ sin 2
\ (/3

-
y) : sin 2

£ (y
-

n) : sin 2
i (a

-
3)

: : sin 2
£ (0

-
y) : cos2

£ (y
-

a) : cos2 * (a
-
0)

: : cos2
£ (0

-
y) : sin 2

|(y-a) : cosH(a-/9)

: : cos2
1 (0

-
y) : cos2

A (y
-

a) : sin2
J (a- 0).
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47. If 8X , 2 > #3> #4 are distinct values of 8 which satisfy the equation

a cos 20 4- 6 sin 20 4- c cos + d sin 8+ e= 0,

shew that

a b —c —d e

coss sins 2cos(s-0) 2sin(s-0) 2cos| (0!4-02
-

3
-

4)'

where 2s=
1 + #2 + 03 + #4-

48. Prove that

.1 7b {.7b 1^

(
-
1)»* tan" = 1 - n sec cos (94-

—
-^-.
—- sec2 cos 20- ... (rc even),

(_ i)4
(»- 1) tan" = n sec sin 0-'

?2fclD sec2 sin 20 + ...(» odd).

49. If sin _1 .r= a
1^4-a3 j?

3 + ..., shew that the sum of the series

a3x3
-\-a9x9+ a l&x15+ ... is ^ {cos~

*

(\/ 1 +x2 + x* — .r
2
) 4- sin

~
*

#}.

50. If a, jS, y ... are the « roots of the equation xn +piX
n ~ l + ...+pn= 0,

prove that

asin0 . ft sin
tan" 1 -

a 4-tan- 1 -^
,.

+ ...

a cos 8 — x pcos0 — x

_j jo1 sin0.^"~ 1+p2 sin20.^"
_2

4- • • •
4-jt>„ sin n&

xn +pi cos . xn ~ *
4- jt>2

cos 2d.xn
~ 2+ ... +pn cos n0

'

51. If (1
—

c) tan =
(1 4-c) tan <£,

then each of the series

csin20-ic2 sin 404-^c
3 sin 63-...,

csin 2<£ + ic2
sin4$4-Jc

3
sin60 + ...

is equal to —
(f),

where 8 and <p vanish together, and c< 1.

52. Prove that

cos^7r4-| cos §7r4-Jcos §7r4-... ad inf.=0.

53. Shew that the series

1 n 1.3 1.3.5
cos # 4- ;r-7r cos 3.r4--—-— cos 5^ + ^ „ cos /jt4-...

2 . .3 2.4.5 Z.4.O./

assumes the following values,

(1) sin -1 (cos-|.r
— sin i#), when 7r>.r>0,

(2) —sin -1
(cos \x+ sin \ x), when 2tt >x>n.

54. If c = cos2
0-^cos

3
0cos304-£cos

6
0cos50-...,

shew that tan 2c= 2 cot2
6.

55. Shew that

e
aCOS

^sin(asin^)+ e
aCOS

^sin(asin 2/3)4-. ..e
aCM(w-1)/, sin {asin(w-l)/3} = 0,

if /3
=

2tt/».

56. Prove that

sin 8 . sin 8 - % sin 16 sin 2
4- \ sin 30 sin 3 8 - . . . = cot

- 1

(
1 + cot 8 + cot2

8).
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57. Prove that

log (cosec x)= 2 (cos
2 x - \ sin2 2x+ 1 cos

2
3a.- - J sin 2 4r+ ).

58. Prove that

wi n /^- d ,

l l CA ,

! 1.3.5...(2n-l) /*\» 1

59. Shew that the sum of the series

. 1 -1.3 ..1.3.5 „, . cos i^
1 -:rCOSd+ —— COS 2d— -—--,008 3(9+..,... is ._ _

,2 2-4 2.4.6 V2cos|d

where 6 lies between + n.

Sum to infinity the series in Examples 60—71.

60. cosd-£cos3d+ icos5d-

_, ,
cos 2d cos4d

61 - 1 ~~2r +^T~
. cosecd _„ cosec2 d _.

,

62. cosdH =-:
— cos2dH =-:— cos304-

63. cos d cos 2d+cos 2d cos 3d+^ cos 36 cos 4d+ ^-j
cos 4dcos 5d+

64 sin d - si sin 3d +— sin 5d -
6 ! 5 !

cos d cos 2d cos 3d
6°-

1.2.3
+
2T3T4

+ 374T5
+ ' .4.1

,

cos (a+ 2/3) cos (a + 43) ,

COS (a + 6/3)
,

66. cosaH
=-j

1

:rj
1

=-\
•"

67. cos d cos
<f>
—

-|
cos 2d cos 20 + J cos 3d cos 30 —

. _ tan2 asin3.r tan 3
asin4.r,

68. tana.sin2.rH —
1-

^-j
\-

2 cose e3cose

69. 1+ e
008 °

cos (sin d) +—^y- cos (2 sin d) +-gi—
cos (3 sin d) + ,

70. sind.sind-|sin
2 d.sin2d + £sin

3 d.sin3d~

71. 7nsin2 a-|m2 sin'-2a+ £?n
3 sin2 3a- ,

where m<l.

TT T. 21



CHAPTER XVI.

THE HYPERBOLIC FUNCTIONS.

258. The hyperbolic cosine, sine, tangent, &c., have already

been defined in Chap, xv, by means of the equations

cosh u = \ (e
w + e~u

),
sinh u = \ (e

w — e~u
),

tanh u = sinh w/cosh u,

cothw = 1/tanh u, sech u = 1/cosh u, cosech u = 1/sinh u,

where the exponentials e
w

, e~u have their principal values. The

hyperbolic functions are expressed in terms of circular functions

of iu, by the equations

cosh u = cos iu, sinh u— — i sin iu, tanh u — — i tan iu,

coth u — i cot iu, sech u = sec iu, cosech u = i cosec iu.

Relations between the hyperbolic functions.

259. We have, at once from the definitions, the following

relations between the hyperbolic functions

cosh2 u — sinh- u = 1 (1),

sech2 u + tanh2 u= 1 (2),

coth2 u — cosech2 u= 1 (3).

These correspond to the relations

cos2 + sin2 =
1, sec2 0- tan2 = 1, cosec2 - cot2 = 1

,

between the circular functions, and are at once deduced from them

by putting
= iu. By means of the relations (1), (2), (3), com-

bined with the definitions, any one hyperbolic function can be
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expressed in terms of any other one. The results are given in the

following table.
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•(8),

we have, by changing u, v into J (u + v), h (u
—

v) respectively,

sinh u + sinh v = 2 sinh h (u + v) cosh h (u
—

v)

sinh u — sinh v — 2 cosh \ (u + v) sinh ^ (u
—

v)

cosh u + cosh w = 2 cosh \ (u + v) cosh ^ (u
—

v)
j

cosh u — cosh v = 2 sinh
|- (it + w) sinh ^ (u — «)J

which are the formulae for the addition or subtraction of two

hyperbolic sines or cosines.

Formulae for 'multiples and submultiples.

262. From the formulae (4), (5), (6), and (8), the relations

between the hyperbolic functions of multiples or submultiples

may be deduced, as in the case of the analogous formulae for

circular functions. We find

sinh 1u = 2 sinh u cosh u,

cosh 2u = cosh2 u + sinh2 u = 2 cosh2 u — 1 = 1 + 2 sinh2
u,

.
_,

2 tanh m
tanh 2m = 1

——
r
—

£5— ,

1 + tanh- u

sinh 3« = 3 sinh u + 4 sinh3
it, cosh 3m = 4 cosh 3

it
— 3 cosh u,

3 tanh w + tanh3 u
tanh 3n =

cosh ^ u

1 + 3 tanh2
it

1 + cosh u

, , /cosh m — 1 s

tanh^=v/
coghM + 1

=
rt

sinh ^m

sinh m

vcosh a — 1

+ cosh u
'

Series for hyperbolic functions.

263. We have

e
u = cosh u + sinh u, e~w = cosh it — sinh u ;

thus the series for cosh u, sinh u, in powers of u, arc

m*
COsh M = l + »-f + j-7-+

. . •
,

ir

4!

?l
a

sinh u = w + + >
- + . . . .

O - i

As in Art. 233, we see that cosh u = 1 + R, sinh u = u + S, where

|i2|<£|w|V
Ml

, |#|<£jw|
8 e |M|

.
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Also the principal value of (cosh u ± sinh u)
m

is always

cosh mu ± sinh mu,

whatever m may be
;
this corresponds to De Moivre's theorem for

circular functions. We may express the theorem thus

cosh mu = i {(cosh u + sinh u)
m

4- (cosh u — sinh u)
m

],

sinh mu = \ {(cosh u + sinh u)
m —

(cosh u — sinh u)
m

}.

264. We obtain from the last expressions, by expansion,

• i t ,
•

i
m(m — l)(m — 2) ,

. .

sinhmu= tocosh"1-1 u sinh u -\
— cosh**-8 u sinh3u+ ....
o !

f
f)i> (m ~• 1 )

cosh mu = cosh"1 u -\
~~^~,
— cosh"1-2 u sinh2 u

m (m — l)(m — 2) (to
— 3) . ...

H -^—r,
—— '

cosh"1-4 u sinh4 u + . . . .

As in the case of circular functions, we can deduce from these

series the expansions of sinh mu, cosh mu in powers of sinh u
;

it

is however unnecessary to repeat the work of collecting the various

coefficients, as we may obtain the result at once by substituting iu

for 6 in the formula of Art. 214, Chapter xvi. We thus obtain

to (to
2 - la

)
. ,

sinh mu = m sinh u -\ *—*r. -sinrr u
o !

m(m2-l2
)(m

2-3a
) . ..+ — zAr -smh 5 u + ...,

5 !

cosh mu = 1 + =-. sinh2
z/. H ^—r- sinh4 u + ...,

2 : 4 !

which series hold for all values of m, provided they are convergent,

which is the case if sinh u ^ 1. If we put sinh u=\, we find

w = log(l +V2).

265. From the series for sinh mu we deduce, as in the case of

tehe circular functions, a series for u in powers of sinh u. Equating

the first powers of to, we obtain

11,, 1.3 1 ,, 1.3.51 ..,
n = sinh u —

^
. = sinh3 u + ^—j

. -= smh' u —
% a a 7

sm" " + ••••

This series is convergent if sinh it ^ 1, or if wS log(l + y'-).

In particular, we have

11 1.3 1 1.3.5 1

log(l + V2) = l-2-3 + 2T4-5"270-7 + ""
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Periodicity of the hyperbolic functions.

266. The functions cosh u, sinh u have an imaginary period

2iri, since eu = eu+2ni. We have therefore

cosh u = cosh (u + 2iirk), sinh u = sinh (u + 2iirk),

where k is any integer. Since eu+,ri = — e
u

, #~ («+»*) =— e~w,
we

have cosh (u + iir)
= — cosh u, sinh (u + iir)

= — sinh u
;

therefore

tanh (u + iir)
= tanh u, or the period of tanh u is iir, only half that

of cosh u, sinh u. We find the following values of sinh u, cosh u,

tanh u corresponding to the arguments 0, i tri, iri, \-ni.
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provided this limit exists, when the number of sides of the in-

scribed polygon is increased indefinitely in such a manner that the

limit of the greatest side converges to zero, provided also this limit

has a unique value for all sequences of polygons subject to the

prescribed condition. Let ur be the value of u corresponding to

the point Pr , and let r denote the circular measure of the angle
PrOA ;

let u and correspond to the point Q.

We have tan r
= tanh ur ;

hence we find

sin 6r

sinh Ur , n cosh u»
,
and cos Ur

=
(cosh 2u r)2 (cosh 2ur)~

From these values, and the corresponding expressions for sin 6 r +, ,

cos r+i> we find that

sinh (v,.+l
-

Ur)
sin (0r+1

-
r)
=

(cosh 2ttr cosh 2ur+i)

OP,-+ i
= a cosh* 2ur+1 ;

*"

Now 0Pr
= a (cosh

2 ur + sinh2
a,-)-

= a cosh- 2 ur,

and

hence

A OPrPr+i = i 0Pr . 0Pr+l sin (0r+1
-

r)
= Ui- sinh (wr+,

- «,\

The measure of the area of the rectilineal polygon bounded by

OA, OQ and the sides of APl
P2 ...Pnr-lQ is therefore

where u = 0, un= u.

r »-I

r=0
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This measure is equal to

± a- 2 {(ur+i
-u r) + ar (u ,+1

- ury ew,-+1
" "r

| ,

in virtue of a theorem proved in Art. 263, where all the numbers

a,, are less than 1/6.

The length of the side PrPr+i is

a {(cosh ur+1
- cosh

it,.)

2 + (sinh u r+1
- sinh Mr)

2
}

2
,

which reduces to

2a cosh* (ur + ur+1 ) sinh ^ (ur+1
- v r).

Also ur+1
- ur < sinh (ur+1

- ur) ;
therefore the ratio

(ur+1 -Ur)fPrPr+l

is < crl cosh %(ur+1
-
w^/cosh* (ur + wr+1) < a-1 cosh \ u.

Since now (ur+1-ur)/PrPr+i is less than a fixed number inde-

pendent of r and of the particular polygon, we see that in any

sequence of polygons the greatest of the numbers ur+1
- vr in one

of the polygons converges to zero as the greatest of the sides

PrPr+i does so. In the polygon we may therefore suppose,

ur+1 -ur < rin ,

for all values of r, where rjn converges to zero as the number of

sides is indefinitely increased.

We now see that the measure of the area of the rectilineal

M-l

polygon differs from \tf 2 (u y+1
- ur), or %a-u, by a number less than

r=0

n-\

tVgV2^" 2 (ur+1
- ur) or &a?yn*e

v»u
;

r =

and this converges to zero when t]a does so. It has now been

proved that |a
2w is the unique limit of the measure of the areas of

the rectilineal polygons in any sequence subject to the prescribed

condition. Therefore the area of the sector OAQ bounded by

OA, OQ and the arc AQ of the rectangular hyperbola is \a-u.

