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ADVERTISEMENT.

Of the following work, the Treatise on Plane and Spherical

Trigonometry is from Lacroix's Course of Mathematics. The

new division of the circle being adopted in the original, a few

alterations have been found necessary to adapt it to the sexagesi-

mal notation in use in this country. Where there has been occa-

sion to add any thing on this account, or to supply any thing by

way of illustration, it is given in the form of a note, and the re-

ference is made by an obelisk, the author's being always distin-

guished by an asterisk.

The chapter on the Application of Algebra to Geometry is se-

lected from the Algebra of Bezout. It was the intention of the

compiler to have made use of the more improved treatise of La-

croix or that of Biot upon this subject ; but as analytical geometry

has hitherto made no part of the mathematics taught in the public

seminaries of the United States, and as only a small portion of

time is allotted to such studies, and this in many instances at an

age not sufficiently mature for inquiries of an abstract nature, it

was thought best to make the experiment with a treatise distin-

guished for its simplicity and plainness. The original being pre-

pared for the use of the Marine and Artillery, those parts have

been suppressed, which were not adapted to the purpose of gen-

eral instruction. Where it was apprehended that the student

would meet with any difficulty in the course of an investigation,

new steps have been supplied, and references are often made to

theorems and processes, applicable to the case in question ; the

figures also, particularly those relating to conic sections, have
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been simplified. Moreover, such alterations have been intro-

duced, as were found necessary to make this treatise conform to

the other parts of the course of mathematics compiled for the

use of the Students of the University.

Cambridge, March 1820.
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ELEMENTARY TREATISE

PLANE AND SPHERICAL TRIGONOMETRY,

AND ON THE

APPLICATION OF ALGEBRA TO GEOMETRY.

CHAPTER I.

Of Plane Trigonometry.

1. In a plane triangle there are six things to be considered,

namely, three angles and three sides. But it is sufficient to

know a certain number of these in order to determine the rest.

It follows, indeed, from what has been proved with respect to

equal triangles, that we may always construct a triangle, when

we know three of the six parts, which constitute it, provided that

one at least of these three parts be a side. In order to render

the theory of triangles complete, we must be able to apply the

calculus to geometrical figures, the exactness of which is limited

by the imperfection of instruments, while there is nothing to pre-

vent the calculus being carried to any degree of precision we

choose. Such is the object which we propose to ourselves in

Plane Trigonometry.

Those, who first undertook to develop, by a series of numeri-

cal operations, or by algebraic formulas, the relations which

subsist between the different parts of a triangle, must have found

themselves embarrassed by the difficulty of introducing into the

calculus the magnitude of angles, which, being measured by the

arcs of a circle, cannot be compared with right lines ; but they

must have soon perceived, that if they could, by any means

whatever, calculate a series of triangles, the angles of which

should be of all possible values, this series would necessarily

Trig. 1



2 Plane Trigonometry.

contain a triangle similar to the one to be determined, wtiatever

it might be ; and that the parts of this last might be deduced

from those of the former by a simple proportion. This will be

rendered plainer by the following example.

Fig. 1. 2. I suppose that in the triangle ABC {fig. 1), we know the

angle B, the angle C, and the side BC, we find in the series of

computed triangles that, which has two angles, h and c, respec-

tively equal to the angles i? and C; it will necessarily be similar

[Geom. 203) to the proposed triangle ABC', and since all the

parts, a b, a c, b c, are known, we have the proportions,

bc:ab::BC:AB, b c : a c : : BC : AC,
in each of which the first three terms are given, whence we

obtain

be '

6c '

and since from all other considerations we deduce A = a, all the

parts of the triangle ABC are determined.

3. Now that we know the use which may be made of a series

of triangles having all possible angles, and the sides of which are

calculated, we are led to inquire into the method of constructing

such a series. To take the most simple case first, I will suppose

that the triangles to be determined are right-angled ; it is evident

that they may all be formed in the quadrant of a circle by letting

Fig- 2. fall fiom each of the points of the arc AB (fig. 2), perpendiculars

MP, MP', M"P",hc., upon the radius ^C, and drawing the

radii MC,M C, M" C, &c.,;the triangles,MP C, MP' C, M'P" C,

he, thus formed, are right-angled at P, P', P", &c., and the an-

gles, MCP, MCP', M'CP", &LC., have successively all possible

values ; the angles, CMP, CMP', CM'P", &c., which, with the

preceding, make a right angle {Geom. 62), will be such, as is

required by the nature of right-angled triangles, and there can-

not be a right-angled triangle, which is not equiangular with some

one of those furnished by a table, constructed as above described.

It may be remarked, that these triangles have each the same

hypothenuse which is equal to the radius of the arc AB.
4. We may form also a series of right-angled triangles, each

having one of the sides comprehending the right angle equal to

the radius of the circle ; it is sufficient, for this purpose, to raise

the indefinite tangent AT from the extremity of the radius AC,

and to draw from the centre C, through the points, M, M, M",
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&c., the secants CJV, CN', CJV", he. It is evident, that the

triangles CAJ^, CAN', CAN", &c. must have all the combina-

tions of angles, which can exist in a right-angled triangle, and

among these triangles there will necessarily be found one similar

to any right-angled triangle that can be proposed.

5. In the triangles CPM, CP'M, CP"M", he. the hypothe-

nuse of which does not change, the sides PM, P'M, P'M", he,
which increase with the angles ACM, ACM, ACM", &£c., or with

the arcs AM, AM, AM", &ic. which measure these angles,

have received a name on account of this dependence ; the line

PM is called the sine of the arc AM, the line P'M, is also the

sine of the arc AM, and so of the others. It follows from this,

that the sine ofan arc is the perpendicular letfall,from one extremity

of this arc upon the radius, which passes through the other extremity.

The lines CP, CP', CP", &c. which diminish, as the arcs

AM, AM, AM", he. increase, are respectively equal, being

parallels comprehended between parallels to the perpendiculars

Mq, Mq, M'q', &c. let fail from the points M, M, M", &c.

upon the radius CB, perpendicular to the radius CA ; and it is

evident that the lines MQ, M^', M'Q^', &;c., are, with respect

to the arcs BM, BM, BM", fee, what PM, P'M, P"M', he.

are, with respect to the arcs AM, AM', AM", &:c., and that,

consequently, Mq is the sine o^ BM, MqoiBM, and M'q'
of BM', &c.

Two arcs, the sum or difference of which is the fourth part of

the circumference of a circle are called complements the one of

the other. The arcs BM, BM, BM', he. are respectively the

complements of AM, AM, AM', he. We designate the lines

Mq, M'q, M'q', he., as well as their equals CP, CP', CP",

&,c. under the name of cosines of the arcs AM, AM, AM", he.

Whence the cosine of an arc is the sine of the complement of this

arc, and is equal to that part of the radius comprehended between

the centre and the foot of the sine.

The right-angled triangles CPM, CP'M, CP"M', he., which

have all the same hypothenuse, are formed, therefore, by the

radius of the circle, and the sine and cosine of the acute angle,

which has its vertex at the centre.*

* The part AP of the radius AC, comprehended between the foot
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6. I pass to the triangles CAJV, CAN', CAN", &c. The hy-

potheniises of these are the secants of the arcs AM, AM, AM'^
&;c., since ive call the secant of an arc the radius drawn through

one extremity of this arc and produced till it meets the tangent,

drawn through the other extremity. The portions AJV, AJV, AN',
&c., taken upon the tangent AT, are the tangents of the arcs

AM, AM, AM", &.C., since we call the tangent of an arc, that

part which is intercepted, on the tangent draion through one eX'

tremity of this arc, by the tioo radii which terminate it.^

Fig. 3. 7. If, through the extremity B of the arc AB {fig. 3), we

draw the tangent B n, and produce it till it meets the secant CN,
the line Cn is the secant of the arcjBJJi, the complement of e^Jlf,

and is called the cosecant of AM; the line B n, the tangent of

BM, is the cotangent of AM, since ue understand by the cotan-

gent and cosecant ofan arc the tangent and secant of the complement

of this arc. The cotangent and tangent, and the cosecant and

secant do not respectively make a part of the same triangle, as

we have observed with respect to the sine and cosine.

8. Tangents and secants have with sines and cosines relations,

that are very simple, by means of which the one may be found

from the other. The triangles CPM and CAN being similar,

give CP : PM: : CA : AN; whenceAN=^^^p^; putting,

instead of the lines CP, PM, AN, what they denote, namely,

cos AM, sin AM, and tang AM, and expressing the radius CA
, „ , /,, J- -R sin AM
by R, we have tangAM= i",r-.

•' '
= co^ A3I

From the same triangles CPM and CAN, we deduce also,

CP: CM: : CA: CN; whence CN=^^^ ; but

of the sine and the extremity of the arc is called the versed sine.

This line, however, is not used in trigonometry.

* It will be perceived, that the words secant and tangent are here

taken in a different sense, from what they are in the Elements of

Geometry, where they are considered, as indefinite right lines, one

of which cuts the circle and the other touches it. But in trigonom-

etry these terms are always used to denote lines of a determinate

magnitude. Where any doubt might otherwise exist, the latter are

called trigonometrical secants and tangents.
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CJV= sec AM, CM = CA = R, CP = cos AM;
no

whence sec AM = j-ri.
cos AM

9. If we compare the triangles CAJV and CB ?i, which are

also similar, since they are both right-angled, and the angle

ACN= Cn B (Geom. 60), we have the proportion

AN: CA: : CB or CA-.Bn,

which gives

2

Bn ^:= —^, which becomes cot AM= .AN tang AM
From this proportion and that for the secant it is evident, that

the radius is a inean proporlional between the secant and the cosine,

and bciioten ihetnngcnt and the cotangent ; since

cos AM X sec AM = R% tang AM X cot AM= B^.

10. With what precedes, we shall require, in order to be able

to construct the tables necessary in trigonometry, merely the

methods of calculating the sines and cosines ; and even the cosine

is deduced immediately from the sine, for the right-angled trian-

gle CPM, which contains them, and the hypolhenuse of which

is radius, gives

PJ\]4-Fp= CM{Geom. 186), or (sin AM)^-j- {cosAMf=R\
that is, the square ofradius is equal to the sum of the squares ofthe

sine and cosine ; whence

cos AM=V R-^— {smA3If.

The following proposition, which gives the expression of the

sine and cosine of the sum and of the difference of two arcs,

merits the greatest attention, as it involves all the properties of

sines and cosines.

11 . Let there be any two arcs a and b ; we have

. y ,
. sin a. cos b± sin b. cos a

sin (a d= b)=
jj

,

/ , , . cos a. cos h ^ sin a. 5m b
cos (a zt b) = ji

.

In order to demonstrate this, T take in the circle AMB', {fig. 4), Fig. 4.

the arc AM = u ; and on each side of the point M, the arcs

Jlf.Yand MN', each equal to 6; I draw the chord JVJV; from

the points JV, M, JV', I let fall upon the radius AC, the perpen-

diculars jY% MP, JVQ' ; through the point M, I draw the radius

MC, and from the point E, where it meets the chord JVJST, I let
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fall upon t^C the perpendicular EF', through the points E and

K', T draw the right lines ED, JV'G, parallel to AC.
This being done, I remark 1. that JVQ is the sine of the arc

AJV=AM-i-MJV=a-\-h, and that CQ is the cosine of the

same arc ; 2. that JV Q' is the sine of the arc

AJY =AM~MJV'= a— b,

and that CQ^ is the cosine. But the chord JVJV being divided

into two equal parts in the point E [Geom. 106), by the radius

CM, which, by construction, bisects the arc JVJV, we infer from

the similar triangles JVED, JYJVG, that JVG is also divided into

two equal parts in the point D, and that DJV= DG. Moreover,

Dq=EF, Gq = JV'Q', DE= Fq; and as DE is half of

N'G, Fq will be half of ^'Q; so that qF= QF= DE. Lastly,

JVq = Dq-^ DJV=^ EF+ DJV,

JVq' =Gq= Dq—DG=EF—DJV,
Cq=CF— Fq = CF— DE,
Cq=CF +Fq'= CF-^DE;

putting for JVQ, JVQ', Cq, Cq^, what they respectively denote,

namely,

sin (a -\- b), sin {a— h), cos (« -f ^)j cos {a — b),

I have

sin (a+ J)=EF+ D^r, cos (a+ b)= CF— DE,
sin la— b)=EF— DJV, cos {a— b) = CF-\-DE.

It only remains to determine the four lines, EF, CF, DJV, and

DE. The first two are obtained by the similar triangles CMP
and CEF, which give

CM : PM:: CE: EF, CM : CP : : CE : CF.

Now, since AM = a,l have PM= sin a, CP= cos a ; it fol-

lows also from the definition of a sine and cosine (5), that EJV

is the sine of arc MJV, that CE is the cosine of it, and that, con-

sequently, EJV== sin b, CE= cos b ; also CM=^R. Substi-

tuting these values in the above proportions, we have

P3I X CE sin a cos bEF=

CF=
CM R

CP X CE cos a cos

CM R
I next com|)arc the triangles CPM, DEJV, which are similar,

because the sides of the second are respectively perpendicular

to those of the first {Geom. 209), and I deduce from them
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CM : EJV: : CF : DJV, CM: EJV: : PM : DE.
substituting, in the first three terms of each of these proportions,

what they respectively denote, as above stated, we obtain

^ ,
.

EN X CP sin b cos a
^•^ — CM — W~'
^^ PMX EN sin a sin b

^^=~-CM—= R— '

Uniting these values to the preceding, in order to form those of

sin (« -f ^) and sin {a— h), we have the four equations,

(« + i)
J,

sin (a — b) =

cos (a -|- ^) =

sm a cos b -j- sin 6 cos a__ ^„ ,

sin a cos fi — sin 6 cos a

R '

cos a cos b — sin « sin b

R
\ , .. cos a cos 6 + sin a sin b
( cos [a — 6) = p ,

which may be reduced to the two, that compose the enunciation

of the proposition.

With these equations, we may find the sine and cosine of an

arc, which is double, triple, or any multiple of the arc, whose

sine and cosine are given. Indeed, if we take, successively,

b= a, b= 2 a, we have

sin

cos

2 a

2a

2 sin a cos a

R
cos a^— sin a"~ R J

sin 3 a
sin a cos 2 a + sin 2 a cos «

R
cos ^a

cos a cos 2 a — sm a sin 2 a

and we may deduce from the last two equations the sin 3 a and

c(^ 3 a, when sin 2 a and cos 2 a are calculated.

12. The equation sin 2 a = '^ ^ -, leads also from the

side of an arc a to the expression of the sine of half of this arc.

If we substitute for the cos a its value /s^R^ — sin «-*, the equa-

* I would apprise the learner, that hereafter I shall designate the

square of the sine of an arc a by sin a^, an expression which would

otherwise be understood as the sine of the square of the arc «, thus

sin a'2 = (sin a)'*
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tion becomes

. ^ 2 sin a */ -K^— sin a^
sin 2 a=— -5^-^5 ,

H.

and, by raising this to the second power, we find

R^ sin 2a2 = 4 il^ sin a^~4 sin a^
;

taking sin a for the unknown quantity in this equation, which

may be resolved after the manner of those of the second degree,

we obtain

If we make 2 a = a', we have a = ^ a', and consequently

sin ha = ± ^^R^±iR^ R^ — sm lt%

or sin ^ a'= ± i V 2 /i^ =h 2 /i cos a',

putting cos a'^ instead of R^ — sin a'^ (10), multiplying the

quantities under the radical by 4, and dividing that without by 2,

which does not alter the value of the expression. Such is the

formula which gives the sine of half an arc, when that of the

whole arc is known.

13. We may arrive at the same result by a very simple con-

struction.

Fig. 5. ]f vve divide the arc AM {fig. 5) into two equal parts, the

chord A^M will also be divided into two equal parts, and Q^M

will be the sine of MN, or of the half of AM ; the triangle AMP,
right-angled at P, will give

AM= ^PM-\-A'P;

and, as AP = AC — CP = R — cos AM = R cos a\

and PM= sin AM = sin a', we have

AM~^ su) a'-^^R^—2R cos a'-\- cos a'^=^2R^—2Rcosa']

since sin a'^ + cos a'^ = R^ (10); hence

qM = hAqM= k ^2R''— 2Rcosa'.

We find in this manner only the second value of sin ^ a' ; the

other is MQI ; for the arc MJVA', which with the arc AM
makes the half circumference, has PM also for its sine, since

this line is in fact a perpendicfular let fall from the extremity M
upon the radius CA', which passes through the other extremity

(5) ; and since there is nothing, in the equation from which we

set out, to show, which of these two arcs it is proposed to divide,

we ought to find the sine of the half of each. According to the

construction v/e have
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•^'•^= VPiW+ A'P = \IPM-i- (^'04- CPf

= s/ sin a'2 + (jR + cos olf

= v' sin «'^
-f-

-'^"'^+ ^ -^ ^°^ "'+ ^°^ '''"

=V 2 i^^ + 2 J? cos a',

and consequently,

JJiQ' = sin i a' = 1 V2i22 + 2 i2 cos «',

a result, which is the first value of sin | a'.

It should be carefully observed, that although sin a' is the

same in the two values of sin ^a' the arc a is different. For one

of these the arc is AM, and for the other A'M, which is the sup-

plement o[ AM, for tvc understavd by the supplement of an arc or

angle, that which must be added to this arc or angle in order to

make two right angles or a half circumference. We infer, there-

fore, from what precedes, that the sine of the supplement of an

arc is the same as the sine of this arc. I shall hereafter treat of

the different arcs, which may have the same sine, the same tan-

gent, &c.

14. It follows from what has been said, that the sine of any

arc ^JVis half of the chord AM o{ the double arc ANM, and

that the chord AM Is double the sine of the arc AN, which is

half of AJVM; so that when the sines are known, the chords

may be deduced from them, and the reverse.

15. It is not the absolute values of the sines, which we have

occasion to calculate, but only the ratio they have to radius
;

since it is sufficient to know in the triangles CPM, CF'M, he.

(fg. 2), the ratio which the sides have amongst themselves. We ^'S' ^'

may, therefore, on account of the greater simplicity, consider

radius as unity, and express the sines, PM, P'M, he. m deci-

mal parts of unity, or, as was formerly done, suppose radius

divided into 100 000 parts.

16. It may be observed, that the length of an arc is always

less than that of its tangent, and greater than that of its sine.