The area of any sector of which the extremities are represented

by u, u' is clearly measured by \o?{u
-

u).

It should be observed that, to represent points on the other branch of

the rectangular hyperbola, u must be changed into iir
-

u, since

cosh (iir
-
u)= - cosh u,

and sinh (in -u) = sinh u.
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268. If we describe a circle 1 of radius OA = a, and let P be

any point on the circle, MP its ordinate, then denoting the angle
POA by 0, we have area OAP = $a?0. Let PN be the tangent
at P, we have then

OM = a cos 0, MP = a sin 0, KP = a tan 0, MA = a vers 0.

From iV draw NQ perpendicular to OA and equal to NP, then

ON 2 — NQ- = a-
;
therefore the locus of Q is a rectangular hyper-

bola of semi-axis a. Now denote the area of the sector OAQ
by \a

2
a, then as we have proved in the last Article, we have

OX = a cosh u, NQ = as\nhu. Thus we see that, just as the

ordinate and abscissa of a point P on the circle are denoted by
asin#, acos#, respectively, where \a?0 is the area of the circular

sector OAP, so the ordinate and abscissa of the point Q on the

rectangular hyperbola are denoted by a sinh u, a cosh it, re-

spectively, where $a"u is the area of the sector OAQ Thus the

hyperbolic sine and cosine have a property in reference to the

1 The figure in this Article is taken from a tract by Greenhill entitled "A
tptei on the Integral Calculus."
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rectangular hyperbola, exactly analogous to that of the sine and

cosine with reference to the circle. For this reason the former

functions are called hyperbolic functions, just as the latter are

called circular functions.

269. We have, from the figure of the last Article, when we
consider the point Q on the rectangular hyperbola, corresponding
to the point P on the circle,

a tan ~ NQ = a sinh u, and a sec = ON = a cosh u
;

therefore the arguments 0, u, for corresponding points, satisfy the

relations tan = sinh u, sec = cosh u. Since

. . sinh u
tanh hu = -

-.

—-

,

1 + cosh u

, , ,
tan sin . a

Ave have tanh -kit = -— — ~ = _r— —
n
= tan ho,2

1 + sec 6 1 + cos

or and u satisfy the relation tanh \u = tan \0.

Since AOQM< sector OAQ<hOAQ, we have

tanh u<Cu<C sinh u.

Ti <. ti ,i ,-. i- • p tanb?( sinlut , . , a ., ,

It follows that the limits of -
, ,

when u is lndennitely

diminished, are each unity, since cosh 0=1.

270. We have

eu = cosh u + sinh u = sec # 4- tan
;

therefore w = loge (sec + tan 0)
=

loge tan Q it + ^ ^).

Various names have been given to the argument ;
it is called by

Cayley the Gudermannian function of u, and denoted by gdu, so

that =gd u, u = gd~
l =

log tan (\tt + ^0) ;
this name was given

in honour of Gudermann, who however called the function 1 the

longitude of u. By Lambert, was called the transcendent angle,

and by Hoiiel 2 the hyperbolic amplitude of u (written amh u). A
table of the values of log tan (i?r H- \6) for values of from 0° to

90° at intervals of 30', and to 12 places of decimals, is to be found

in Legendre's Theorie des Fonctions Elliptiques, Vol. n. Table iv.

The table which we give at the end of the Chapter, for intervals of

one degree, was extracted 3 from Legendre's table by Prof. Cayley.

1 See CrclWs Journal for 1S33.

2 See " Theorie des Fonctions complexes."
3 See the Quarterly Journal, Vol. xx. p. '220.
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The table enables us to find the numerical values of the hyperbolic
functions of u, by means of the relations

sinh u = tan 0, cosh a = sec 9,

using a table of natural tangents or secants of angles.

Those who desire further information on the subject of the hyperbolic
functions and their applications, may refer to Laisant's " Essai sur les Fonc-

tions Hyperboliques
"
in the Memoires de la Socie'te des Sciences de Bordeaux,

Vol. x., also the treatises "Die hyperbolischen Functionen" by E. Heis, and
11 Die Lehre von den gewohnlichen und verallgemeinerten Hyperbol-funk-
tionen" by Giinther.

Expressions for the circular functions of complex arguments.

271. The circular functions with a complex argument may, by
the use of the notation of the hyperbolic functions, be conveniently

expressed in the form a + ift, where a and ft are real quantities.

Thus sin (x + iy)
= sin x cos iy + cos x sin iy ;

hence sin (x + iy)
— sin x cosh y + i cos x sinh y (0).

Similarly we find

cos (x + iy)
= cos x cosh y

— i sin x sinh y (10).

. . . sin (x + iy) cos (x — iy)
Also tan (x + iy)

= -
-) ^' -) ^J cos (x + %y )

cos (x — %y)

hence

_ sin 2x + sin 2iy

cos2;r + cos 2iy

. . . sin 2x + i sinh 2?/ ,, ,.f° (« + '»)-„, 2. + CMh 2^
(")•

The inverse circular functions of complex arguments.

272. We shall first consider the function sin-1 {x + iy). Let

sin-1 (x + iy)
= a + 1/3, then

x + iy
= sin (a + i/3)

= sin a cosh /3 + i cos a sinh (3,

or x*= sin a cosh ft, y — cos a sinh ft ;
we have therefore, for the

determination of ft, the equation x2
/is<>sh- ft + y-/s'\nh

2
ft =1, or

a? (cosh
2
ft
-

1) + if cosh 2 6 = cosh 2
ft (cosh

2
ft
-

1).
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If we solve this quadratic for cosh 2

/3, we find

cosh2
,8 = \ (x- + y

2 + 1) ± \\/{x
2 + y

2 + l)
2 -^x2

;

therefore cosh /3
= ± £ Va

2 + y
2 + 2# + 1 + £ \fx- + y

2 - 2x + 1,

and since cosh /3 is positive, we must have, if x is positive,

cosh /3
= iVO + l)

2 + 2/

2 ± \ V(a>
-

l)
2 + y

3
.

The corresponding value of sin a is

dj/cosh £ or W(«+l)8

+3/
2 + |V(a- l)

2
-fy

a
;

now cosh /S > 1 > sin a, hence we have

cosh /3
= \ \/(x + l)

2 + y
2 + ^V(a;-l)

2 + 2/

2 = w
>

sin a = £V(# + l)
2 + y

2 - %^{x - l)
2 + y

2 = v.

These are the values of cosh (3, sin a, whether x is positive or

negative.

The quadratic cosh/3 = w gives /3 = ± log [u + \/u2 —
1} ;

we
have therefore

sin-1 (x + iy)
= Ictt + (— l)

fc sin -1 v ± i log {u + Vu2 — 1
} ,

where k is an integer, and sin-1 v is the principal value of a, which

satisfies the condition sin a = v. To determine the ambiguous

sign, put x = 0, then sin-1 iy
= &7r + * log (Vl + y- + y) ;

hence

iy
= + cos &7r sin [i log (Vl + y

2 + y)]

- ± <-^s fcr^ri
" y ~^l = * (_ 1)S iy>

hence the ambiguous sign must be that of (— l)
k

,
or

sin-1 (x + iy)
= kir + (- l)

k sin-1 v + (- If i log {w + Vw9

-1}.. .(12),

where w = | V(a? + 1)
2 + ^ + 1 V(# -1)

2 + ?/
2
,

and v = \\!(x + I)
2 + y

2 -
\*J{x

- If + y\

If we consider sin-1 v + ilog {u + Vu- — 1} as the principal
value of sin-1 (x + iy), and denote it by sin-1 (x + iy), the general
value is kir + (— l)

fc sin-1 (x + iy), which is the same expression
as for real arguments.

A special case is that of x > 1, y = ;
in this case u = x, v = l,

and the principal value of sin-1 x is ^7r + ilog [x + \Jx2 —
1}. We

know a priori that sin -1 x can have no real value when x>l.
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273. Next let cos-1 (# + iy)
= ct+ ifi, we have then, as in the

last case, x = cos a cosh /3, y = — sin a sinh /3, and we find, as before.

cosh /3
= £VO + l)

2 + if + &V(<c
-

l)
2 + y

2 =
u,

cos a = ^(x +lf + y-- £>/(#- lf + y-
= v

;

hence cos-1 (x + iy)
= 2kir + cos-1 w + » log {u + Vu2 —

1}.

To determine the sign of the last term, we put x = 0, then

iy
= cos [± J,7r ± i log (y + Vy

2 + 1)]
= + sin {+ i log (y + \Jif + 1)}

= (i)(±*y);

hence we see that the second ambiguous sign must be the opposite

of the first, or

cos-1 (x + iy)
= 2k-rr ± {cos

-1 v-i log (w + vV-1)} . . .(13).

If cos-1,y — tlog(w+ Vw
2 —

1) denotes the principal value of

cos-1 (x + iy), then the general value is 2lcir ± cos-1 (x + iy).

274. Let tan-1 (x + iy)
= a + i/3, then

sin 2a + i sinh 2/3
X + IV = r :

—
,17 cos 2a + cosh 2/3

sin 2a sinh 2/3
hence *= ^o^^o^ 2/

=
cos 2a + cosh 2/3'

^ — cos 2a + co&h 2/3
'

we have

2 _ sin2 2a + sinh2
2/3 cosh2

2ff - cos2 2a _ cosh 2/3
- cos 2a

y ™
(cos 2a + cosh 2/3)

2
~~

(cos 2a + cosh 2/3)
2
—

cosh 2/3 + cos 2a'

2 cos 27 . _ ,
2 cosh 2/3

orl-^-2/2 =————-
^,andl + *2 + r =

cosh 2/3 + cos 2a' J cosh 2/3 + cos 2a"

2x 2?/
therefore tan 2a = —

„ ,
and tanh 2/3 =

1-aP-y2 ' '

1 + x- + f
e#- e-v 2y ,

Jfl
.r

2 + (v + l)
2

Since -s 5 = 7- : -,wehave^ =— ---,

hence the values of tan-1
(# + Vy) are given by

2x (x
2 + (v + 1 )'-')

tair«(g+fr) -far+itan-* 1 _^_ y
, +

i»tog|^ +g. ^j-W
77/e inverse hyperbolic /auctions.

275. If sinh a = £, then a is called the inverse hyperbolic sine

of 2, and is denoted by sinh -1
^. A similar definition applies to

cosh-1 z and tanh-1 ,?.
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If z = sinh a. = — i sin ia, we have iz = sin ia, or a = - sin-1 (iz).
i

Similarly if z = cosh a = cos ia, we have a — - cos-1 £
;
we find

%

also if z = tanh a, a = - tan-1 (is). We have therefore the inverse
i

hyperbolic functions expressed as inverse circular functions by the

equations
sinh-1 z = — i sin-1 (iz),

cosh-1 z — — i cos-1 (z),

tanh-1 £= — i tan-1 (iz).

276. By means of the expressions we have found for the

inverse circular functions of a complex argument, we may find the

values of the inverse hyperbolic functions. We shall however find

the expressions for them independently.

(1) If z = sinh a, we have e
a — e~a = 2z; solving this as a

quadratic for e
a

,
we find e

a = z ± V1 -t- z
2
,

hence a = 2ikir + \oge (z + \/l + z'
2

) or Zilcir + loge (z
— Vl + z2

),

both values of a are included in the expression

Heir + (- l)
k
log (z + Vi+22

).

Thus the general value of sinh-1
;?/ isi'&7r+(— l)

k
\oge (z + v'l + s'

2

),

and its principal value is loge (z + Vl + z2
); this principal value is

the one which is usually denoted by sinh-1 z.

(2) If z = cosh a, we have e
a + e~a = 2z

;
hence we find

e
a = z ± V'z

2 —
1, thus a — 2ikir ± loge (z + \1z2 —

1),

hence 2ik-7r ±\oge (z + *Jz-—l) is the general value of cosh-1 ,?;

the principal value, which is the one generally understood to be

denoted by cosh-1 2, is loge (z + \Iz2 — 1).

e
ia — 1 1 + z

(3) If z = tanh a, we have =
s, or e2a = -—

, hence
e + I 1 — z

a = ikir + % loge f
——

j
;
this is the general value of tanh-1 z, the

principal value being ^ logg f
-—

(4) We find for the principal values of coth -1
z, sech-1 z,

cosech-1 ?, the expressions

.. fz+l\ ,
1 + \

rl - z2
. l+Vf+l3

* lo
s«Urx)'

lo& j
>

lo& ^—
respectively.
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The solution of cubic equations.

277. We have shewn, in Art. 117, that when the roots of

the cubic x3 + qx + r=0 are all real, and q is negative, they
are V— §g sin 6, V- f g sin (6 + §tt),

V- f g>
sin (0 + f7r), where

/ 27r2\?
sin 30 = (

—
-j-j J

. We shall now shew how to solve the cubic

in the case when two of the roots are imaginary. In this case, the

condition 27?-- + <iq
3 > is satisfied.

(1) Suppose q positive; consider the cubic

4 sinh3 u + 3 sinh u = sinh Su,

let x = a sinh 8*, then # satisfies the equation

x3 + | a
2

. x — \a? sinh 3m =
;

this will coincide with the cubic x3 + qx + r = 0, if q = fa
2

,

27
rf\i

64 g
3
/

*

Now the roots of the cubic 4 sinh3
** + 3 sinh u = sinh 3m are

sinh u, sinh (w -f §tti) and sinh (u +^iri), hence the roots of the

cubic x3 + qx + r = are

Vfq sinh m, Vf q sinh
(it + §wi), \l§q sinh (it + §iri),

or V-^g sinh w, V^g (— sinh m + i \/S cosh %),

r = — ^a3 sinh 3m, or sinh 3m = — 4
(

— —
]

,,2\i

where sinh 3m = — A 27 — . We find the number 3m from a-
V aV

table of hyperbolic sines, when the numerical values of q and r

are given, and then sinh u, cosh u from the same tables
; thus the

numerical values of the roots will be found.