Indeed, if we take below the radius AC {fig. 6), the arc F'g- «•

AM=zAM, and draw the chord MM and the tangents MT,
M'T, it is easy to see, that these tangents must both meet the

radius AC in the same point, since the triangles CMT and

CMT are equal. The lines MT and M'T being equal, as well

as the lines PM and PM', and the arcs AM and AM, we have

Trig. 2
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2AM<i2 MT and 2 ^M> 2 PM {Geom. 283). Whence

we conclude that^^< MT, JIM > PM.
T will further remark, in this place, that the ratio between the

tangent and the sine of an arc tends continually toward unity,

according as the arc diminishes ; indeed from tang a = sm a

we deduce :=: cos a: and as cos a approaches continually
tang a ' '

' •'

towards unity, it follows that the tangent and sine approach also

more and more nearly to an equality, since the limit {Alg. 234)

of their ratio is unity.

17. From this it may clearly be inferred, that if the value of

the tangent and that of the sine do not differ for a certain num-

ber of figures, these same figures will express also the approxi-

mate value of ihe arc. Taking, for example, PJkf= 0,0001, we

find

C^ ='slcM— PM = 0^999 999 995,

and MT= ^^^^)f^^= 0,000 1 00 000 000 5,

a value which does not differ from PM, except in the thirteenth

figure ; we may then take this number for the value of the arc

AM expressed in parts of radius.*

18. In order to apply the formulas of art. 12, 11, and 10, we

must know at least the sine of one of the arcs comprehended in

the fourth part of a circle. Now there are two of these arcs the

sines of which are easily known, namely, the quadrant and its

third part. Indeed the sine of a quadrant is simply radius, and

the sine of a third part of a quadrant is equal to half of radius.

Fig. 2. The first of these values is evident from inspection [fig. 2) ;

* The same thing may be proved by reducing the expression of

the tangent to a series. Indeed we have

sin a sin a sin a
tang a -.

; Vl— sin«2
1— isina^—^sina^— &c.

sin a -j- ^ sin f? + f sin a^ -}- Uc.

It is evident, that while sin a is a small decimal fraction, the term

I sin «3 can affect only the last figures in the expression of tang a,

and that for the first we have tang a^ sin a.

For sin a= 0,0001, we have ^ sin a^= 0,000 000 000 000 5,

result which can affect only the thirteenth figure.
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and the second results from this, that the side of an inscribed

hexagon, or, what amounts to the same thing, the chord of two

thirds of a quadrant, {fig- 8) is equal to radius [Geom. 271) ; the Fig

half of this chord then will be the sine of one third of a quad-

rant (H).

Beginning with an entire quadrant, the formula

sin J a' = I ^ 2 K-— 2 12 cos a'

gives the sine of the half, then that of the half of this half, or of

the fourth of a quadrant, and thus, successively, of all the fractions

of this arc comprehended in the series

h h h tV, A' '^c.

The same formula, if we set out with the third of a quadrant,

leads in like manner to the sine of

-6-> tV> -Si) TS> -gVj ^^
of this arc.

We see by this, that if an arc were divided into a number of

parts equal to any one of the denominators of the above frac-

tions, we might find directly the sine of each of these parts, and

thus form a table by writing them against the arcs, to which

they would belong. But we have not proceeded thus. It is only

among the Indian astronomers, it seems, that the quadrant is

divided into iwentyfour parts for the purpose of calculating the

sines. Very ancient usage, together with other reasons, has led

to the adoption of a different division from the progressions above

given

.

19. The custom has been to divide the entire circumference

into 360 parts, called degrees, and each degree into 60 parts,

called minutes, and each minute into 60 parts, called seconds, and

each second into 60 parts, called thirds, &;c. The character

used to denote degrees is °, placed on the right of the number

and a little above it, that for minutes is ', that for seconds is '',

that for thirds is '", Stc, so that 42° 31' 14" 5'" signifies 42 de-

grees, 31 minutes, 14 seconds and 5 thirds.

Since, in the measure of angles, we have no regard to the ab-

solute value of the arcs, but only to their ratio with an entire

circumference, it would seem very natural to consider this

circumference as unity, and to express the arcs by fractions,

either decimals or others. Still there are certain considerations,

which induced those who were charged with the reformation of
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the system of weights and measures, to take the right angle for

the unit of angles, and, consequently, the fourth part of a circle,

or quadrant, for the unit of arcs. This they divided into a hun-

dred equal parts, which they called degrees, and which they

substituted in the place of the ancient degrees ; each of these

degrees was divided into.a hundred equal parts, which took the

place of minutes ; these last were to be subdivided, as far as occa-

sion might require, according to the decimal progression.*

20. The radius of the circle, upon which it is proposed to

construct the tables, being 1, and the circumference being denot-

I^'g-9- ed by 2 •!:, the sine of AB [fig. 9), or sin i :r= 1 j we have,

besides, cos|*=0; taking therefore a' = I t, from the for-

tnula sin I a'-=^\,^1BP'— 2i2 cos a' (13), it will be seen, that

the sine of half a quadrant, or of I tt, is i ^ 2.f
The arc AB = | -n- being taken for unity, AM will be C ,5

;

we have then

sin 0« ,5 — cos 0« ,5 = i ^2 = 0,707106781 186.

Now if we make 0« ,5 = a' we find

sin \ a' — sin 0' ,25 = 0,382683432365,

cos I a' — cos0«,25 — 0,923879532511
;

But by continuing thus to divide each arc into two equal parts,

we do not fall upon any of the decimal parts of a quadrant ; we

only arrive at arcs, that become smaller and smaller, and which

accordingly approach continually to an equality with their sines.

At the fourteenth division, for example, we come to an arc, which

is only —g^ of a quadrant, the sine of which is 0,000 095 873

799, less consequently than 0,0001 ; the smallness of this arc

* The principal reasons for selecting the right angle as the unit

seem to be, 1. that the entire circle does not, properly speaking,

Fig. 2. measure an angle, since the movable radius CM {fig. 2) in this case

returns to a coincidence with CA ; 2. that the sine, to which all

trigonometrical lines are referred, takes in the fourth part of a circle,

or right angle, all the values of which it is susceptible.

t This may be demonstrated a priori, since the triangle CMP,
Fig. 9. {fig. 9), which is isosceles, gives

2 PM= CM~= 1,

whence

PM= J, and PM = V^ = V^ X i^
= ^ V2.
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is then such, that it does not ditier from its sine in the first

twelve decimal figures.

In smaller arcs the difFerence will be still less; and it is

evident, that all arcs, which are confounded with their sines and

tangents, are proportional to these lines ; therefore,

J 9 !«

lOOOOo'* 16384

100000 : 16384,

1« 1« 1* 1''

^^"
16384

^'"
lOOOOO '16384 * lOOOOO'

whence

'^3S4^^"ll84

sin 0' ,00001 = loQQOQ = 0,000 015 707 963,

at least in the first twelve decimal figures.* For the same reason

* A similar proportion may be used in forming a table for the an-

cient division of the circle. Since

\Q it 1?

1'

16384
'• ^'" 324000

*

" 16384 " 324000
16384

whence

16384 sin j^^
'^" ^" = 324U00 ^ ^'^^^ ^^^ ®^® ^^^'

at least for the first twelve decimal figures ; and midtiples of this

may be taken for the sine of 2", 3", &c., subject to the limitation

pointed out in the text. But since, in the case of such small arcs, the

approximate value of the sine given in most tables does not differ

from that of the arc itself, the above results may be obtained more

simply thus. The circumference of a circle, when the diameter is 1,

being 3,141592653, this number will express the semicircumference

when the diameter is 2, or radius 1. Hence,

.in COOOOl = jl^= i5lli;^||?5?= 0.000 015 707 963.

so also,

='" '"= 3^= ^''eXoo'^ = »•«"« ""^ 848 136.

as obtained above.

It is usual in the computation of the canon, as this operation for

constructing a table of sines, cosines, &bc., is called, to begin with the

sine of 1'. As the value even of this does not differ from that of the

arc in the first ten decimal figures, it may be found in a similar man-
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sin 0'',00002 = 2 sin 0?,0000

1

sin 09,00003 = 3 sin 0^00001

sin 0^00004 = 4 sin 0^0000

1

he.

If we take care at the same time to calculate the cosine and

tangent of each of these arcs, it is evident, that we may proceed

in this manner, so long as the arc has its sine and tangent still

confounded in the first twelve decimal figures.

If we would obtain the approximate values to the eighth deci-

mal only, we may extend this process to the arc 0' ,001.

In order afterwards to rise to greater arcs, we may make use

of the equation

ner by calculating the length of the arc, that is, by dividing the semi-

circumference 3,141592653 by 180.60, which gives 0,0002908882 for

sine 1', Then

cos 1= ^R^—{sml>)^= y 1 —0,0002908882= 0,99999996

(10).

The operation may be continued for the sexagesimal division, as

indicated in the text for the centesimal. It may be observed, more-

over, that as the sine of any arc is the cosine of its complement and

the reverse, the sines and cosines being computed from 1' to 30°, we
have also the sines and cosines from 60° to 90°.

The sines of arcs between 30° and 60° may be found by simple

subtraction. If we add the equation

sin {a-\-b) = sin a cos 6 -)- sin 6 cos a

to the equation

sin (a— ^),= sin a cos 6 — sin b cos a,

and from each member of the sum

sin (a -j- &) -|- sin (o— b):=2 sin a cos b

subtract -\- sin (a— b),

we have sin (a -|- &)= 2 sin a cos b — sin [a — b);

then putting a = 30°, and 6=1', 2', 3', &c., successively,

we obtain

sin (30° 1') =cos r — sin (29° 59')

sin (30° 2') = cos 2' — sin (29° 58')

sin (30° 3') = cos 3' — sin (29° 57'),

The sines of arcs from 30° to 60° being calculated, they will be

the cosines of arcs from 60° to 30°.
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sin 2 a= 2 sin a cos a,

cos 2 a= cos a^— sin a^,

sin (a ± 6)= sin a cos 6 ± sin 6 cos a,

cos (a rtr i) = cos a cos 6 =1= sin a sin b
;

making, successively, « = 0« ,001, a = 0«,002, &c., in the first

two of these equations, we deduce fi-om them

sin 0? ,002, cos 0^,002, sin 0',004, cos 09,004, he,

and taking a= 0%00l, 6 = 0' ,002, 0=0" ,002, 6 = 0" ,003,

he, we obtain by means of the last two equations

sin 0' ,003, cos 0" ,003, sin 0" ,005, cos 0" ,005, Sic.

It will be perceived from what has been said, how a set of

trigonometrical tables may be formed. There are other methods,

more convenient for calculating the sines of any arcs whatever,

by means of converging series, which are deduced from the equa-

tions of art. 11. They may be found in the introduction to my
Treatise on the Differential and Integral Calculus.

21. To render the calculation more easy, the custom has been

for a long time to use logarithms instead of the values of the

sines, cosines, tangents, and cotangents ; and in most tables the

latter are not to be found. The questions, therefore, which pre-

sent themselves, are of the following nature.

1. An arc being given, to find the logarithm of its sine, that of

its cosine, tangent, or cotangent.

2. The lorgarithm of the sine, that of the cosine, tangent, or

cotangent of an arc being known, to find, this arc.

In solving these questions, regard must be had to the particular

disposition of the tables, that are used, as they are not all alike,

and each is usually accompanied with the necessary directions.

I shall omit, therefore, giving the instruction, that the student

may want on this subject. I will merely mention the tables of

Callet, as the best for the ancient division, and those of Borda,

or those of Hobert and Ideler for the new.

Trigonometrical tables extend only to the fourth part of a cir-

cle ; but they give, notwithstanding, the sines and cosines, the

tangents and cotangents, for all arcs however great. This I shall

now proceed to show, by tracing the progress of the trigonomet-

rical lines with respect to the different degrees of magnitude,

which an arc of a circle is capable of assuming.

In order to comprehend fully what I am about to offer, we

• must first understand the continuity, which prevails among the
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different results obtained from the same algebraic expression, or

from the same geometrical construction, and which consists in

this, that each value, which the expression in question as-sumes, is

preceded and followed by values, which differ as little as we please,

from the first, and that in describing a line, each point is preced-

ed and followed by points, which are immediately contiguous.

Fig. 10. This being supposed, if we conceive the radius MC {jig. 10), at

first coinciding with AC, to turn about the point C, as upon a

pivot, this radius will form, successively, v^'ith AC, all possible

angles ; and the point M, situated at the extremity, will pass over

all the points of the circumference of the circle ABA'B'A, or,

which is the same thing, will describe it. By following with

attention this motion, we see in the first place, that at the point A,

where the arc is nothing, the sine is also nothing, and the cosine

does not differ Irom the radius AC. When the radius CM moves

off from ,^C, the sine PJHincreases, as the point Ji, which I shall

call the describing point, advances toward B, and when it has

reached it, PM becomes equal to CB, or to radius. Under the

same circumstances, the cosine PC diminishes continually and

becomes nothing, when the point M is in 5; the angle ACB is

then a right angle, and the arc AB = i'^. The point M being

continued beyond B, the sine decreases, and the cosine, which

falls now upon the diameter AA' on the side of the point C oppo-

site to that in which it was before, increases. Tiiis is evident

from the figure ; P'M, the sine of ABM, is less than BC, the

sine of AB, and CP', the cosine of the first of these arcs, ex-

ceeds the cosine of the second, which is nothing. It may be

reinarked, that P'M' and CP' are, respectively, the sine and co-

sine of the arc A'M', counted from A', and the supplement of

ABM ; whence it follows, that an obtuse angle has the same sine

and the same cosine, as its supplement.

22. When thepointJJf has arrived ?.tA', the sineis nothing, as at

the point A, and the cosine is again equal to radius. At the

point A! the arc ABA' is equal to the semicircumference * ; the

angle ACM has attained its greatest magnitude, but there is

nothing to prevent the radius CM and the describing point,

being continued below the diameter AA!. The sine, which then

becomes P"M', falls also below the diameter, and increases,

according as the point M' approaches to B', while the cosine

CP' diminishes. At the point jB', where the arc ABA'B' is %
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of the circumference, or | *, the sine is equal to the radius CB'

and the cosine is no'.hing. Lastly, from B' to A tiie sine B"'M",

constantly below AA', diminishes continually, and the cosine,

CP'", which is now on the same side of C, that it was in the

first quadrant AB, increases and becomes equal to radius m.A.

At this point the sine is nothing ; the describing point has com-

pleted a revolution, but we may suppose it to begin another, and

by considering, as a single arc, the whole course passed over by

this point from the comtnencement of its motion, we have arcs

that exceed a circumference and which have the same sines, co-

sines, tangents, cotangents, as those which are described in the

first revolution. These considerations lead to consequences, that

are of the greatest importance in analysis, and which I have

developed in my treatise on the Differential and Integral Calculus.

23. It may be well now to see how the algebraic expressions

for the sine and cosine correspond with the different circum-

stances, which we have been considering. In order to this, I

make, in the first place, o= | * in the equations

cos (« zfc &) = cos a cos 6 =F sin fi sin 5 > , f.^

sin {a ±h) = sin a cos h zh sin 6 cos a ^

Recollecting that the cos I* = 0, and that the sin i t= 1, we

have

cos (l * =t 6) = =F sin h,

sin (I ir ± J) = cos h.

There are two things to be attended to in these expressions,

namely, their absolute value, and the sign with which it is

affected.

This value is verified by the figure ; for AB being i *, if we

take the arc BM for h, the arc AM will be | vr -|- 6 ; but P'M'

being the sine of A'M', as well as of AM, will be the cosine of

BM or of h ; while CP' will be the sine of h.

As to the sign — , which affects cos (|* -f h), it signifies, that

if we regard, as positive, the sine and cosine of an arc less than

the fourth of the circumference, the cosine of a greater arc

will be negative, while its sine will be positive. If we make

6= I IT, we have cos ^r=— 1, sin *== 0.

Again, if we suppose, that in the equations (A),a = '7r, we

shall obtain, according to what precedes,

cos (* zb 6) =— cos b,

sin (*± J)= =F sin h.

frig. 3
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The absolute value of these formulas may be verified, as easily

as that of the preceding ; the sign shows, that every arc com-

prehended between -jr and I «, has its sine and cosine negative
;

and when 6 :=: i-jr, we have

cos|';r= 0, sin 2^=— 1.

Lastly, when a= |*, the equations (A) are reduced by means

of the values just found to

cos (i :: rb &) = =b sin 6,

sin (|'^rt^)=— cos 6,

from which it follows, that every arc comprehended between | r

and I'ff, or2'ff, has its cosine positive and its sine negative.

The results, then, to which we have arrived, are

1. That from the point A to the point -3', at which the arc

ABA'= tr, the sines are positive
;

2. That from the point A' to the point A, at which the arc

ABA'B'A = 2 TT, that is from * to 2 -s, the sines are negative ;

3. Tliat from the point A to the point B, at which the arc

AB =1'^, the cosines are positive
;

4. That from the point B to the point B', at which the arc

ABA'B' = i *, that is, from § * to | *. the cosines are negative

;

5. Lastly, that from the point B' to the point A, at which the

arc ABA'B'A = 2 *, that is, from 1^ to 2 *, the cosines are

positive.

It will be readily observed, that the sines change their sign,

when they pass below the diameter AA', and the cosines, when

they pass from one side to the other of the point C, or according

as they fall on this side or that of the diameter BB' perpendicular

to AA'.

By attending to these things we shall be able to extend the

formulas of art. 11 to all possible magnitudes of the arcs AM
Fig. 4. and MN {Jig. 4) ; and the values deduced from these formulas

will agree with those which are derived from the construction

and reasoning employed in the article referred to, if we apply

them immediately to the proposed arcs. The application of

these formulas would be a useful exercise for the learner.

24. By following the course of the tangents we find, that ihey

Fig. 10. increase continually from the point .^ {fiS- 10)5^0 the point B,

at which the arc AM becomes equal to i *. At this point the

secant JVC, coinciding with CB, is parallel to the tangent AJV,

and therefore no lonaier meets it ; so that the arc AB has not,
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properly speaking, a trigonometrical tangent. We say, never-

theless, that its tangent is infinite ; but ths meaning of this ex-

pression is, that by taking the point M sufficiently near to the

point B, we may make the targeit „^JV greater than any a^sgn-

aLle quantity. It is in this manner, that we show the truth of

the equation tang a = , which gives for tang a a value, so

much the greater, as cos a becomes smaller, or as we approach

nearer to the point B.