(2) When q is negative; consider the equation

4 cosh3 u — 3 cosh u = cosh Su,

we find, as in the last case, that if q = — fa
2

,
r = —\a? cosh 3m, the

cubic which a cosh it satisfies is x3 + qx + r =
;
thus the roots

required are

V-focoshw, V-3acosh(w + §7n), */-$qcosh(u + $Tri),

or V - fa cosh a, V- jj g (- cosh m + V3 sinh m),

(7"
2
\ 2- 27

-J
. Hence, as in the last case, we can
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employ tables of hyperbolic functions to find the numerical values

of the roots of the cubic, when the values of q and r are given.

278. Table of values of u for given values of 6.
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EXAMPLES ON CHAPTER XVI.

1. Prove that

8 sinh nx sinh 2 x= 2 sinh (« + 2) x - 4 sinh n.z;+ 2 sinh (n
-

2) a?.

2. If cos (a+ «j8)
= cos

(f> + i sin
<fr,

shew that sin
<fi
= + sin2 a = ± sinh2 /3.

3. If cos (5 + i'r/>)
cos (a+ ?"|8)

= 1
, prove that tanh 2 cosh2

/3
= sin2

a,

and tanh2
/3 cosh

2 = sin2
0.

4. If tan y= tan a tanh /3,
tan z= cot a tanh /3,

shew that tan (y+2) = sinh 2j3cosec2a.

5. Reduce e
sin (a+lW to the form A + iB.

6. If loge
sin (0 + i<f))

= a+ ip,

shew that 2 cos 20= 2 cosh 20 - 4e
2a

,

and cos(0-,3) = e
2
*cos(0+ /3).

7. If tan (a-+ iy)
= sin (w+ iv), shew that coth v sinh 2y= cot u sin 2#.

8. Express {cos (0 + i(f>) + i sin (0
-

i<£)}
a+^ in the form A + iB.

9. Prove that

,
/tan 20 + tanh 2r/A /tan 0- tanh $\ ,. . .

***
'

(tan 20 ^tanh 2*j
+*"

(tan*0 +Unh0J
=*" '

(cot * COth^
10. If «= cos a — J cos 3a+ £ cos 5a—

,

»=sina— J sin3a+i sin 5a-
,

prove that m=£jt, when 0ga<^7r and cosh2v= seea.

11. Prove that the sum of the infinite series

cos 40 cos 80 cos 120

is £ {cos (cos 0) cosh (sin 0) + cos (sin 0) cosh (cos 0)}.

12. Prove that

"=°°(-l)
n
sin(2m + l)n0 P=m .

, a . ... .„ ,2 79^T' v,n»4
=2 2 {cos(cosjj0)cosh(sinp0)} + cosa,

where a is the unit of circular measure.

13. From Euler's theorem

sin x
, ,— — cos ix cos $x cos J x.

dedu;e that

0) -i l_ +i» +1
>

+ i_i_+
loge .z #-1 2 1+^ 4 1+x* 8 1+.-

(2)
—

,
= cosech 2 x+ - sech2 - j? + —,

sech2 - x+ zh sech
2 - .r+

Xi I* 2 <ir 4 cr o

n. t. 22



CHAPTER XVII.

INFINITE PRODUCTS.

The convergence of infinite products.

279. Let zlt z>, ... zn ,
... be a sequence of real or complex

numbers formed according to any prescribed law, and consider the

product Pn = z
1
z2 ... zn of the first n of these numbers.

If Pn converges to a definite limit P, different from zero, as n

is indefinitely increased, P is said to be the limit, or limiting

value, of the infinite product z
x
z2 z3 ... zn ..., and that infinite

product is said to be convergent.
It is convenient to exclude the case of those products for which

Pn converges to zero from the class of convergent infinite

products.

If Pn =
|

Pn
| (cos n + i sin n ), where

|

Pn
j

denotes the modulus

of Pn ,
it is necessary and sufficient for the convergence of the

infinite product that both
|

Pn
|

and n should converge to definite

values as n is indefinitely increased. In case
[

Pn
|

increases

indefinitely, as n is indefinitely increased, the infinite product is

said to be divergent. In other cases in which the product is not

convergent it is said to oscillate, but oscillating products are

frequently spoken of as divergent.

The necessary and sufficient condition that the infinite product
zx z2 ... zn . . . should converge to a definite value (other than zero)

is that, corresponding to each arbitrarily chosen positive number e,

an integer n can be so chosen that
|

zn+1 zn+2 ... zn+r — 1
1

< e, for all

values 1,2,3, ... of r. To shew that this condition is necessary,

let us assume that Pn converges to P, a number different from

zero. All except a finite set of the numbers \P1 \,\P.2 \,
... \Pn \

...

are greater than
|

P
|

—
77, where 77 is an arbitrarily chosen positive

number such that
j

P
\

—
tj > ;

also none of these vanishes, there-

fore there exists a positive number k which is less than all the
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numbers
|

Px
\

,
\

P2 1,
. . .

|

Pn
\

. . ... Since Pn converges to a definite

limit, n may be so chosen, corresponding to e, that
|

Pn+r
~ Pn I

< &e>

for r— 1, 2,3,—
Hence we have \zn+l zn+2 ... zn+r

— 1\< ke/\z^z2 ... zn \ < e, and

therefore the condition stated is necessary.

To shew that the condition is sufficient, let us assume it to

hold. For an assigned value of e, n can be so fixed that

zn+1 zn+2 ... zn+r = 1 + pntr ,
where

| pn>r \

< e, for r = 1, 2, 3, .... We
have then Pn+r = Pn (1 + pn>r), and therefore

|

Pn+r \

<
j

Pn
| (1 + e),

for all positive integral values of r
;

it follows that all the numbers

|

Px ], |

P2 |,
... \Pn |

... are less than a fixed positive number X.

From
|

zn+1 zn+ ,2 . . . zn+r
— 1

j

< e, we have
j

Pn+r
— Pn \< \e, for

r = 1, 2, 3, ...
,
and since Xe may be chosen as small as we please

by choosing e small enough, we see that Pn must converge to a

definite limit.

A convenient method of considering the convergence of the

infinite product zx z2 ... zn ..., is to consider the series

l0ge ^ + l0ge ^a +...+log6 ^„+ ....

If this series is convergent the infinite product converges to a

value other than zero, and conversely. If the infinite product

converges to zero, the series diverges to — oo
,
and for this reason,

as before, we exclude this case.

To prove that the convergence of the infinite series and of the

infinite product are equivalent, we observe that the necessary and

sufficient condition for the convergence of the series is that n can

be so determined, for each e, that \\oge (zn+1 zn+2 ... zn+r)\
or

|loge (l+pn>r)|<e, for r = l,2, 3, ....

If this condition is satisfied, we have, on employing the

theorem
|

e
z - 1

|

<
| z\ (1 + £ | z\ e lz

')
established in Art. 230* 1

',

| pn%r |< e(l +^ee
e

).
If now rj be an arbitrarily chosen positive

number, e can be so chosen that e(l + \ee
e)< t], and thus n can

be so chosen that
\p,>, r

\

or
| ^n+i^n+a ••• ^m+r~ 1

1

is < V> f°r

r = l, 2, 3, ...
;
therefore the infinite product is convergent. Con-

versely let us assume that n can be so chosen that
| pn ,

r
\

< e, for

r = 1,2, 3, .... It has been shewn in Art. 249 <" that if
|

z
|
< 1,

lio&a+^M^i+ijJ^,),
therefore |log«(l +P»,r)\< e(l +i j-3-J;

22—2
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or \oge (zn+l Zn+2 ••• Zn+r) < V> provided e (l + \ yZT)
< v '

an(^ ^ v

is prescribed, e can be so determined as to satisfy this condition.

Therefore the condition of convergence of the series is satisfied.

280. Suppose u,,ih, ... un , ... to be a sequence of real positive

numbers each of which is less than 1
;

it will be shewn that the

infinite products
GO

(l+u1)(l+u2)...(l+un)... or n(l + w)
1

00

and (l
— u

1)(l
— u2)...(l—un)... or II (1

—
u)

i

both converge, or not, according as the series ux + u2 + ...+un + ...

is convergent or divergent.

Since

(1 + Uj) (1 + U2) . . . (1 + Un) >l+Wi + Ma + ...+ Un ,

it is clear that the product 11(1+ u) diverges if the series

Ui + u2 + • • • does so. Also

(l—jfl -Id... Q-O > (1 + w,) (1 + "=) • • (1 + 'a
hence if 2w diverges the product (1

— m2) (1
— v.2 ) ... (1

— un) con-

verges to zero, and is therefore considered as non-convergent.

Next, if Xu converges, let e be an arbitrarily chosen positive

number less than 1, then n can be so chosen that

for r= 1, 2, 3, .... We have, as in Art. 226,

(1
- Un+1) (1

- Wn+2) ... (1
- Un+r)

> 1 — (Un+1 + Un+2 + . . . + Mn+r) > 1 — 6,

and therefore
|
(1
— un+1) (1

— un+2) ... (1
— un+r)

— 1
]
< e, and thus

the condition obtained in Art. 279 for the convergence of the

infinite product II (1
—

u) is satisfied.

Also

(1 + u n+l ) (I + un+2) ...(1 + un+r)

1 1
< « C7^ 1 7^ 1 <

(1
- un+1) (1

- un+i) ... (1
- un+r) 1 - e'

and thus |(1 + w„+,)(l +un+2) ... (1 + tt n+r)
— 1

1

< . If v be
JL "—" €
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arbitrarily assigned, we can determine e so that e/(l
—

e) < rj, and

thus n can be so determined that

|
(1 + MB+1 ) (1 + Un+a) . . . (1 + Un+r) - 1

|

< 77,

for r = 1,2, 3, .... Hence the product II (1 + u) is convergent.
It is clear that the condition that u Y ,u2y ...un ,

... should all be

less than 1 can be replaced by the wider condition that all except
a finite set of these numbers are less than 1, For we can remove

a finite set of factors in II (1 + u) or in II (1
—

u) without affecting

its convergence.

281. Next let us consider the infinite product

(l + u1)(l + ua)...(l + «„)...,

where «„«.2l ... u n ,
... are complex numbers. We shall shew that

if the series of moduli of uu u2) ... un , ..., i.e. the series,

|«i| + |

u.2 \+ ... + |w„|+ ...,

is convergent, then the infinite product is also convergent. In

this case the infinite product is said to be absolutely convergent.
We see that

| (1 + Un) (1 + Un+l) • • . (1 + Un+r) - 1
|

S_(l +| un \) (1 + I

un+l \)... (1 + 1

un+r \)
-

1,

since the modulus of the sum of any set of numbers cannot exceed

the sum of their moduli. Now if the series 2
|

u
|

is convergent,
the infinite product II (1 + |

u
|)

is convergent, in accordance with

what has been shewn in Art. 280
;

it follows that, corresponding
to any assigned e, n can be so determined that

(1 +
J

un
|
) (1 + j

un+1 \) ... (1 + |

un+r I)
- 1 < e,

for r = 1, 2, 3, ... . It follows that

j (1 + Un) (1 + U n+l ) . . . (1 + Un+r)
~ 1

|

< 6,

for all positive integral values of r, and therefore the product
U (1 +u) is convergent. It may happen that II (1 -f u) is con-

vergent whilst the series 2\u\ is divergent ;
in this case II (1 + u)

is said to converge non-absolutely, or to be semi-convergent.
It follows from the above theorem that the infinite product

(1 + u
k z)(l +a 2 z)...(l +an z)...

is convergent if
|

ax
j
+

1

as
j

+ . . .
|

a n
\

+ ...

is a convergent series.
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Let b1 ,
b2 ,b3> ... bn ,

... be a sequence of real numbers all of the

same sign, and let L bn = 0, but suppose the series
« = x

b1 + b.2 + ... +bn + ...

to be divergent. It will be shewn that the infinite product
IT (1 + ibn) is not convergent. To prove this we see that

I + ibn = (1 + b^pe****, when tan $„,
=

|

bn |,
and the upper or lower

sign in + i$> n is taken according as bn is positive or negative.
If 7) be an arbitrarily chosen positive number less than unity, we
have

<j>n > (1
—

77) tan cf)n ,
for all sufficiently large values of 11

;
and

therefore %cf>n cannot converge. It follows that II (1 + ibn ) cannot

converge, although II (1 + bn-)^ will converge in case the series

2&n2 is convergent. It is clearly sufficient for the validity of the

theorem that all the numbers bn> with the exception of a finite

set, should be of the same sign.

Ifz be a complex number x + iy, and the numbers a1} a», ...an , ...

be all positive and such that 2an is divergent, the product
II (1 + an z) is certainly divergent if the real part of z is positive.

For the product of the moduli of the terms 1 + an z is greater than

II (1 + anx), and this is divergent when x is positive.

The product ( 1 + —
J

( 1 + ~
j

. . . ( 1 +—
J

. .., when x is a real number, does

not converge in case p S. 1, but converges ifp>l. For 2 — is divergent when

p ^ 1, and is convergent if p > 1.

The product (l+y) (l
+
|)...(l + -)...

is certainly divergent if the real

part of z is positive, and it does not converge if the real part of z is zero.

When the real part of z is negative the product converges to zero, and is

therefore considered as non-convergent. For lo^ (
1 +- )

= n ,(1 +n„),
\ 11) n 2,iz

x ' '

where
| rjn |

is less than a fixed number for all sufficiently large values of n
;
the

real part of 2 loge (
1 +-

) consequently diverges to — 00 when the real part oiz

is negative, whence the result follows. This depends on the facts that 2 - is

divergent and 2 -
2 convergent.
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Expressions for the sine and cosine as infinite products.

282. We shall now find expressions for sin x, cos x as infinite

products involving the circular measure x; we first suppose x to

be real and positive.

We have

- . X . X + 7T
sin x = 2 sin - sin—^—

2 2

„ . X . X + TT . X+2tT . X + 37T= z 3 sin T sin—-— sin—-.
— sin — ,

4 4 4 4

and continuing this process, we obtain

o»--i • x • x + 7r . x + 2tt . x + (n—\)irsin x = 2 n J sin - sin sin ...sin -—
,

n n n n

where ji is any positive integral power of 2
; hence

sin x = 2n
~l sin - cos - (sin

2 - — sin2 -
)n n\ n nj

.
„ 27r . x\ f . n n - 2?r . x\

sin- sm2 -
)

. . . sm2 —
^r sin2 -

;n n \ 2/i nj

since L sin x cosec - = n, we have
ar=o n

o«_! • o^ • J2tt . „n — 2irn=2n J sm- — sm2— ... sm2 —s ;
n n 2n

hence, by division we find

(

x\ / . n X \ / . „ X
sin- - \ / sin 2 -

\ / sm2 -

X X \ • 7T / 1 . ZTT I [ n — -~>ht
n sin - cos - \ sin2 -

/ \ sm2—
/ \ sin 2 ±w

n n \ 71/ \ n / \ 2n

This is the particular case of the theorem (19), of Art. 87,

when n is a power of 2. We might, of course, assume the general
theorem.

Let %{n — 2) = r, then if m be any number less than r, we have

sin2 - \ / sin 2 -

sma?= ?ism-cos- 1 1 ...I 1 \R

where R = 1 -
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Now, n being taken greater than 2x/ir, m may be so chosen

that x < (m + 1) 7r, then R is positive and less than unity ; also, as

in Art. 226, R is greater than

sin2
x

\
to + Itt rir)-

^ cosec
2

1- . . . + cosec2—
>• .

n
(

n n
)

Now we have shewn in Art. 96, Ex. (1), that if 6 < \tt,

. sin sin kir
then a > —y^— ,

hence, if p < H ,
cosec2 *— < -r-i

;
also sin2 - < — ,r 2 n 4p

2 n ri*

x2
\

1 1 1)
hence it!>l- T j-

—
r^ + 7 rov> + •• + ^f »

4 ((»i + l)
2

(to + 2)
2

?*"]

> 1 ~ -r J—; r^r + t
—^rxz r^ +

4 jm (m + 1) (to + 1) (w + 2)
' '

(r
-

1) rj
'

;r_

2 /l 1\
a?_

4 Itw, 77 4?h'

a;
2 &t2

Since jR is between 1 and 1 — -r—
,
we may put i? = 1 —— ,

where is between and 1
;
we have then

sin x = n sin - cos -
n n

sin2 -

where to is any number less than \n, such that x < (m+ 1) w.

Now let w become indefinitely great, 7?i remaining fixed, we

have then, since each sine in the product may be replaced by the

x
corresponding circular measure, and since cos - has the limit unity,

n

rin*-«(l-£)(l-^)...(l- m"7r-J \ 4>m

where 6^ is the limiting value of 0, when n is indefinitely in-

creased, and is thus such that ^ $ x
^ 1.
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Now by increasing m sufficiently, we may make the factor

6 x2

1 — -j— as nearly equal to unity as we please, hence we have the

expression

^.-.(l-*^.. £)(!_£) (1),

for sin# as an infinite product
1
. The restriction that x should be

positive may clearly be removed.

283. From the formula (17), in Art. 86, if n is even,

we may shew that

where m is any finite number such that 2#<(2m + l)ir, and 9 is

between and 1
;
hence we obtain for cos x as an infinite product,

the formula
4>x2\ / 4a;2 \ U ^x-

cos x = 1 1 —
/_ 4>x2\ /_ ^x' \ / 4#2

\

284. On account of the importance of the formulae (1) and

(2), we shall give another proof, taken from Serret's Trigonometry.

Taking the formulae

cc

sin x = n sin - cos - II 1 —
n n r= i \

. rir
'

sm2

x
sm" —

r=ttt I
tl

cosx= n i

,.=i I . (2r-l)7r J'
sin-' H—-

2n

1 The investigation of this Article is due to SchlOmilch, see his Compendium
der hoheren Analysis, Vol. l.
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which hold for even values of n, we transform them by means of

the formula 1 ^-r-= = cos'- a
(
1 — -

—7-5 ) ,
into the forms

sin- V tan 2

jdj

tan2
n

sin x = n cos' 1 -
. tan - II 1 —

n n r= i .rir
'

tan2

r — hn
tan2

n

x

cos a? = cos'1 -.nilx r z4 \ , n

n "'-l l tan2^^'*
Now it has been shewn in Art. 96, Ex. (1), that as increases

from to J 7r, ,, diminishes, and
c

~ increases, hence

sin2 a\ / a2
\ /., tan2

a'

1 ~ -T-— < 1 ~ - < 1 ~
sin2

/3y V #7 V tan2
/?;'

where the absolute value of each expression is to be taken.

flc or sc

Suppose n so large that + xjn <^ir, then + sin -<+-<+ tan -,
71/ 7b ih

and + cos — < 1, the signs being so taken that each expression has
it

its arithmetical value; the two expressions for sin x shew that

+ sin x < + x 11 1 —
r=i r2

7rV
5

x »-=i(*-2), x2

and + sin x > + cosn - . x 11 1
n r= i V r2

7r-
'

and the two expressions for cos x shew that

± cos x < ± n 1 - -— l

-,—-

,

r=i V (2r-l)-W

and + cos # > + cos'1 - 11 1 —
n r=\ \ 2r- 1|

2
tt

2
.

CO

now we know that cosn - = 1 — en ,
where en is a number which con-

n

verges to zero as n is indefinitely increased
;
we have therefore
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where n ,
6n

'

are numbers which converge to zero when n is in-

definitely increased; we thus obtain the expressions (1) and (2).

If we bad used the formulae

sin- -

#r=4(«-i / n
sin.r = nsm— n II-

r=i \ • 2 rir
'

sm-

#r=£{w-l) s sin-./'
COS x= cos - II / 1 —

. ,2r-lw j-

which hold for an odd value of n,

and the formulae

tan 2 -
x afr=|(»-i)l %

sin .?= cos" -
. tan - n 1 —

n n r= i \ ?
-
7T

tan'—
n

\, J tan2 -
x r=i(n-l)l n

cos.r= cos"- II 1 |,n r=i \ , „2r-l7r

obtained from them, similar reasoning would have led to the same results.

285. We shall next consider the case of a complex variable

z = x + iy; we find, as in Art. 282,

. z z
sin 2 = w sin -cos -

n n

where R =
\ 1 —

2
m

sin2 -

n

where n is an even integer, and r = \{n
—

2) ;
we have to determine

limits for the value of R. Let p denote the modulus of sin -,

then as in Art. 281, since the modulus of the sum of any numbers

is less than the sum of their moduli, we see that the modulus

of {It
— 1 j is less than

i +—^—\..{i + -£-\-i.
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Now we know that eApt > 1 + Ap2
,
if A is any positive number,

hence the modulus of R — 1 is less than

/ a m- __„r^
p" I cosec2 '^J_ll + . . . + cosec2 —

)

e \ n nj_ h

and this is less than

orthan /'" '"' ^ + i
+ m +rm + 2

+
--r\ _ ±

therefore the modulus of (R — 1) is less than

\vi r)_-t
-1- i or than e

m — 1
;

thus the modulus of (R — 1) lies between zero and e
m — 1 Now

i"""

p
2 = sin2 - cosh 2 ^ + cos2 - sinh 2 y~ = sin2 - + sinh 2 ^

,n n n n n n

hence the limiting value of p
2n2

is x2 + y
2

, therefore the limit of

the modulus of (R — 1), when n is increased indefinitely, lies between

zero and e 4m — 1
;
now e ^n

may be made as near unity as we

please, by taking m large enough, thus \R— 1| may be made as

small as we please, by taking m large enough. When n is in-

definitely increased, each of the sines in the expression for sins

becomes ultimately equal to its argument, therefore

2
sin z = z ( 1 „

IT* V
1

2VJ1
1

32W""
The formula

may be proved in a similar manner.

286. We remark about the formulae (1) and (2), that they

satisfy the condition of absolute convergency given in Art. 281,

x2 S 1 4a'2
°°

1
since the two series — 2 - and —7 X ,-n —- are convergent.

if- 1 n2 tt ! (2r
-

l)
2 °
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Each quadratic factor in either product may be resolved into

two factors linear in x, thus

sin

2x\ /, 2x\ /, 2x\ (, 2x
(1+s-

which may be written in the forms

sin* = a;lf fl + —) (3),

nfn-—^-) (4).cos x-
2r - Itt/'

In these latter forms, the products are semi-convergent, since

the products

i V rW i V r-Try x \ 2r-.br/ l V 2r-lir)
aa "1 oo "I

are divergent, the series S , S ~ = being divergent. A semi-

convergent product has the property analogous to that of semi-

convergent series, that a derangement of the order of the factors

affects the value of the product ;
we are entitled to consider the

formulae (3) and (4), as correct, only when it is understood that

an equal number of positive and of negative values of r are to be

taken
;

thus (3) and (4) must be regarded as an abbreviation

of the forms
n

( x \
n

( 2x
sinx = xLn=w II 1 + -

-), cosx = Ln=00 II 1 +=
-n \ ?"7>V -11 \ 2r — 17T.

287. It has been shewn by Weierstrass 1

,
that the divergent

product

,(1+ !\(i + ^(i +
£)...ITJ V 2lTj

may be made convergent, by multiplying each factor by an

exponential factor; thus the product

is absolutely convergent.

1 See the Abhandlungen of the Berlin Academy, for 1876.
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We have, as has been shewn in Art. 230 (1)
,

e-»7.= 1 __£_ + _^_ (1+M )
nrr Y.n-tr-

where
|

un
| converges to zero as n is indefinitely increased

;
there-

fore, if e be an arbitrarily chosen positive number,
j

un
\

< e, for all

values of n which exceed some fixed value dependent on e. We
have now

(i +
±\ .-£ =

(i + *.)
u - ±. +

*
a +4V «W V nir) {

nir 2w2
7T3V

H/
j

The series of which the general term is

x-^— j
1 - wn -— (1 + Un)\

is absolutely convergent, since the series %—, 2— are convergent,
ri

2 n3 °

and
|

un
|

< e,
1

1 + un
\

< 1 + e, for all sufficiently large values of n.

Therefore, in accordance with the theorem proved in Art. 281, the

infinite product of which the general term is

or f 1 H
j

e
nn

,
is absolutely convergent.

If/O) denote the limit of the absolutely convergent product

fi (l + -
-) e~™, and/(- z) that of fl (l - —) e™, we have

l V nirJ
J\ '

1 ^ n7rJ

/(*)/(- z)
= *^.z

The above result may be employed to evaluate the limiting
value of the expression

••(
,+ -)V ~iMrJ

when m and n are made indefinitely great, but so that their ratio

has a definite finite limit.

If sn denotes the series 1_1 + 2" 1 + 3_1 + . . . + rr1
, we see that

mi z = z L<f> (z) . e
n

;
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now it is well known that the limit, when n is infinite, of sn — loge n

is a finite number 05772156..., called Euler's constant, hence

the limiting value of sn
— sm ,

when m and n are infinite, is that of

loor,
—

. We have therefore,° m

L(f> (z)
= k ——

,

z

where /; = Lm/n, and the value of Z(/> (2) is only when m and
z

n become infinite in a ratio of equality.

288. The formulae (2) or (4), for cos x, may be deduced from

(1) or (3), by means of the formula cos x = sin 2xj2 sin x.

We have

sin2# „ £ /, 2x\ I
»

A, x= 2x n 1 + -
) / 2* n

(
1 +

2 sin # _ oo \ rir) I _ «, V ''I";

the factors in the numerator, for which r is even, cancel with

those in the denominator, hence if we consider the product in the

2n / 2x\
numerator to be the limit of n (1+--J, and that in the

-2»\ rwj
n.

denominator to be the limit of f
(
1 + - -

) ,
when n is infinite,

-n \ rirJ

00 / 2# \

we see that cos x = II 1 + ^
—y~

)

which agrees with (2) or (4).
-oo V ^s ~f~ Itt/

The condition of convergence of the products shews that taking 2n

instead of n, in one of the products, does not affect the limiting

value of that product when n is indefinitely increased.

289. We may deduce the product formula for sin x from that

of cos x, or vice versa, by means of the formulae sin #=cos (^ it — x),

cos x =sin {\ir —x). From the formula (4) we have

*
/, tt-2x\ ™

(2rir-2xsm*= n (l + - = n n

-oo V 2r-lirJ - 00 \2r-l7r
» 2r » / ar= 11 -=-.* n 1

_«, 2r — 1 -oo V ^7T.

where the factor a; corresponds to r —
; taking the limit of

for x = 0, we see that we must have IT _ —= = 1,
a; _oo2r— 1

hence sin a; = # IT
( 1

— —
)

-oo V ?'W
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290. The product formulae for sin x and cos x may be easily
made to exhibit the property of periodicity which those functions

possess.

Let »>-5(l + £)'
then

n7r / V 7T /
""

V nir 1

__.m + -Vi + •V.Yi +=^-Wi-«
7T/ \ 27T/ \ W + Itj-/ V 7T

# \ n + ;

»-1tt/ n

» + (n + l)«;
/(a

.

);
?i7T — a;

now when w is indefinitely increased, we have Lf(x + 7r)
= — Lf (x),

which is the equation sin (x + it)
= — sin x

;
the formula (4) may

be made, in a similar manner, to exhibit the property

cos (x + 7r)
= — cos #.