When a = 05,5 it becomes cos a = sin a (20), and, conse-

quently, tang 0«,5 = 1.

This may be shown also by the triangle CAJV {fg. 9), which Fig. 9.

becomes isosceles in this case, since the angle ACJV, being

equal to half a right angle, is necessarily equal to the angle

AJVC; the tangent .^JV is then equal to radius (Georn. 48).

When the arc AM {Jig. 10), is greater than i-r, the radius Fig. 10.

CM will no longer meet the line AJV above the diameter but

below it. The true tangent AJV is equal, as may be easrily

shown, to A' n', the tangent of the arc A'M', the supplement of

AM, but it lies in an opposite direction. In the third quarter of

the circle the tangent which has nothing at the point A', returns

above the diameter AA', and AJVh the tangent oi AA'M". The

radius becomes again parallel to AJV at the point B', and the

tangent is infinite ; beyond this point it falls below the diameter,

and the arc AA'M" has AJV for its tangent.

25. I proceed now to point out what results from the algebraic

sin a
expression, tang a =^ ' ^ cos G

It is evident, that its value will be positive in all those cases,

where the sine and cosine have the same sign, or from to | *,

and from ^ to §*; it will, consequently, be negative from |'ff to

*, and from |* to 2*; whence it follows, that for the tangents,

as well as for the sines and cosines, a change of sign corresponds

to a change of situation; we find likewise, that the cotangents

are positive from to l'^, from ':r to | t ; and negative from i -^

to ir, and from |* to 2 *.

26. We sometimes meet with negative arcs in a calculation, the

sines and cosines of which may be determined by the formulas

of art. 11. As the expression sin {a — h) changes its sign,

when we change a into b, and b into a, it is manifest, that
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sin [h— a) = — sin (a — b);

thus, when a^ b, the negative arc 6 — a has a negative sign.

If we construct fig. 4* on this supposition by taking AM= b,

MJV:= a, and carrying this last arc below the point J\l, in order

to represent the operation to be performed according to art. 11,

the arc AJV will be found below AC instead of being above it

;

the sine Q'JV then will change its direction, as well as the arc.

As to the cosine, it will remain in the same direction ; and we

find also by the formulas, that cos (b — a) = cos (a — 6).

27. There are many other conclusions to be drawn from the

proposition demonstrated in art. 1
1

, some of which will be ne-

cessary in the subsequent part of this treatise ; 1 will therefore put

them down in this place.

1. By adding together the two equations

. , ,
, x sin a cos 6 + sin 6 cos asm(a+6) =: ^ ,

. / , V sin a cos b — sin 6 cos a
sm (a — 6) = ^ ,

have

whence

. / I 7 \ , • / 7 \ 2 sin a cos 6
sin {a -\- b) -^ sm (a— b) = =

,

R R
sin a cos 6 = -^ sin {a-\-b) -\- ^ sin (a — 6).

2. By subtracting the second equation from the first, we ob-

tain

• /
I

7\ • / /,\ 2 sin 6 cos a
sm {a -\- b) — sin (o— b)z=i =

,

whence

-R R
sin b cos a ^ — sin {a-\-b) — — sin (a— 6).

When a = b, this formula and tbe preceding give

cos a sm a = — sin 2 a.

3. By adding the two equations

/ , , . cos a cos b— sin « sin 6
cos {n + b)= ^ ,

„^ / 7 x cos a cos 6 -4- sin a sin b
cos (a— 6) = _J ,

we have
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,. 2 cos a cos 6
cos (a -j- 6) -f- cos [a — 6) = ^ ,

whence
Ji R

cos a COS 6 = — cos (o + ^) + o"
^°^ ("— ^)-

When a = b, this formula gives

cos a2= f cos2a+ :^ = |12(J?+ cos2 c),

it being recollected, that the cosine is equal to radius, when the

arc is nothing.

4. By subtracting the first equation from the second, the re-

sult becomes

J- /
, 7 2 sin a sin h

cos (a — 6)— cos (a + = ^ ,

whence

sin a, sin 6= — cos (a— h)— — cos (o -{- 6).

When a = b, this formula gives

R^ R
sin a^ = — — cos 2 a = i 72 (72— cos 2 a),

5. If we make a -|~ ^ = '^'j «— b z= b', we find, by adding

these two equations, 2 a = a' -\- b', and by subtracting the sec-

ond from the first, 2b = a' — b' ', it follows from this that

a' -\- b' , a' — b'

'^= -2
'

*=-2--
Putting these values of a and b in the expression for sin a cos b,

sin b cos o, cos a cos 6, sin a sin b, obtained above, we find

sin I (a' -f b') cos i (a' — b') z=: - (sin a' -f- sin b')

r>

cos i (a' + b') sin ^ (a' — 6') = _ (sin a' — sin b')

cos I (a'
-f-

b') cos I (a' — b') = - (cos a' + cos b')

sin I (a' + b') sin | (a' — b') =i ^ (cos 6' —cos a').

Dividing the second of these formulas by the first, we have

cos ^ { a' -\- b') sin j- {a' — h') sin a' — sin b'

sin ^{a' -\- 6') cos ^ (a' — 6') sin a' -\- sin b'^

Qj.
sin ^ (g^— 6^) cos ^ {a' -j- 6^

)
sin a' — sin b'

cos J- (a' — 6') sin ^ (a' -|- 6') sin a' -f- sin
6'*

Observing then that ^-^ = ^^"^
(8), and that, consequently,
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cos A R
sin A tang A'

we obtain

tang J- {a' — b') sin a' — sin b'

tang J- (a' -\- b') sin a' -)- sin b''

We infer in like manner from the last two formulas above

given, that

cos 6' — cos a' tang J- {a' -j- b') tang ^ (a' — b')

cos «' -|- cos b' R^
6. By dividing the expression for the sin (a ± b) b}^ that for

the cos (a ± &), we have

sin (g j= 5) sin « cos 6 :j^ sin b cos a _

cos (« ± 6) cos a cos 6 =F sin « sin 6
'

then, dividing the numerator and denominator of the second mem-
ber by cos a cos b, it becomes

sin a sin b

cos a cos b

sin a sin 6 '

cos a ' cos b

and since, universally, —- =—^— (8), we hence deduce

tang a tang b

tang (g ± 6) _ R~ ^ _ -K (tang a ± tang 6)

-K
-J

-^ tang a tans 6 i?^ ^ tang a tang 6
'

R~ ^RT
and, lastly,

tang (a ± 6) = gM^^ng g ± tang 6)
^ ^ ^ 122 qr tang g tang 6

7?-
And since cot A = ^ ^ (9), we have

tang Ji^ '^

i22
cot (a ± 6)

tang (g ± b) '

hence, dividing i?^ by tang (a rb ^) and by its equal in the above

equation, we obtain

jg^ _ R^ T tang a tang &

tang (g ± &) • tang a rb tang 6~

cot g • cot b .

^^ ^^'
cot g cot 6

which being reduced becomes
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/ , . cot a cot 6 T -R^
cot (a ± 6) = -^^^^^-^^T^.

^ . tanor J. (a' — h'\ sin a' — sin 6'
^ ,

.
,

28. The equation -—H"/ / i d = rinWh'^ f^°™ ^'^'^^
^ tang ^ (a'

-f-
6') sin a' -J-

sin o'

we infer, that the sum of the sines of two arcs is to their differ-

ence, as the tangent of half the sum of these arcs is to the tangent of

half their difference, is obtained immediately by a very elegant

geometrical construction.

AM and AJV {fg. 11), being two arcs represented by a' and Fi

b', we have MP= sin a', JVQ= sin b' ; drawing JVC parallel

to the diameter^!?, and producing ^WP to M, we deduce

MR = MP — N'q = sin a' — sin b',

MR=MP 4- JVq= sin a' + sin 6' (14).

This being done, if from the point C, as a centre, and with a ra-

dius CD equal to that of the circle ACB, we describe an arc

EDG, and draw, through the point I> of this arc, a tangent

meeting the straight lines CM and CM, it is evident, that DF
and Dfl will be the tangents of the arcs BE and BG, which

measure the angles MCN, NCM ; and as these angles have

their vertex in the circumference of the circle ACB, they will

have for their measure, respectively, [Geom. 126),

1 JVJW" = i {AM— AJV) = h (a'— b'),

i JYM= 1 {AM -{-AJV) = H«' + ^')
;

we have then

DF= tang i {a'— //), DH = tang I {a' + b').

But on account of the parallelsMM and FH, we have this pro-

portion,

MR : MR ::DF: DH,
that is,

sin a\— sin b' : sin a' -\- sin b' : : tang ^ {a'— b') : tang ^ {a' -f- b'),

which is the same as the equation above given.

tt would be easy to modify the construction, so as to deduce

from it the different equations analogous to that just demon-

strated.