The function sina? vanishes when #=0, +w, ±2tt..., and these values

correspond to the factors #, 1±— , l±jr-— in the formula (3); also it has
TT 2.TT

been proved in Art. 235, that sin x does not vanish for any imaginary value

of
a?,

thus if it be assumed that sin x can be expressed in the form of an

infinite product A - ^—
=
—— —

,
the values of a, b, c... must be 0,

6c...

n,
-

ir, 2-rr,
— 2tt.... The value of A is then determined by putting x=0, aud

SIR V
using the theorem L -=lj we obtain the formula (1) or (3). This is of

00

course worthless as a proof of the formula, since we have no right to assume

without proof that sin x is capable of expression in the required form.

291. It is important to notice the forms which the formulae

(1) and (2) take in the case of an imaginary argument iy\ we

obtain in that case, the expressions for sinh y, cosh y as infinite

products

si„h,= y (i+g(i +1|i)(i +3$) (5,,
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The formulae (1), (2), (5), (6) were first obtained by Euler, by means of

the identity

n=m— 1

22m -I=m(22 -l) n
71= 1

1 — 2z cos M2
|m

2-2cos^

putting 2= 1 + — > it becomes

2x+

(1+-) -fi+ )
= n U+-. r-; rrrsr

m I. V 7)iJ V 2wi/ /

if in be now made to increase indefinitely, this becomes

which is the formula (5). This evaluation of the limit requires an exact

investigation, as in Art. 285.

The formula (1) was deduced by changing x into ix. The formulae (2), (6)

were obtained in a similar manner, from the expression for z2m + l in factors.

Examples.

292,
(
1 ) In vestigate Wallis' expression for it.

In the expression for sin x in factors, put x=\n, we have then the

approximate formula

^H)H) (I"*)-
where n is large ; this may be written

n—tt; r\ 2.4.6... 2»
VWa»+i)- 1>8 -5 _ {2n

_ iy
which is Wallis' formula.

(2) Factorise cosh y
— cos a, cos x — cos a.

We have coshy— cosa=2sin^(a + iy) sm^(a — ii/)

a> / a2 \2

putting y= 0^ l-COSa= ^a
2n(l-—^—, ),

1 \ liCTT /

hence

cosh y — cos a

1 -'-o.s a

=(>€)v(i+^)0-^K^.)(i+^>
therefore

coshy-cosa= 2.sinHa.( 1 +^.> )
H |l + ,

^ —rJ |l+ ^ 1,J "
V «7 1 I (2ft»r+ a)

2
J \

T
(2»7r-a)

2
J'

n. t. 23



354 INFINITE PRODUCTS

Writing ix for y, we have

cos^-cosa= 2sin2 Aa.('l--!
N

)lI il fi— I U ^ \2
V aVTl (2nir+o)«J V (2»«— a)

2
/'

(3) Prove that

= % rr -tan-*
(tank

±. cot
±-^.

We have sin(#+t>)= (a'+ i>/) n il-^-^-i ; taking logarithms, this

becomes
r 2 2 o ^

log (sin x coshy+ i cos a; sinh y)= log (#+ iy) + 1 log \ 1 - ~% - i . =^L \
.

equating the imaginary parts on both sides of the equation, we have

tan _ 1
(tanh y cot x) = tan

- 1
* - 2 tan

- 1
. "^ „

•

x i ni
it

l— xl+yi

let x=y=\j.J%
we have then

QO i / 1 1 \
2 tan -1 -s—;,=xtt -tan -1

(
tanh— . cot-rr

)

i n 2
tt-

*
\ V2 >/2/

Representation of the exponential function by an infinite product.

292 ll)
. A representation of the exponential function e*, in the

case in which
|

z
\

< 1, has been given by Mathews 1
.

Let us assume that z is the limiting sum of a convergent series

2 kn loge (1 + zn). We find then that &x
= 1, and

i >

»=i

6'

for w> 1, where 8 is any proper integral factor of n, and 8' — n/8,

each such value of d> giving one term. From this it follows that

nkn = 2 (- If 8ks
= 2 (- l)

nlS 8ks ;

and the values of all the numbers kn are to be determined from

the set of equations of which this is the type. It can be shewn by
induction that

(1) If u = 2m
,
then kn = 1/2.

(2) If n is the product pipa ...p?, of p, different odd primes,

then kn = (-iy/n.

1 Proceedings of the Cambridge Philosophical Society, Vol. xiv. p. 228.



INFINITE PRODUCTS 355

(3) If n = 2mplP .

2 ...p^, then kn = (- 1Y 2'"-1

/??.

(4) If n has the square of an odd number as factor, then

K = o.

That, with the values of kn so determined, the series

%kn \oge (l + zn)

converges when
j

z I < 1 is easily seen. The exponential function e
z

is consequently represented, for all values of z such that |s|<l,

by the infinite product

n (i + znfn = (i+ z) (i + z-)
i/i

(i + z3

)~
il3

(i + z'y'
2
...;

1

or, since 1 = (1
—

z)
ll2

(l +z)V2
(l + z2

)
l!2

..., we have by division

where jd is the product of fi unequal odd primes, and all values of p
of this form are to be taken.

Series for the tangent, cotangent, secant, and cosecant.

00 / z2 \
293. Since sin z = z H I 1 ——

,
we have, when z is not a

i \ n2
7r

2
J

multiple of tt,

oo / Z2
\

loge sin z = \oge z + Z log, f 1 - —
iJ

.

Let A be a positive real number , changing z into £ + h, and

subtracting the two expressions, we have

,
sin (z + h)

log,, t6 sin z

=
l0ge ( 1 + -) + 2

{log, f
1 + ~A_) + log, (1 +_A

Now, employing the theorem given in Art. 249 (1

>, we have

i ft * \ h
,

h 2

23—2
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where
|

v
1

,
|

vn
|

,
|

wn
|

all converge to zero when h is indefinitely

diminished. Moreover, z having any fixed value which is not

zero or a positive or negative integral multiple of 77-, for all

sufficiently small values of h the numbers
|

v
\

,
\

v1
|

,
|

v.2
1

... and

j
Wj

I
,

I

w2
1

. . . are all less than an arbitrarily chosen positive

number e, since the moduli of
|

z
\

,
|

z — ?nr
\

,
|

z + nir
|

are greater
than some fixed number independent of n.

We have now

1 , sin (z +h)
3 e

~1

Z
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where n > r + 1, and it then follows that the series of which the

general term is
, Tn is convergent. Similarly the series of

°
\Z
—

?17T|
2

which the general term is
,

— - is convergent.°
]

z + mr
|

-

We now see that the modulus of the sum of the series of

X *4* v 1 ~\~ iv
which the general term is hh } -^, + h^1 ?

—
; %, does not& "

(z
— mrf

~
(z+ mrf

exceed a number ^h (1 + e) A (z), where A (z) is a positive number

dependent only on z
;
this modulus diminishes indefinitely as h is

indefinitely diminished. It now follows that

1 ,-,
1z T 1 . sin (z + h)- + 2 -r :
—

: converges to L T loge ^ .

Since - —. = cos h + sin h cot z = 1 + h cot z ( 1 + £"),
sin z

where
|
£ | converges to zero with h, we have

= C0t2(l + f)(l + O,

where
1 £' | converges to zero with h

;
hence

r 1 . sin (z + h)L r log«
- -^ = cot z>

h=0 h
° smz

It has now been shewn that when z is any real or complex
number which is not an integral multiple of it, co\,z is the sum
of the convergent series11111 /(T.- + —— + - -+-T5- + «- + . (7),

Z Z + 7T Z — 7T z+lir z—lir

or 1 + 2*2-^-, (8).Z 7l=lZ~— WTT-

In the form (7) the series is semi-convergent, and in the

form (8) it is absolutely convergent, except for z = 0, ± w, + 27r, ...,

for which values the series is divergent.

In order that the student may appreciate the necessity for the investigation

in the text, we remark that if/(z) be the sum of an infinite convergent series

+ u 2 (z) + ... + un (z) + ..., we are not entitled to assume that

j /(»+*) -/(*)_g L
u r {z + h)-ur (z)

I,
-

,, A
! /l=0 A
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Suppose Rm (z) is the remainder of the series after m terms, then

/ (2)
= Ml 0) + «*2 0) + • • • + «m (*) +^m (4

/(s+/i) = ?< 1 (z+h)+u2 («+A)+ ...+ «,» (z + k) + Rm (z+h) ;

z /(«+*) -/(«)=g z Mr (g + 7t)-Mr (^)
| z

Rm (z+h)-Rm (z) ,

7l=0 A 1 /l=0 ^ /l=0 /i

now since the given series is convergent, Rm (z), Rm (z+h) become indefinitely

small when m is indefinitely increased ;
it does not however necessarily follow

that L m
7

m\zl does the same, and it is only when it does that
h=o ,l

we are entitled to employ the derived series to represent the derived function

of f(z).
If for example Rm (z) were of the form — sinwiz, we should find

L Rm{z+h) -RM= A cos mz,

which does not converge to zero when m is indefinitely increased, but oscillates

between the values ±A.

294. From the expression

"IT-J \ 0"7T"

we obtain, by a method similar to that of the last Article, the

infinite series1111— tan z = ——ij- H 5 1

—tt— H „ 1- . . .

Z + -^-TT Z — \TT Z + §77 Z — §77

+
z + ±(2m-l)TT

+
z-±(2,,i-l)-7r

+ ^9) '

00 1
or tan z = %z% j=

————
(10);

i (2m — l)-7r-
— 4>z-

v "

the series (9) is semi-convergent, but (10) is absolutely convergent
for all values of z except ± \tt, ± f vt—

295. We may find a series for cosec z by means of either of

the formulae cosec z — cot \z — cot z, cosec z = \ cot \ z -I- \ tan \ z
;

using the first of these formulae, we find on substituting the

series for the cotangents

cosec z =
2 2 2 2 2

z z + 2ir z — lit z + 4nr z — 4nr1111 1 1 1

z z + tt z — 7T z + Zir z — lir z + ott z — Sir
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hence cosec z

_!__i L. +_L_+ _i_:,_i L_ + ... (11)>
z z + it z — it z + 2tt z — 2tt z+Stt z— 'Stt

or
1

=° (— ly 2z
cosec g = - + S^ i;

„
, (12).

2 x (2"
— r TT-)

In the formula (11), change z into z + \tt \
we have then

secs = f—^ L. )-(—1 L_)+...(i3)5

W-J-i-Tr c- — ±-rr \^J-4tt 2r — 4-7T/

/1K,(-iy-1

(2r-l)vr /11X

this series, when r is large, has its general term approaching the

(_ iy--i
value -^—

-
,
therefore the series is only semi-convergent.

The cotangent and tangent series may also be obtained as follows :

Using the expressions for sin (z + h) and sinz as infinite products, we find

by division

sm(z+k)_f h\(^-z^-lfi-^hz
sin z \ z) \ 7T

2 — z2 / \ 22
tt

2 -s-

if we assume that the product on the right-hand side can be expanded in powers

of h, by multiplication, and put the left-hand side in the form cos h + sin h cot z,

then expand in powers of h, and equate the coefficients of h on both sides of

the equation, we find

1 2z 2z
cotz=-+ -= 5+ , „, ,+ (8).

Z Zi - 7T
2 22 -2-7T-

The justification for our assumption that the infinite product may be arranged

in a series of ascending powers of h, the coefficients of which are the infinite

scries obtained by ordinary multiplication, would require an investigation of

the conditions that such a process gives a correct result ;
to do this would

however require certain general theorems for which we have no space. The

tangent series may be obtained in a similar manner from the infinite product

cos (z+ h) _ /V2 -4.g2 -4A2 -8AA /32
7r

2 -4z2 -4A 2 -8/^\

cos; \ 7r
2 -432 )\ 32

tt
2 -4z2 /""

If the cotangent of z is expressed in the form

( 1 " -*-)
\ m2

7rV

and this expression be transformed into partial fractions, the denominators of

which arc the factors in 211 (
1 5—r, ), we should obtain the series (8) ;

a
\ ?n.

J
7r

2
/

similar remark applies to tanz, sees, cosec z. The scries have been obtained 1

by Glaisher, directly, by carrying out this transformation.

1 See Quarterly Journal, Vol. xvn.

1 --=4:
Bw-lMy
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Expansion of the tangent, cotangent, secant and cosecant

in powers of the argument.

296. We have shewn in Art. 293 that

COt*=--2—
;

-
2 +Rm,z i vir~ — z*

where \Rm \

is a number which may be made as small as we

please by taking m large enough. Now if the modulus of z is

less than r7r, we have

1 1 A Z* Z* 2-s

r-ir- — z- r-ir~ \ r~ir- rV4 r^s

hence if we suppose that the modulus of z is less than ir, we may
expand each of the fractions l/(r

2
7r

2 — z2
) in this manner, and we

have, arranging the result in powers of z, as we are entitled to do

since each of the series is absolutely convergent,

1 2z ( 1 1 1 \ 2z* 1 1 1 1 \
cotz =z-^ + ^ + --- + ^)-^{v + ¥ + --- +

^)----

2zm~1 1 1 J_ 1 \

,,.271 ^J2W
+

22W
+ ' " +

Wl2» )

—
' • • + -^Hi >

let $2W denote the sum of the convergent series

11 1
1 1- ^ \-

then &,„ =— -f ~^ + ... + —- + em ,
where e^ is a number which

may be made as small as we please, by making m large enough ;

Ave have then

1 2z 2z3
„ 2z-n

~
l

'-
o ^2 4 4

—
. . .

—

„ 2z 2z* 22 2"- 1

+ -«,» + — e2 H -e4 + ...+ e,H + ....
IT" 7T

4
7i

We see that e2 > e4 > e6 ..., hence the modulus of

22 2^3

S 62 H 7 £j + •

77" 7T
4

2\ z
\ 2\ z*\-

is less than e2 multiplied by the sum of -^ + + ••• which
7T" 7T

is ii convergent series, since mod. z <tt, therefore the modulus of
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% -—-
e»n may be made as small as we please, by making m large

enough. We have therefore the infinite series for cot z,

cot* = ---&-^S4
--

7

5

#6
-

(15),
Z 77" 7T

4 7T

which holds for all values of z such that mod. z<tt, and in

particular for all real values of z between + tt.

From the theorem

tan Z = 8
? (2,-1)^-4^

+ Rm''

we may obtain, in a similar manner, the series for tan z in ascend-

ing powers of z. This series may however be deduced from (15),

by means of the identity tan z = cot z — 2 cot 1z
;
we find

2(2*--l)z a 2(2*-l)z* 2(2
6 -l)2 5

c , ip .

tan* = —i—-—!—S,+ — —S4 + -^ —^— £„+... (16),
7T" 7T

4
77°

which holds if the modulus of z is less than \ir, and in particular

. for real values of z between ± \ir.

Substituting for cot \z, cot z their values from (15), in the

formula cosec z = cot \z
— cot z, we have

cosecz = ± +(2-l)^+^.^Si +
Z-¥-.^S6+ ..(17),

which holds if mod. z < ir.

297. To obtain a formula for sec z, in powers of z, we use the

formula ,

/ 1 3__ 5

sec^-47r^_ 4^ 3v _ 4a. + 5v._ 4a.
•••

(- 1)^ (2m - 1)\ „.+
(2»i-l)

2
7r

2 -4W OT '

supposing the modulus of z to be less than \tt\ we have on

expanding each fraction

sec z
tt (L 3 5

"

2m-lj"1_
7r
s

(l
8 33

"*"

5 3
"'

c-rr-n g»* f i__ l

(2«i
-

1)
3

J

*" T
7^+' 1

l-'
l+1 32"+1

+
(2m-!/-"" '!"



362 INFINITE PRODUCTS

Now let 2,,m denote the sum to infinity of the infinite series

1 1 1
+12n+l g2«+l
~

gm+1
""'

and let the remainder after the first m terms be €.2n+i, then we

have
92 94 92-/1+2

secz = - 2, + -3
22S 3 + ... + -Sm^S^+i + •••

7T 7T 7T

22 ° 4

+ JRw
" + -e1 + -3

^e3 +...;
7T TT*

let e' be the greatest of the numbers e1; es , ..., then the modulus

22 24

of — e, H 22
e3 + . . . is less than e' times the sum of

77 7T
3

92 94 96

IT 7T
3 7T

5

which last series is convergent when the modulus of z is less

than %rrr.

We have thus shewn that the remainder of the series we have

obtained for sec z is a number of which the modulus diminishes

indefinitely as m increases, hence we have for sec z the infinite

series
92 94 96

eec^-Sx + -,*%+-.*%+ (18),
7T 77" 7T

which holds if mod. z < far.

298. It is a well-known theorem in Algebra, that the function

W(ez_l), where e
z has its principal value, can be expanded in a

series of the form

1 -2 Z +
2'l

Z
~~¥l

Z+ - +(~ 1)
(2n)!

J + ""

where 2^, 5a , ... 5n ,
... are certain numbers called Bernouillis

numbers, and that this expansion holds for all values of z for

which the series is convergent.

If we multiply by e
2 - 1 we have

-{•+il+™+wi+-H
i -i'+n-^ + -

I s I beincr taken so small that both the series on the right-hand
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side are absolutely convergent, we may multiply them together,

and arrange the product in a series of powers of z
;
the resulting

series will be absolutely convergent, hence equating the coefficients

of the powers of z above the first, on the right-hand side, to zero,

we have a series of equations

?l _ 1 A A ?i l?l A A A
2 ! 2 2 !

+
3 !

'

4 !

+
3 ! 2 ! 4 ! 2

+
5 !

'

the general type of which is

Bn 1 Bn_, (-!)» ff, (-I)"-* 1 (-!)»

(2»)! 3!(2»-2)! (2rt-l)!2! (2?i) ! 2
+
(2n+l)!

By means of these equations, the numbers Blt B>, B3 ,
... may

be calculated
;
we find

"l— t' X>2— 30» -D3— 42' X>4— 30' -°5— 06' -°6 ~ 2 7;l0 ' -°7
~

6>
®C '

299. The coefficients in the expansions of cot z, tan z,

cosec^, in powers of z, may be expressed in terms of Bernoulli's

numbers.

We have cot z = i -=- =- = i ( 1 + —-—T )
:

hence, if mod. 2 is small enough,

1 22 7? 24 7? 22w 7?

COt ^
* 2!

Z
4!

* •"
(2m)!

-"^)-

Also cosec ^ = cot \z
— cot z

;
hence we have the series

1 2(2-1)5, 2(2S -1)B, ,cosecz = - + -^-^—-z+—^——-^—=£3 + ...
2 2! 4 !

9 /92U-1 _ i \ 7?

+
(2n)l

<^ + '" (20>

Again, since tan z = cot 2 — 2 cot 2z, we have the series

2-(2'-l)B l
2 i

(2
i -l)B2 ,tan*--

g^,+_L_^_J JF +r .

2'»(2»-l)l?

+
(2/i)!

* +-(21).

It has been shewn that the series (19) and (20) are convergent
if mod. z < 7r, and that (21) is convergent if mod. z<\tt.

The series in (19), (20), (21) must be identical with those in
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(15), (16), (17), respectively; hence equating the coefficients in

(19) to those in (15), we have

o 92 2 9 4— $> = —.
Bx ,

— S4
= .- B,,

ir™
m
~(2n)\

a 'IT 2\
"

7T
4

hence using the values of Bx ,
B.2 ,

... in Art. 298, we have

S,
•7I
3 ~ IT* ~ 7T

6 ~ 7T
8

6
o 4
=

90'
&-

945'
&=,

9450'
& 22«— 1 ^271

(2») !

^71,

thus $2n may be calculated by means of the formulae which give
Bn .

The series (19) and (21) give a ready means of calculating the tangent or

cotangent of an angle, the first few terms of the series are

1 x
cot.r=— -

x 3

t*. 2x5

45~945"

v3 2x5
. 17js7

tan^=A-+- +- +315
771 7)1

The calculation of tan — 90°, cot — 90° may be carried out as follows :

71

tan (m/n 90°)=

2mn/(n
2 - m2

)
x -6366197723675

+m/n x -2975567820597

+m3
/»

3 x -0186886502773

+mb
l',v>

x -0018424752034

+m7
(n

7 x -0001975800714

+m9
/n? x -0000216977245

+mn/nu x -0000024011370

+mn/n13 x -0000002664132

+m16
jn
w X -0000000295864

+m17
/n

17 x -0000000032867

+m19
/n
w x -0000000003651

+m21
/n

il x -0000000000405

+ m23
/n

2:i x -0000000000045

+to25
//i

25 x -0000000000005

cot(wi/?i90°)=

n/m x -636619772367581

-
4mn/(4?i

2 -m2
) x -3183098861837

-m/n x -2052888894145

- wi3/n
3 X -0065510747882

-mf

>liv> x -0003450292554

- m7
/?i

7 x -0000202791060

- »i9/?t
9 x -0000012366527

- mu/»u x -0000000764959

-m13
/>*

13 x -0000000047597

- «i15/n
15 x -0000000002969

- 7nl7
/n

17 x -0000000000185

- m19
/«

19 x -0000000000011

In these expressions, the terms
82 2z

n2 -Az2 ' 7,, which occur in the
z ir' — Z-

formulae (10) and (8), are first calculated separately, the series being then

more rapidly convergent.
These series are taken from Euler's Analysis of the Infinite ; they are

however given by him to twenty places of decimals.
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Series for the logarithmic sine and cosine.

300. We have shewn in Art. 285 that

--(i-3(i-^"(*-b3p)*--«
where 6m , m

'

are numbers whose moduli may be made as small

as we please by taking m large enough ; taking logarithms, we
have

log sin z = log z + log [\
-
^j

+ log
(l
- ~—

J
+ ...

r

4z2

log cos « = log
(l

-—
J
+ log

(l
-
^_2

J
+ ...

\ 2?/4 — 1 -7TV

expanding the logarithms, we have, assuming that
|

z
\

< it in the

first case and < '— in the second case, so that the logarithms may

be expanded in absolutely convergent series of powers of z,

. sin z w =°° / 1 1 1 \ zm .
/n a .

l0g IT = -
i. (l*

+
2^ +

- " + ^) iS= + l0g (1
-

*->•

n= x / 1 1 1 \ 22nsaB
, ,, A ..

log cos . = - 2
o (j-

+^ + ... +g^) ^+log(l
-

*„<)•

Now

~~

v 1-" S2" 52M
""

/ 2 2" vl8n 22n 1>'
J" "

111 _ 22» - 1
nence p;i

+
y27i

+
5_,t

+••• —
22»

2n '
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we have therefore

, sin 2: _< z-n „ _ z*1

log COS Z = - 2-^- «•»£. + 2 ^^T%» + log (1
- m'),

where e2n , r)m are the remainders after m terms in the two series

1 1 1 1
"*"

92w "•"•••> iaii + "Jan + • • • •12» 22W "*"'
I o

gXn
The modulus of 2—-em is less than cf%l—L and that of

mr~n mrm

2mzm . 22n
I z

\

m
*

W7r3w
% is less than 77' 2 ~[- , where e, 1/ are the greatest

values of e.2n , 7j2n respectively; hence

,
sin^ _ z2n

log COS Z = 2 rr- «2n/San .

22M-J tt-2'J

Since $2W = 9 Z?„, we have the following infinite series for

. sin z
,

log , log cos z,

10g z "12! ^2 4!
- l

"iT(S0l"
(22) '

where mod. z<tt,

logcoB«--2(2^1)^£r 2»(*-l)^£r ...

5. 2?i

_
2-»-J(2

2"-
1)

--
t^v,

-
(23),w (2«)

'

The first few terms of the series (22), (23) are

where mod. z < \ir

I02
6 ISO 2835

2 12 45log COB * = - a-" To "Tk -•••;

hence also

zi 7^4 Q2Z6

logtan^ = log^ + 3
+

3d
+ 28^ + ....
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The series (22), (23) may be employed to calculate tables of logarithmic

sines and cosines; it is best to calculate separately the first logai'ithms,

series in a more convergentlog (
1 — —

| J , log ( 1
5-

j
,
as we thus obtain the

form than in (22), (23).

We have

logsin^
= log . + log_ +log^-—̂ -S^-^^-^J^j,

tott . / to2 \ _ f/22r -l Br 7T
2 '- 1\ m2r

)

logcos-^-=log^l-^j-
S ^-r--^yi --j^F

|.

Multiplying the logarithms on the right-hand side of these equations by the

modulus "4342944819, we get the ordinary logarithms of sin — 90°, cos — 90° to

the base 10; the formulae thus found are

Z(sinm/w90°)=

log m + log (2?i
-

to) + log (2?i + to)

L (cos m/n 90°)=

log (
n - to) + log (n+ to)

— 2 log n

+ 10-000000000000000

- m 2
/n

2 X -101494859341892

- to4/?j
4 X -003187294065451

- to6/?*
6 x -000209485800017

-w8
/n

8 X -000016848348597

- m10
/n

10 x -000001480193986

-TO12
/n

12 x -000000136502272

-to14
/?*

14 x -000000012981715

-to16
/?i

1g x -000000001261471

-m18
/n

18 x -000000000124567

-TO20
//i

20 x -000000000012456

- to22/?*
22 x -000000000001258

- to24/?*
24 x -000000000000128

- to26/?*
26 x -000000000000013

These series were given by Euler, the decimals being given to twenty places.

- 3 log n+ 9-594059885702190

-to2
/??

2 x -070022826605901

- to4/^
4 x -001117266441661

- mr
'/n

6 x -000039229146453

- m8
/?i

8 x -000001729270798

- m10
/?*

10 x -000000084362986

-to12
/?*

12 x -000000004348715

- ?>i
14

/?i
14 x -000000000231931

- m16
/«

16 x -000000000012659

- m18
/rc

18 x -000000000000702

-m20
/«

20 x -000000000000039

Examples.

301. (1) Find the values of 2n~ 2
, Sir 4

, 2(2n-l)~ 2
, 2(2n-l)~*.ill i

We have

. sin.r ,
/ x2

\ x2 1 a;
4 1

log =2 log 1-——3
= _- 2____2-^-...,° x °\ni n 2

J -n
2 n2 27r 4 n*

'

. sin x . /. xl x4 \ (x
2

a-
4 \ 1 /.r

2\ 2

also ]og-—^l0g (l-J+—-...y-^--my.^-... i
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hence, equating the coefficients of x2
,
x* in the two expressions for log

—1 '

we have 2>i
~ 2= \ tt

2
,
2?i

~ 4= Jg tt
4

. Again

, „, I", 4a-2
) 4x°~ 1 8x* 1

and 1og ooS,= I„g
(

I -f +
|-...).-(|

S

-g)-m;,
therefore equating the coefficients of x2 and xi

,
we find

2(2n-l)-2=^ 2
, 2(27i-l)-

4-J
6 ^.

(2) £wmi <//e infinite series ^-^ + ^-^ +
5̂ j^+ •»

In the theorem (10), put 2z= ixn', we thus find for the sum of the series.

— tanh \ttx. The sum might have been obtained directly from the expression

for cosh ttx in factors, by taking logarithms and differentiating.

(3) Shew that the sztm of the squares of the reciprocals of all numbers wh ich

are not divisible by the square of any prime is 15/7r
2
.

Let a, /3, y, ... denote the prime numbers 2, 3, 5, ..., then the required

sum is equal to the infinite product

this is equal to

K)K)K)-

or to
(
1+^ + ?+ -) (

l+h + h+ -) (
1+? + ^+-)

and this is equal to

1 1.1
2 2
+

32 + 42+
"*

ii T~
24 34

+
44+

"'

1^2
or to ?- -j which is equal to 15/V

2
.