29. As we have often occasion to make use of the formulas,

which we have already obtained, I have put them together in

the following table with others, which may be deduced by a

process easy to be imagined. The number against each formula,

marks the article, in which it may be found, or from which it

may be obtained.
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Trigonometrical Formulas.

sin«2 + cosa2=il2(10)

. , J, sin a cos 6 ± sin 6 cos a
sin (a rt o) =— ^

|

cos a cos 6 =F sin a sin h i

(11)

cos (« ±h) =
j^ J

sin a cos 6 = iR [sin (a + b) -J- sin(a— &)]^

cos a sin b = ^R [sin (a+ 6)— sin (a— b)] f .^^n

cos a cos 6 = i /? [cos {a-\-b)-\- cos (a— ^)] C

sin o sin b=^— ^R [cos(fl+ ^')— cos (o— b)y

sin rt 4- sin b=
;^

sin I (a + b) cos | (o— b)

sin a— sin 6= ^ cos ^ (« + ^) sin ^{a —b)R

fi
_L cos ^= ^ cos i

(a + 6) cos | («— b)

M27)

i?

cos a— cos b=— -^ sin I (cf + ^) sin l{a — b)

J

. ^ 2sinrtCOsa, , . /?r»o ?rn /'io\
sin 2rt= j^

(ll),sm|a= |V212^— 2i2cosa (13)

cos a^ — sin a^ 2 cos a^ — R^ . .

cos 2 O =: ^ = ^ (li;

sin a2 = I i? (/?_ cos 2 o) (27)

cosft2 = |jR(i?4-cos2a) (27)

sin o^— sin 6^= cos b^— cos a~= sin (a-(-&) sin (o— b){\\, 10)

cosG^ — sin ^/2=cos (a 4- 6) cos(fl— 5)(11, 10)

R sin a .^, -R"^ J? cos a ,„>

tane a = (8), cot a = = —: (y

)

>= cos a ^ '^ tang a sin a ^
'

sec « = , cosec a = -. (oj
cos a sin « ^ '

tang(a±&):
jR sin (« ± 6) R^ (tang a rfc tang b)

cos (a ±6) -R"-^ T tang o tang b
(27)
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Trigonometrical Formulas.

tang a -}- tang b =

tang a — tang h =

cot a + cot & =

cot a— cot h =

jg^sin {a-\-hy

cos a cos h

R^sin ja— b)

cos a cos 6 ,

^j;

jg^ sin {a-\-b) p^
sin a sin b

R^ sin (a — b)

tanga^— tang 6^=
cot o^— cot P=

sin a -j- sin 6

sin a sin b

R'^ sin (a-|- b) sin (a- by

cos «^ cos b'^

R'^ sin (a -j-^) sin (a- *)l

1)

(8, 11)

sin a^ sin 6^

sin o— sin 6

sin cf -|- sin 6

cos a -\- cos b

sin a -f- sin &

cos a— cos b

sin a— sin 6

cos a -\- cos b

sin a— sin b

tang X
(
a -f- 6)

tang J- (a— 6)

tang j- (« + 6)

cot j- (g — &)

tang ^ (a — b)

cot i (a-f- b)

_tangj^^
R-\-cosa

sin a

R
cot J- a

12— R

K2')

cos a— cos b

cos a -|- cos b

R
cot ^ (a— b) sec a -}- sec b

cos a— cos b

sin a =
tang ^{a-\-b)

R tang a

sec a

R^

Vi^-^+tanga-^'
^"^ " ~" V i?^ +tang a^ ^^' ^^)

Z? = sin ]«= cosO«= tang|«=cot|'= secO''= cosec ]"

= 1 sec f (23, 24)

sin o = I chord 2 a (14)

sin (1" ± 6) = -4- cos b, cos (P =t J) = =F sin i^
sin (2'± ^)) = =F sin &. cos (2" ± b) = — cos 6

'

sin (3" ztb) = — cos b, cos (3' ± i) = ± sin 5

sin (4« rb J) = ± sin 6, cos (4« ± b) = + cos 6

(23)

^T'n^-
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30. I proceed now to treat of the application of trigonometrical

tables to the resolution of triangles. It must be recollected, that,

by means of these tables, when an angle is known, the value of

its sine, that of its cosine, tangent, and cotangent are also known,

and that, reciprocally, when the value of one of these lines is

given, that of the arc is to be regarded as given.

Fig. 12. Let CDE [Jig. 12) be a triangle, right-angled at D; from one

of the acute angles C, we describe, with a radius equal to that of

the tables, the arc AM, and let fall the perpendicular PM upon

AC; we then raise the tangent AJV'm order to form the two tri-

angles of the tables, namely, CPM, which will be that of the

sine and cosine, and CAJV, that of the tangent and secant. These

will be each similar to the triangle proposed ; and by comparing

them successively with this, we obtain the following proportions
;

CM.PM::CE:DE^ C R: sm C: : CE: DE
CM: CP:: CE: CD} or} R: cos C : : CE : CD
CA .AJV'.-.CD.DE) (R:tnngC::CD:DE.

The angle E being the complement of the angle C, we have

cos C=sinjG; and the first two propositions admit of being

united in one, and may be enunciated thus ; in any right-angled

triangle, radius is to the sine of one of the acute angles, as the

hypothenuse is to the side opposite to this angle.

The third shows, that radius is to the tangent of one of the

acute angles, as the side of the right angle adjacent to this acute

angle is to the side opposite.

Radius being always given, it is sufficient to know two of the

three other terms of each of the proportions, which I have just

stated, in order to find the remaining one. Thus by the first

proportion when two of these three things, namely, the hypothe-

nuse, a side, and an acute angle are knoum, the third is readily

determined.

I say simply an acute angle, although the proportion requires,

that this angle should be opposite to the' side given, or to that

required, because one of the acute angles enables us to find the

other immediately ; therefore, if that which is known, or that

which is sought, do not fulfil the condition, we may employ its

complement.

By the second proportion when two of these three things are

known, namely, the two sides of a right angle and an acute

angle, the third is readily determined.
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It follows from this, 1. that knowing a side and an angle of a

right-angled triangle, we can calculate the two other sides ;• 2.

that any two sides whatever being known, we can calculate the

acute angles.

These two cases do not comprehend that in which any two

sides being given to find the third ; but this is immediately re-

solved by the known property of a right-angled triangle, which
2 2 2

gives CD-\-DE = CE, from which we deduce

If we have given the hypothenuse CE and one of the sides of

the right angle DE, for example, we have

CB=
^i.CE — DE.

Recollecting that CE— i)E=
(
CE + DE)

(
CE— DE)

{Alg. 34), if we take the logarithms of the two members of the

equation CD= ^ {CE + DE) {CE — DE), we shall have

1 CD= i[{\ CE-\-DE)-^\{CE= DE)'\.

When we construct formulas to be used in numerical calcula-

tions, we should endeavor to prepare them in such a manner

that logarithms may be conveniently applied to them, that is, so

that it will be necessary to pass from logarithms to numbers and

from numbers to logarithms, as litde as possible. By applying

logarithms to the determination of CD, by means of the first ex-

pression above given, we shall perceive very clearly the object of

this remark.

I will conclude this exposition of the principles, that are em-

ployed in the resolution of right-angled triangles, by observing,

that the two cases last treated may be resolved also by the two

propositions given at the commencement of this article. For 1. if,

having CD and DE, we would determine CE, we can calculate

one of the acute angles. C, for example, by the proportion

R : tang C : : CD : DE; havin;^ found this angle, we calculate

the hypothenuse CE by the proportion R : sm C : : CE : DE,
in which the three terms R, sin Cand DE are known. 2. When
the hypothenuse CE and one of the other sides, CD, for example;

are known, we calculate the acute angle opposite to the side

sought, by the proportion, R : sin £ or cos C : : CE : CD ; then

the side DE is found by the proportion R : sin C : : CE : DE.
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31. What has been said upon right-angled triangles may be

put into a convenient form, by using the letters A, B, C, to denote

the angles, A being the right angle, and a, b, c, to denote the

sides respectively opposite to these angles, as is shown by figure

Fig. vs. 13
J
we have then by the first principle

R : sin C : : a : c, R : s'm B : : a : b,

whence

c sin C b sinB

a ^ R '

a ^ HrT'
Eliminating a from these two equations, which is done by

dividing the two members of the first each by the corresponding

member of the second, we find

c sin C
_

b sin^'

, r> r^ sin C tang C , • c tang C
and as sm ij= cos C, and 7v=—^— , we obtain r=—^—

,

' cos C R K
an equation, which represents the second principle enunciated in

the preceding article.

Lastly, if we square each member of the first two equations,

and add the results, member to member, observing, at the same

time, that

sin C2+ sin B^= sin C^+ cos C^= R^ {10),

we have

It follows from this, that the two equations

c sin C b sin B
a ~~Rr' a ^ ~R~'

are sufficient, together with the relation subsisting between the

angles B and C, for the resolution of all cases of right-angled

triangles.

32. The principle upon which the resolution of right-angled

triangles is founded, leads also to that of triangles of whatever

kind. By letting fall from the angle B of the triangle ABC
Fig. 14. {fig. 14) a perpendicular BD, we form two triangles^5A BDC

right-angled at Z)j we have in the first

R : sin A::AB: BB,
and in the second

R.sm C:: BC : BD,
which gives
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RXBD= smAx AB, RxBD== sin C X BC,

whence

sin AX'dB= sin C X BC, or sin .^ : sin C : : 5C: AB.

When the perpendicular falls without the triangle, the angle

C is not common to the two angles ABC, BCD; but the an-

gles BCD, BCA, being together equal to two right angles, have

the same sine (22).

The proportion just given admits of a general application, and

may be enunciated thus ; In any triangle whatever the sines of the

angles are to each other as the sides opposite to these aiigles.

33. The same proposition may be demonstrated in the follow-

ing manner, which may appear more conformable to the idea I

have given of trigonometry in art. 1 and 2.

Having inscribed the triangle ABC {Jig. 15) in a circle, if Fig. 13-

from the centre O of this circle, and with a radius Oa, equal to

that of the tables, we describe a circle a b c, and then join by the

lines a b, b c, and a c, the points where the radii AO, BO, CO,

meet the circle of the tables, we form a triangle a b c similar to

the triangle proposed, the sides of which are deduced from the

tables.

The similarity of the two triangles ABC, a b c, [Geom. 209),

becomes evident, when we consider that the right lines a O, b O,

and c O, being equal, as radii of the same circle, as well as the

straight lines AO, BO, and CO, the triangles AOB, BOC, and

AOC, have their sides AO and BO, BO and CO, AO and CO
cut proportionally in the points a and b, b and c, a and c, and

consequently the right lines AB and a b, BC and b c, AC and

a c, are respectively parallel ; we have then

AB:BC:AC::ab:bc:ac,
or : : I a 6 : 1 6 c': I a c.

This being the case, the angles of the triangle a b c, having

their vertex in the circumference, are measured by half of the

arc subtending the side opposite to them, and each of these arcs

has evidently for its sine half of the same side (14) ; whence

I a b= sm c :=: sin C,

i 6 c =: sin a= sin A,

i a c= sin 6 :=: sin B,

and consequently,

AB.BC .AC :: sin C : sin A : sin B.
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We shall perceive moreover by comparing the triangles AOB
and a Oh, that AB : a b : : AO : a O, or that

AB: 2 sm C::AO: a O;
that is, each side of the triangle ABC, is to double the sine of the

opposite angle, as the radius ofthe circumscribed circle, is to that of
the tables.*

34. Designating, as in art. 31, the three angles by A, B, C,
Fig. 16. and the sides respectively opposite by a, b, c, (fg. 16), we have,

according to what precedes, the following proportions,

sin A : sin B : : a : b,

sin ^ : sin C : : a: c,

sin B : sm C : : b : c,

from which we deduce the equations

b sin B c sin C c sin C
a sin J.' a sm A^ b sin jB'

We may resolve a triangle immediately by these proportions ',

1
. when two of the angles and one of the sides are known, since in

this case all the angles will be known, and the sides sought will

necessarily be opposite to two of these angles ; if, for example,

a and the angles B and C are given, we subtract the sum of

these angles from two right angles in order to obtain the angle

A, and we find by the two first proportions the sides sought b

and c; 2. when we have one angle and tivo sides, one of which is

opposite to the given angle ; if, for example, we have the angle A
and the sides a and b, we determine the angle B, by the first pro-

portion, and then two angles being known, the question falls

within the preceding case.

There are two cases, which are not comprehended within the

rules now enunciated, and which seem to elude this method, one

is, when two sides and the included angle are given, and the other,

when the three sides are given. I shall treat of these in order.

35. I will suppose, in the first place, that the two sides a and b

and the included angle C are known. If we give to the equations

* We may consider the lines ah,h c, and a c, as the sines of the

angles A, B, C, by taking for unity the diameter of the circle a b c.

It is thus that Carnot has presented them in a work entitled Geome-

tric dc Position, where may be found, according to this definition a

very simple and elegant demonstration of the proposition given in

art. 1
1 , and of the most important conclusions deduced from it.
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sin C c sin C
a sin A'' h sinB'

the form

ft sin C= c sin A, h sin € = c sin B,

and then add them, member to member, and subtract the one

from the other, we have

(ft + h) sin C= c (sin Jl + sin B),

(ft— Jj^ sin C =:c (sin .4!— sin B)
;

dividing the second by the first, the unknown side c will disap-

pear, and we find

a — 6 sin A — sin .B

a -\-h sin ^ + ^^" ^
But we have seen (27), that

sin^ — sinB _ tang ^ {A'— B) ^

sin ^ + sin ^ ~~
tang ^ (^ + B) '

we conclude therefore, that

a— h _ tang ^ (^ — JB) ^

a + 6
""

tang ^ {A -\- B)'

whence we obtain the proportion,

a-^h: a — h:: tang \ {Jl -\- B) : tang | {A— B),

which may be enunciated thus ; The sum of two sides of a triangle

is to their difference, as the tangent of half the sum of the opposite

angles to the tangent of half their difference.

Every term in this proportion is known but A— B, for if we

subtract the angle C from two right angles, the remainder will

he A -{- B ', whence

tang 1{A-B)=^ X tang i {A + B).

Knowing then ^ (A-\- B) and i {A— B), we have by adding

them together

k{A + B)-{-^,{A-B)= A,

and by subtracting the second from the first,

i{A-irB)— i{A-B) = B;

* We may also, for the sake of conciseness, take the proportion

a : 6 : : sin ^ : sin jB (32),

from which we deduce immediately

a-\-h : a— 6 : : sin ^ -|- sin j5 : sin ^ — s\n B;
and thence by art. 28,

a-\-h -.a— b : : tang ^ {A -\- B) : iang ^ {A — B).
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that is, the greater angle is obtained by adding the half difference

to the half sum, and the less by subtracting the half differencefrom

the half sum.

When all the angles are determined, we find the third side by

the rule given in art. 32.

36. We may also find immediately the third side, by letting

fall a perpendicular upon one of the given sides, from the angle

ig. 14. p^ for example, upon the side AC {fig. 14). We have, by the

known property of oblique-angled triangles (Geom. 191, 192),

AB= AC-\-BC^2AC X BC,
the upper sign being used when the perpendicular falls within

the triangle, and the lower when it falls without ; moreover, in

the right-angled triangle BDC, we have (30)

DC=BCXs\n DBC=:BCx cos C,

making R = I.

Whence AB= A C + BC— 2ACx BC X cos C,

and consequently

AB = >^AC-^ BC—2AC. BC. cos C,

or, adopting the notation of art. 31,

c = /^ a^ -\- b^ — 2 ab — cos C,

which gives the side c by means of the two other sides, a and b,

and the angle C. One sign is sufficient for the term 2 ab cos C,

because when the angle C is obtuse, its cosine is negative, and

consequently changes— into-f-? ^s is required by the geometri-

cal construction.

37. This formula is not suited to calculation by logarithms
;

but since we have,

cos 2 C=l— 2sin C2(27)t,

we have also by writing k C in the place of C,

cos C= 1 — 2 (sin i C)%

and by this transformation we obtain

f In article 27, section 4, the formula

sm «* =— -^ — cos 2 a,

when jR= 1, becomes

sin fl'^= ^ — ^ cos 2 a.

Transposing sin u~ and ^ cos 2 a and multiplying by 2, we have

cos 2 a= 1 — 2 sin a^.
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c= V«M- 62 — 2a6-j-4a6 (sin \ C)2

= V («— *)'+ 4 a 6 (sin i C)2.

Tr , 2 sin 4- C ,—

-

It we make ^_ ^
s/ah— tang a, there will result from the

substitution of this last,

c={a— h)s/\ + tanga^ ~±

since cos a r=

cos a

1 _ ^ . . *
. ,

I

——^- Tang a is easily calculated by

the first of the above equations, and when the angle a is obtained,

we have by the second c= f.

38. By the equation c= /s/_a^:i- b-— '2 ab cos C, we can de-

termine the angle C, when the three sides a, b, c, are given, for

by raising each member to the square we obtain

aP-\-P— c^ = 2 ab cos C,

^ . --2sin J-C ,
f By makmg—

,
- V a 6= tang a, we are to understand, that

the value of this expression is to be considered as the tangent of an

angle. If we resolve it into a proportion, we shall have

2 sin i C . r
G — & : 2 sin 1 C: : V «6 : a—b ^ "^ *'

and this fourth terra may evidently be considered as the tangent of

some angle, and the first three terms being known, this is also known.

If in the equation c = (a— b) ^ I -|- tang a^, we substitute the

2 sin 1 C ,

—

^ , 4 a 6 (sin l,Cf _

square of—^^y- s/ ab, namely, —i^—W—

'

"^ '
^^^

shall have c= (a - 6) |l + ^^^^""ff^', then, by squaring the
^ '>] ' (a — hf

second member and putting it under the sign of the square root, it

becomes

c^s/{a — bf^^cvb (sin ^ Cf,
which is the same as the preceding expression for c.

To show that cos a= —-=====.
\^^ q / ^„ 12) = «, then ^h- 12.

fiji. -j- tang a-' ^-^ * '

CNoi- \l CA-{- AN: CA :: CM: CP,

or, radius being 1,^ l 4- tang a^ : 1 : : 1 : cos«= , . ,

=%•

Trig. 5
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cosC= -' + ^'-'^'
.

2ab
but this expression not being well adapted to calculation by loga-

rithms, another is to be sought.