(4) Jn infinite straight line is divided by an infinite number ofpoints into

portions each of length a. Prove that if a point be taken such that y is its

distance from the straight line, and x the projection on the straight line of its

distance from one of the points of division, the sum of the squares of the

reciprocals of the distances of this point from all the points of division is

sinh—-
tt a

ay , 27ry 2n-x
cosh—- - cos
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« 1
The series to be summed is 2 -5—; r^, which is equivalent to

_» y
2+ (x+ nay'

I a, / 1 1 \— s ( -. -. ) . The sum of the series is therefore
2iy _oc \x -ly+ na x+ iy+ naj

hi/a[a a J2iyc

2niy
sin

a
or

2u/a . irLr+iy) . irix—ai)'J
sin — ^ sin — —

a a

which reduces to the given result.

EXAMPLES ON CHAPTER XVII.

] . Prove that

2. Prove that

,, • a\ 1 */,/,, cos2 <9\ /.
,

cos2 0\
cos(i7r sin 6)=Itt cos- 8 ( 1 +

-g—pJ
(
1 +

X~6~]""

e that

l + sin^=J(^ +2^|l-^42̂ | |l_i__Z.|
00 00

3. Prove that 2 2 ... .
— - n2

,
where

i, / have all unequal— 00 —00 (A'+ 4) \X-tJ)

integral values, and x is not an integer.

4. Prove that

5. Prove that

367

& Prove that

l+?

7. If

I +
3
+

6
+

10
+ -^(l-^

express X <>+ Ja) in terms of ^ (.r), and fx (&'+£«) in terms of X (x), and thence

find the limit when m is infinite of— ' f'
{

'
2"lzD J2m+ 1.

2m »i!

H. T. 24
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8. If Pr denotes the products of—,, ^, ^, ... taken r at a time, shew

_2» n-2n-2 7r
2n-4

7T
2

tbat r-np^^ +W^i p^(2^y p^ +Ti
P~*+P"

9. Prove that

l 2 1 2 .32 1 2 .32 .52 2
1

g 2 22 .42 22 .42 .62
77

10. Sum the series

1 1 1

l4 .34 + 34 .54 + 54 .74

11. Shew that the sum of the products of the fourth powers of the

reciprocals of every pair of positive integers is .

12. Prove that

/ 2 2 2 \ / 1 1 1 \ = tt
2

V
1 +

l+ l2
+
l+22 + l+32+ ) U+l2 4+32 4+52+

/ 8
'

13. Prove that the sum of the series

\1 . 2 . 3/ "H2T3747
+

\3 . 4 . 5/
+

fa**
1
-**.

14. Shew that

(to
2 -1)(2

2 to2 -1) (r
2w2

-l)

rZa {^-(m-l)2}^2 - (m- 1
)
2
} >2m2- (m - 1

)
2
}

i.s to — 1.

, ,
• 1 3 5

15. Shew that the sum of the series ^s~r—o
-

5.,—
—0+ z—

t

—
:,
— ... isP+ #- 3-+ar 5-+ A'-'

|-7r sech^7rx.

16. Prove that

tan -1 *-tan _1
-|.r+ tan -1 \x- =tan _1 tanh

£*.•>•.

17. Prove that

log 12 - 2 log « = ^2+^4+^6+ + Z S2n+
fit

where Sr is the sum of the reciprocals of the rth powers of all numbers whioh

are not prime.

18. The side BC of a square ABCD is produced indefinitely, and along it

are measured CClt Cid, C2C3, each equal to BC ;
if du d2 ,

be the

angles BACU BAC2 ,
BAC3 , ,

shew that sin $i sin 62 sin 3 ad inf.

= V
/ 27rcosech7r.

19. If 2, 3, 5, ... are all the prime numbers, shew that

K)H)H) -«-
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22 32 5 2

and
¥+i'¥ii'Sf+i =7r2/15 '

24 34 5*

SM^-p+TF+I
= **l 105 - {Euler.)

~„ -r, ., j vi • j> 'j. •
m=co n=0°. ,, . cos mx cos n?/ .

20. Express the doubly infinite series 2 2 (-1 )"»
+ »- —— JL m

m=i ?t = i mn(m-+ n-)

the form of a singly infinite series of cosines of multiples of y.

21. Prove that

n IS ^4-4^ [
= (sinh

2
\/2+ cos2

\/2 - 2 cos 2a cos a/2 cosh /3 a/2

+ cos2
2a)/4(a

4+ 4
)

where n has all integral values, positive and negative, excluding zero.

22. Prove that

—-
1— +

1
+ I

1.2.3.4^5.6.7.8^9.10.11.12
"^ ^ ft 7 fl+a in 11 io+ -4 1°g 2- 2

1

J:
7r

>111 7T

1 . 3 . 5 . 7
+

9 . 1 1 . 13 . 15
+

17 . 19 . 21 . 23
+ ~

96 (2 + ^2)
'

23. If (ix)
=

(l +
7

^\ ( l +
2

§)(
l +

~) =A+iB, shew that

X 3C oc 13
tan -1 - + tan~ 1 r +tan _1 '-+ = tan~ x

-7,a c A
and hence shew that

x* x> x* I
tan ^|~ tanh!

7i
tan-i'T2 + tan-«J)+ tan-''J,+ = tan"M ^ 5£

P 2- 3J
I . n-A' . irX

V
an

V2
+ tanh

72
/

24. Prove that

I
1 _ 7r y/2 sinh 7r.y a/2 4- sin 7rx a/2 1

1 »
4+ .s

4 4T3 cosh ivx a/2
- cos tt^ a/2 2^4

'

25. Prove that 2 ; ^-r.
= cosec2

6.

«=-» {nir+ dy

26. Prove that

eft
+ i+ e0-1

d+ e"

f 4(&-c) .r + 4r2
| J

4 (6
-
c)^+ 4r2

| J
4 (6 -c) #+ 4.r2

|

'"[
+

«-a+(6-c)
a

J j
+

97r 2 + (6-c)
2

J j
+

25rr2 +(6-c)
2
/

and

eb
+ x_ ec-z / L., , \

1 4(6 -c)a?+ 4a?2
| J 4(6-r).v+ 4r2

)

e*-e« -^
1+

6- C/; l
1+

"4«-a+l6-c)a
J \

+
ICtt 2 + (6

- of J

(AVer.)

24—2
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27. If

P=^ L_ +^ >_ +_2 ?_ +
n—m n +m 3n — ?n Zn+m bn —m bn +m

1 1 1 1_
*~(n-m)2 +

(n~+m)*
+
(Zn-mf

+
(3n+m)2+

'

1_ _1_ 1 1
t—

(n-m)3
(n+ m)

3 (3n-m)3 (Zn+m) 3

1 1 _l _ _L_
(n- wi)

4
(«+«i)

4 +
(Zn-rnf

+
(3n+ m)i

+ '

prove that

p_^ _ (2F+ 2)tt
2

(6£
2+ 6&) 7t

3
(24ft*+32ff + 8)tt-*

2-n'
^~ 2.4.n2 '

~
2.4.6. m3 ! 2.4.6.8.%*

'

where &= tan—-. (Euler.)
2n

28. Prove that the sum of the series 1 — -^ + == — tt»+ i
m which all

odd numbers not divisible by 3 are taken, is w 3
/18 >J'i. (Euler.)

29. Prove that the sum of the squares of the reciprocals of all numbers

which are not divisible by 3 is 47r2/27. (Eider.)

30. Prove that

BJphff+sinhc _ / y\ / 2<?y-?A / 2cy+.y
3\ / _ 2aj-i/\

sinhc "\ c,/ V i
ir
2+cV V 4tt 2+ cV V 9ff2+cV

and

cosh3/-cosb_c _ / _tf\ / 2cy-y
2\ / 2<^+#

2 \ / 2ey-y2 \

1 - coih c "V cV V 4tt2+ c2; V 4tt2+ cV \ 16jt8+ cV
(Euler.)

31. Prove that when n is odd

COt2£+COt2 | + +cot^"=Hn-l)(n-2),

cot*|^+cot*^ + +cot* r̂^ =J (n-l)(?i-2)(n?+3n-\3).2n 2,i 2n ""

1+
^-J

( i+Wj is

equal to

\ n-l J n-2
—— n (cosh 7rajr+ cos

7T/3.'/;), or —
,, cosh£7ra; n (cosh nax+ cos nftx),

according as n is even or odd, ar , jir denoting sin —
,
cos r- respectively,

where r is an odd number. (Glaisher.)
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l + ^2rj(
1
+327J

is equal to

l n-l 1 »-2

-; n (cosh 2nax - cos -2irp.v), or -,-.
—

rr
— sinh nx IT (cosh 2nax - cos2tt3.v),

oi'V i 2ilTO-1)ir" '

according as n is even or odd, a, 3 having the same meaning as in the last

question. (Glaisher.)

34 Prove that

1 1 1

1
i» +a*

+
22»+ -»»•

+
32n+X'l»

+ '

7r
* ~ J a sinh 2 tt a.r+3 sin 27r3.v 1
2

jwc2"- 1
i cosh 2nax - cos 2t7/3^ 2.r2n

'

a, 3 having the same meaning as in the last question. (Glaisher.)

35. Shew that

ax+ by
r=°° (ax+ by+ r(a

2+ b2
) ax+ by-r(a?+ b2

)\

~x*+y*
+

r=i \(x+raf+ (y+ rbf
+
(x^rtf+{f^rbj2)

is equal to



CHAPTER XVIII.

CONTINUED FRACTIONS.

Proof of the irrationality of it.

302. Let f(c) denote the sum of the convergent series

#2 x4 x6

1-q— +
l.c 1.2.c(c + l) 1.2.3.c(c + l)(c + 2)^'"

?

then /(o + 1) -f(c) =—^fip + 2);

hence /(c) _ 2
*2

/(c + 2)

/(o + l) c(c + l)/(c + l)'

therefore /(c + l)//(c) can be expressed as a continued fraction of

the second class

1 af/c (c + 1) x"-/(c + 1) (c + 2) x
2

/(c + 2) (c + 3)
1- 1- 1- 1_

Let c = £, and write §•# for #, the series /(c) becomes

, tf
2

tf
4

or cos #, and j\c + 1) becomes

1.2 1.2.3.4

sin#

a;

ton ,v. 1

hence
tana; 1 a? x2 x1

x 1-3-5-7- ""

an expression for tan *asa continued fraction of the second class.

303. Lambert's proof
1 of the irrationality of it depends on the

continued fraction found in the last Article. Put x = \ir, and if

possible let \ir = m\n, where m and n are integers; we have then

n m m2 m2 m2

1 =
n -3?i — 5n—7n—'

1 Published in the memoirs of the Academy of Berlin in 1761.
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now after a certain term, the denominators of the fractions mjn,

m2
/Sn, m'/Bn, ... exceed the numerators by a number greater

than unity, hence, by a well-known theorem 1
, the continued frac-

tion on the right-hand side of the equation has an irrational limit,

and cannot therefore be equal to unity. Hence ^tt cannot be equal
to a fraction m/n in which m and n are integers, and therefore it is

irrational. This result is of course included in the much wider

theorem of Art. 251 (3)
,
that tt is a transcendental number.

Transformation of the quotient of two hypergeonietrio series.

304. The fraction F(a, /3 + 1, 7 + 1, x)/F(a, /3, 7, x), where

F (a, /3, 7, x) denotes the hypergeometrical series

1+
1. 7

* +
1.2.7(7+1)

X+ ~"

can be transformed into the continued fraction

x ttjOO i\j.-)Oc h/^Ou

r^r-f=i^*"
where

«(7 -/3) j/3 + l)(y + l-a) (q + l)(7 + l-/3)
1

7(7 + 1)'
-

(y + l)(7 + 2)
' Cs

(7 + 2)(7 + 3) ,

_ ( j
8 + 2)(7 + 2-ct) (a + n-l)(y + n-l-/3)
(7 + 3)(7 + 4)

'"' m-' :

(y + 2n-2)(y+2n-l)
'

. (/3 4- n) (7 + n - a)
-H "

(7 + 2^-1) (7 + 2/0"

As an example of the use of this transformation, taking the

series

( 2 . 2.4 . )

(£
= sin

<f>
cos <£ j

1 + - sin2

<£ -I- -7— sin4
</>
+

...}-,

and putting a = l, /3
= 0, 7 = ^, # = sin2

</>
in the above formula of

transformation, we find

1.2. 1.2. 3.4.
•

, , n
—

7, sin
2

<f> .-.

—
^ sin2 6 v—1, sin 2

<b
sin <£ cos <f> 1.3

y 3.5 r o . 7 r
*-- tz —

rz—
—

TTT--
The second convergent gives Snellius' formula for

<f>,

_ sin <£ cos
<f> _ 3 sin 20

^ ~
1-fsin

2

^
"

2 (2 + cos 2<f>)

'

1 See Chrystal's Algebra, Vol. n. p. 484.
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Eider's Transformation.

305. Other series may be transformed by means of Euler's

theorem 1

Ui + u2 + u3 -f w4 + . . . = -—Mi w2 ttittg u„u4

1 — ux + u2
— u 2 + us

— U3 + l(A
— '

which may also be written in the form

As an example of this method, we obtain from the theorem

7T
,
W7T 111 1 1— cot—- =

1 -f
n n m n — m n + m 2n — m 2n + m

the theorem

7r vrvrr _ 1 m2
(n — m)2

(n + m)2
{2n — ni)- (2n + m)2

n n m + n-2m+ 2m + 2m + 2m + n—2m +
"

EXAMPLES ON CHAPTER XVIII.

Investigate the theorems in Examples (1) to (13).

tanh x _ 1 x2 x2

'

x
~
1+ 3+ 5 +

a , ntznx (w
2 -l)tan2^ (n

2 -4)tan2#(»2 -9)tan2#
2. tan nx= — -

'
-

'
- '-

,

1- 3- 5- 7-
when x<\tv, n being unrestricted.

_ n tan j? (?i
2 -

4) tan
2
a; (n

2 - 1 6) tan
2

.*?

3. tan«#= —
;

— =
v

-—s
v

'- —
l-tan2#- 3- 3 tan2 x- 5-5tan2tf-

. n tan x (n
2 -l) tan2

.r (n
2 - 9) tan%

4. tannx=— i- J— > ——
1 - 3 — tan-2 x — 5-3 tan2

.v —

, x x2 Ax2

5. tan_1 A = ,
— -— -—
1+ 3+ 5 +

a . , x 4.r2 \§x2

6. tan * x
\-x2+ 3-3.r2+ b-bx2+

1 See Chrystal's Algebra, Vol. n. p. 487.
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1 _ * *2 9.r2

7. tan x-
1+ 3 _^+

-

5 _ 3jB2+

_ n tanh x (n
2 + 1 ) tauh2

a; (jj
2+ 4) tanh2

a;
o. Lriri /2'vXf ,

~ ..*.
1- 3- 5-

_ 7T 7T
, ,

1 (n-\)nn(n+ \) (2>i-l)2»
9. -cosec- =H — —-—i s——-i—-—:—

n n ?i-l+ 1+ Ti—l-i- 1 •+-

singa? x 1+x l-x 2 (2 + a?) 2 (2 -a?)

7rA' 1— a;— 1+a; — a?— 1+a; —

*# , x l+x l—x 3(3+ .r)
11. cos - = 1 + - - J

2 l-x- 2 + a;- x —

in J 11111
1 9 pot — = — - —

* x-l+ 1+ 3x-2 + 1+ 5a?- 2+

. sing nl Bin'^^-5 Bin'^ l^ siD2^y79 sin2^
13 - 1_

q
- —

r= r=
~—



MISCELLANEOUS EXAMPLES.

1 . Prove that if m is a positive integer

cos mx — cos ma= coseca{2sinacos(w— l).£+2sin 2acos(wi- 2)x+.
cos x — cos a

+ 2 sin (to
—

1) a cosx+ sin ma}. {Hermite.)

2. Prove that if m and ?i are positive integers

sin mo; 1 „ . ... . ^x— a— = — 2 (
— 1 r sin ma cot ^ ,smnx 2n 2

where a=— ,
and that the expressions are also equal to

=— 2 (
— 1

)
k sin ma cot (x

—
a),

£lfh

or -— 2(-l) fc

sin?H,acosec(A-— a),2n

according as m+ n is even or odd. {Hermite.)

3. Prove that

cot (x - a) cot {x
—

/3) cot(.x-- A) = cosJwtt+ 2/1 cot (a?
—

a),

where .4 = cot (a -/3) cot (a -y) cot(a-X). {Hermite.)

4. If .4, B, C be the angles of a triangle, and x, y, z are real quantities

determined by the equations

cosh x (sin B sin C)
* = cos-§ A,

cosh y (sin Csin.4)2=cos£.5, coshz(sinJsin.5)- =cos£0,

then any three points so situated that the distances between each pair are

proportional to x, y, z, respectively, lie on a straight line.

5. If x>i, shew that tan ——7. > = -, ,
and < ; ...

\ p=m k=n-i 2pkn
6. Prove that - 2 2 —— is equal to the greatest integer in mn.

n P=1 a;=o n
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7.

tan -1

Prove that

4b2

(2a + b)
2+ 3b5

+tan -i 4&2

,+tan-1
4b'

is equal to tan 1
nb2

(2a+ 3b)
2+ Zb2 ^

(2a+ 2/j-l&)
2+ 3//2

;
and hence shew that the sum of the intiuite

a2+ nab+ b2

series cot" 1

(l
2+ |)+ cot- 1

(2'-+ |)+ cot- 1
(3

2+ |)+ is cot~4.

8. If tan A sec B+ tan B sec A= tan C,

prove that

ta n A sec A + tan B sec B + tan C sec (7+2 tan A tan 5 tan C— 0.

Trace a connection between this result and the known theorem that

sin A cosA+ sin 5 cos B+ sin Ccos C-2 sin .4 sin 2? sin C=0,

where .4, 2?, Care the angles of a triangle.

9. If m and n be any numbers, prove that

n(n+l) x 2

sin x U
(m + n)(m+n+l) 2!

+ n(n + l)(?i + 2)(w + 3) #'

=
(Wl + 71 COS #)

1 £
7/1-1-71' 1

(7/i+ n) (m+ n + l) (m + n + 2) (m+ n+ 3) 4 !

£+.

cos(a+/3), cos(a+ i3+ y), cos(a + /3+ y+ S)

cos/3, cos(/3 + y), cosQ3 + y+S)
cosy,

— {7/i(m+l)(m+ 2) + 7i(n+l)(»+ 2)cos.a;} .1 v A ' v A ' '

(»i + »)(m+ »+ lXm+ »+ 2)3!

10. Prove that

1 cos a,

COS a, 1

COS(a + /3), COS/3, 1 cosy, COs(y+S)

C0s(a+ /3 + y), C0s(/3 + y), cosy, 1 COS S

COs(a+ /3+ y+ 8), COs(/3+ y+ S), cos(y+S), cos S, 1

= 0.

11. Prove that the determinant

1, cos A, sin A, cos (3A + X)

1, cos i?, sin B, cos (32?+ A")

1, cos C, sin C, cos(3C+A
r

)

1, cos D, sin D, cos (32? + X)

is equal to 2 sin (/t+.S'+A) multiplied by the product of the sines of half the

differences between A, B, C, 2), and also by a numerical factor, S denoting

KA+B+C+D).
12. Prove that, if

cos(4r-y-z)sin(y-z) + cos(4y-z— x)xin(z
-
x) + cox(4z - x- i/)*m (x - y)

=
0,

and no two of the three x, y, z are equal, or differ by a multiple of tt, then

cos 2x+ cos 2.y + cos 2z= 0.



380 MISCELLANEOUS EXAMPLES

13. Prove that, if y and S be two values of 6 between and jt, which

satisfy the equation

sin 20 cos2
(a+ /3)+sin 2a cos2 (/3+ <9)+ sin 20 cos2 (a + <9)

= 0,

then a and satisfy the equation

sin 20 cos2 (y+8) + sin 2y cos2 (S + <£) + sin 2S cos2 (y+ <£) =0.

14. If tan a, tan 0, tan 7 are the three values of tan - obtained when
o

tan is given, prove that

(1) cos a cos cos y sin (a + + y) + sin a sin sin y cos (a +0+y)=O.
(2) sin (0+y) sin (y+ a) sin (a-j-0)=sin 2n sin20 sin 2y.

15. Shew that

. ,„
N y + a a+0 . 2a + 30 + 3y2 sin (0

—
y) cos *-—- cos -— sin -——'-

'—1 '— £

~ • ra \ r + a a + # 2o+ 3j3+3y2 sin (0
-
y) cos~— cos —— cos -

sin2(a+ + y) + 2sin(2a + + y)~

COs2(a+ + y) + 2cos(2a + + y)'

where the summation 2 refers to the sum formed by a cyclical interchange of

the angles a, 0, y.

16. Prove that, if

.2 cos - 2 cos —>

, 2 cos 2 22

?<= 1 +-
1+ 1+ 1 +

the error made in taking the nth convergent to u instead of u is

2(iS—l)

a — v4 — u2 cot
cos-1 h u

17. Prove that the series

1 1

has for its sum

+K^fL~ toco

ii
880 ^- 1

}'

18. Shew that the equation tan 2= 02, where a is real, cannot have

imaginary roots unless a<l, and that then it has one pair of imaginary

roots.

19. Shew that the antiparallels through A, B, C to any three lines AO,

BO, CO with respect to the angles A, B, C of the triangle ABC meet in a

point 0', and that the six feet of the perpendiculars from and 0' on the

sides lie on a circle.

If GL, GM, GN be perpendiculars to the sides BC, CA, AB from the

centroid G, and P any point on the circumference of the circle LMN,
shew that

(4a2+ 62+c2
)
AP*+ (a

2+4:b2 + c2
)
BP2+ (a

2+ b2+ 4c2
) CP2

is constant.
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20. If x be real, and \>x>0, and if tan-1 z mean the least positive

angle whose tangent is z, shew that

^ (-l)*tan-i
(2; +1)2^,^

tan- 1

|.s,nh3-sec^-j.

21. If P be any point on a circle passing through the centres of the three

circles escribed to the triangle ABC, prove the relation

AP2 BP 2

-t—-
(1 + cos^ — cos B- cos C)+ - -

(1
— cos A + cos B -cos C)oc cct

CP2

-\ j-(l
-cos .4 -cos B + cos C)= l + cos J4+cos B+ cos C.

22. If un= A cos«0 + Z>sin nd, where A and B are independent of n,

prove geometrically the equation

un + 1 -2un cosd+ un_ 1
= 0.

Prove that

26 sin7 d+ sin 16

26 cos7 <9- cos 7(9

= tan 6 tan2 ^+ £\
tan2 fd -

£\
.

23. If Oi, 2 ;
Gu G2 ;

iVl5 jV2 ; A> -P2 De respectively the two positions

of the circumcentre, centroid, nine-points centre, and orthocentre of a triangle

in the ambiguous case, prove that

201 2
= 3G1G2 cosec A =4#,N2

=PXP2
sec A ;

a, b, A being the given parts.

24. Lines AB'C, BC'A', CA'B' are drawn through the angular points

A, B, C of a triangle, making equal angles 5 with .4J5, BC, CA respectively;

and lines AC'B", CB"A", BA"C" making equal angles 6 with AC, CB, BA
respectively. Shew that the triangles A'B'C, A"B"C" are equal in all

respects, the area of each being A sin 2 6 (cot 6 — cot A - cotB — cot Cf. Shew
also that if TA ,

TA"
be the tangents to the circumcircles of these triangles

from the point A, with a similar notation for the tangents from B and C,

then will

aTA '=cTc", bTB'=aTA", cTc
'= bTB".

25. Sum the series

"f[.—l 4.11

where the value n= is omitted, and p, q are positive integers to be increased

without limit.

26. Shew that, if a= 2rr/17, the quantities

cos a+ cos 32a + cos 34 a+ cos 3" a, and cos 3a+ cos 35 a+ cos 36 a+ cos37 a

are the roots of the equation z2+ %z= l, and explain how the process thus

indicated can be continued to obtain the value of cos a.

A, B, C, D, E, F, G, 11, K are nine consecutive vertices of a regular polygon
of seventeen sides inscribed in a circle whose centre is 0; a, fi, y, 8 are the
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projections upon OA of the middle points of the chords BE, CK, DF, OR
respectively ;

shew that the common chord of the two circles on a/3 and yS as

diameters passes through 0, and is of length \0A.

27. If a, /3, y, 8 be the distances of the nine-points centre from those of

the inscribed and escribed circles of a triangle ABC, shew that

1 •
T »

-0,
P+ y+8-Ua y+ 8+a-UP 8+ a + j3-lly a+p+ y-118

and that «2+ /3
2 + y

2
-f S

2=/Z2 (13-8 cos A cos^cos O),

where R is the radius of the circumcircle.

o 9
28. Prove that tan —+ 4 sin— =,/H.

29. Prove that if /be the centre of the inscribed circle of a triangle ABC,
and L, M, N the centres of the escribed circles, the circles inscribed in the

triangles IMN, INL, ILM touch the circle ABC, and the tangents of the

angles of the triangle formed by the three points of contact are respectively

equal to

2 cos ^A +cos hB + cos | C- sin \B - sin iC-2
1 — cos ^B-cos^C+ sin jiB+ sin £ C

and two similar expressions.

30. Shew that if x be not an integer, the series

2x+m+n
2

(x+ m)
2
(x+n)

2

in which m and n receive in every possible way unequal values, zero or

integers lying between / and -
/, vanishes when / increases indefinitely.

31 Shew that sinm 6 cosn 6 can be expanded in the form

A n

sm
(m+^d+A^

111

(m+n-2)d+A 2

Sm
(m + n-A)d+ &c.

cos v cos
v cos

when m and n are positive integers.

Shew also that

(p+2)As+2+(m-ri) Ap+1+(m+n—p) Ap=0,

except in the case of the last terms of the series, when both m and n are even.

32. The circumference of a circle whose centre is is divided into n

equal parts at the points Pu P2 ,
P3 , A, ;ind Q is any internal point.

Prove that

tan Pxq0 + tan P,Q0 + + tan PnQ0= n tan P'Q'O,

where P' is a point on the circle such that Q0P'= n . Q0Px ,
and Q' is a point

on Q(J such that (if the ordinates QR, Q'R' cut the circle in R, R')

Q0R' = n. QOR.
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33. Prove that, if m^ m 2 >
ms are the integers less than and prime

to m, and ifpu p<n are the different prime factors of m,

nsin(£ + —— )
=

A „ . md „ . md
sin wi$ . n sin . n sin

Pi Pi PiPiPaPt
. md . md

28nsin — . nsin
Pi PiPiPs

34. Prove that the sum of the products

sin pa sin q(a + -^J
sin r

(
« + y )

for all positive integral values of p, q, r which are such that p + q+ r= s, when
s > 3, is zero unless s is a multiple of 3, and is -

j sin sa, when s is a multiple
of 3.

35. Prove that

t

"«-i{
1-T+T-K«»+

}•

, . a- f , 1 1 „ 431 .
)

where .r= tan20.

OAUBBIDOS: PRINTED l:V .J. B. l'KACE, M.A., AT THE UNIVERSITY I'BESS.











Rah

OF o

THE LIBRARY
UNIVERSITY OF CALIFORNIA

Santa Barbara

E

THIS BOOK IS DIE ON THE LAST DATE
STAMPED BELOW.

I0OM 11/86 Series 9482