If we write 2 C for C, and put 1 — 2 sin C'^ instead of cos C
(27), we have this expression,

2 sin C^ 2 _ 1 ,
cl-a^-Ifi _ c-~-a^-6^+2a6

% 'iab
—

2ab
_ c^ — {a — b)^ ^ {c-^a — b){c — a-{- h)

2 a 6 2 a 6
'

and consequently,

sin
r.'^__{c + ci — b){c — a-\-b) _

iab —
(c-f a— 6) (c — a-f 6)

ab '

but it is easy to see that

c -\- a — b c -\- a -\- b
,

2
-

2
^>

c — a -{- b c -\- a -\- b

2
—

2
"^^

if then we make c -\- a -{-b ==/, we have, by extracting the

square root, and restoring | C in the place of C,

sinic= I3ZESIIZE5,
^ ab '

a formula, which leads to the following rule

;

To find an angle of a triangle, when the three sides are known;

from the half sum of the three sides subtract successively each of

those which contain the angle sought ; multiply the tivo remainders

together ; and divide the product by the product of the sides which

contain the angle sought, and the square root of the quotient loillhe

the sine of half of this angle.

39. All cases of oblique-angled triangles are solved by the

three rules given in art. 32, 35, 38, which depend upon a princi-

ple deduced from right angled triangles in art. 30 ; it will be

easy then with a little attention to retain these rules, and the

examples which I am about to give, will be sufficient to enable

the learner to apply them.
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Examples of the solution of right-angled triangles.

1. In the triangle jB^C {fig. 13), the hypothen^lse a and a Fig. 13.

side c being given, to find the angle C, opposite to this side ; let

the hypothenusea^ 13"^''"'"% 178, and the sidec = 7'^^,357. We
have, in order to determine sin C, the proportion

a: c : : R: sin C, •

whence

sin C = —^^—

,

a

or by logarithms,

Isin C=l JR+ lc— la.

To render the calculation more simple we almost always make

radius equal to unity ; its logarithm is then zero, and no account

need be taken of it ; and, instead of performing the subtractions,

we employ the arithmetical complements, the theory of which

has already been explained {Mg. 248). Thus

I c = 1 7,357 = 0,8667008

arith. comp. 1 a = arith. comp. 1 13,178 = 8,8801505

sum or 1 sin C= 9,7468513

which in the tables answers to 33° 56' 13"= C.

2. The angle C= 52° 21' 59", the hypothenuse a= 33=^253,

being given, to find the side b. We have

R: sin B or cos C : : a: b, (31),

whence

, a X cos C
^= R -

16 = l«-}-lcos C— l_R=la+lcos C.

But 1 a= 1 33,253 = 1,5218308

Icos C=:lcos 52° 31' 59'' = 9,7841204

sum or 1 6= 1,3059512

which answers in the tables to 20'^'',22S = b to within one thou-

sandth.

3. The side c=5^'',39l, the angle ^=31° 30' 44", being

given, to find the side b. We have

R : tang B: : c:b,

whence

^_ c X tang B
R
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1 6= 1 c + 1 tang B— \R.
But lc= 15,391= 0,7316693

tang 5= hang 31° 30M4'' = 9,7875272

sum or 1 c = 0,5191965

which answers in the tables- to 3'^,305 = c.

Examples of the solution of ohlique-angled triangles.

Fig. 16. 1. In the triangle ABC {fig. 16), the side c, and the angles At

and B, being given, to find the side h.

Let ^ = 112^ 30' 21", ^= 52° 54' 40", c= 27^^348 ; the

angle C will be

180°— (^+^) =180° — 165° 25' 01"= 14° 34' 59",

and we have

sin C : sin jB : : c : h,

whence

7 c X sin -B~
sin C '

U = lc+ lsinS— Isin C.

But 1 c= l 27,348= . 1,4369256

1 sin B= 1 sin 52° 54' 40" 9,9018401

arith. comp. 1 sin C= arith. comp. 1 sin 14° 34' 59"= 0,599633

sum or 1 6 = 1,9377290

which answers in the tables to 86'=^,642 = h.

2. In the triangle ABC the two sides a, b, and the included

angle C, being given, to find the third side c.

Let a= 28'=^442,6= 17^^803, C==75°50'. We begin

with finding the other angles by means of the proportion (35)

a + b:a-b:: l^„s^^ tang 4^,

tang — ^

whence

A —

and

1 tang ^^^-=^ = 1 tang ^^-^ J^l(a— ij)— ](a-\-b);

but ^ + J5= 180°— 75°50'=104° lO'and

a + 6= 28,442 + 17,803 =46,245,
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«_J= 28,442— 17,803=10,639.

Itang^^-i^ = 1 tang 52° 05' 10,1084926

1 («_- 5) i 110,639= 1,0269008

arith.comp. 1 (« + 6) = arith. comp. 1 46,245 =: . . 8,3349352

sum or log tang A:^= 9,4703286

which answers to 16° 27' 15'
;

therefore ^^+^~ = ^ = 68° 32' 15",

and di^_Ar^ = 35»3T45".

In order to determine the side c, we have the proportion

sin _B : sin C: :b : c,

whence

, _ 6 X sin C
^ — sinB '

and 1 c=l & + 1 sin C— 1 sin i5;

but 16=1 17,803= 1,2504932

1 sin C=\ sin 75° 50' = 9,9865872

arith. comp. 1 sin B= arith. comp. sin 35° 37' 45"= 0,2346766

sum or 1 c = 1,4717570

which answers in the tables to 29'^^632 =: c.

3. In the triangle ABC, the three sides a, b, c, being known,

to find the angle A.

Let a= 29'=^037, b = 18<^^743, c =z 13'=^782.

According to art. 38, we add the three sides a. b, c, together,

which gives 61,562; and from half of the sum 30,781, we sub-

tract successively 5, c ; the remainders are 12,038 and 16,999,

we have then

1 16,999 = 1,2304234

1 12,038 = 1,0805543

arith. comp. 1 18,743 = 8,7271609

arith. comp. 1 13,782 = 8,8606878

sum 19,8988264

the half sum, or 1 sin | .^2 = 9,9494132

which answers in the table to 62° 52' 55" = ^ A, therefore

A= 125° 45' 30".

40. A work of this nature does not admit of a particular ac-



38 Plane Trigonometry.

count of the applications of plane trigonometry. I shall confine

myself to the solution of three questions, which may he regarded

as the basis of the art of drawing plans.

The first is, having given in magnitude and position upon a

Fig. n. plane aright line AB (fig. 17), to determine the position ofa point

C, situated in the same plane, or which is the same thing, to find

the distances AC and BC.

In order to resolve this question, the side AB, which is the

base of the operation, must be measured, as also the angles CAB,
CBA, comprehended between this base and the lines, which con-

nect the extremities with the point C; the distances sought, AC
and BC, may be calculated by the rule laid down in art. 32 ; and

these being known, the triangle ABC may be constructed by

means of a scale of equal parts, and the relative position of the

three points A, B, C, may be calculated.*

We can then, by the resolution of the right-angled triangle

ACP, in which the side AC and the angle CAP are known, find

the length of the perpendicular CP let fall upon AB, or of the

shortest distance of the point C from AB, and the length of the

segment AP. By means of these the position of the point C
with respect to the line AB is determined. The situation of the

point D may also be found, if it can be perceived from any two

of the points A, B, and C.

41. When we have determined immediately the point D with

respect to the line AB, by measuring the angles DAB, DBA,
we have every thing, which is necessary in order to compute the

distance of the points C and D with respect to each other ; for,

having resolved the triangle DAB, as also the triangle CAB, by

subtracting the angle De^i?, from the angle CAB, we have, in

the triangle CAD, the two sides AC and AD, and the included

angle CAD ; by applying the rules of art. 35, we shall obtain

the two other angles DCA, CDA, and the third side CD, which

* I do not insist upon the angles being measured, since more might

be learned by a sight of the instruments, which are employed for this

purpose, than by anything which I can say on the subject. To con-

ceive of the possibility of performing this operation, it is sufficient to

imagine, that there is placed at the centre C, a sector of a circle, the

radii of which correspond to the direction of the sides AB and AC,
which contain the angle to be measured.
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is the distance sought. The angle DCA gives the position of the

right line CD; and if we consider AC, as secant, by comparing

the angles DCA and CAB, we shall be able to find the inclina-

tion of CD with respect to AB.

If we set out from the points C and D, taking CD as a new

base, we may determine other points not visible from the first

two, A and B, and by proceeding in this manner we can deter-

mine the relative poshion of all the points of a country. It is in

this manner that the map of France was constructed under tlie

direction of Cassini.

42. The second question, which I am to consider, is merely

the first rendered more general by supposing the point to be de-

termined, situated without the plane, in which the line AB is

found. Let C {fig. 18) be this point, and^BC the plane in which Fig. 18.

AB is situated. The position of the point C will be known, if

we have that of the foot C of the perpendicular let fall from this

point upon the plane ABC, and the length of the perpendicular

CC, which shows how much the point C is elevated above C\
its projection. In this case the angles CAB and CBA are not the

angles to be measured, but we take, instead of them, the angles

CAB and CBA, situated in the plane CAB passing through the

lines AC and BC, which are drawn from the given points A and

B to the point required ; and in order to fix the position of this

plane, we measure also the angle DBC, which the line CB
makes with the line BD perpendicular lo the plane ABC, and

consequently parallel to the right line CC* We resolve the

triangle CBA, as in the preceding article, the same things being

given; then in the triangle C'BC right-angled at C, knowing

the hypothenuse CB and the angle C'BC, which is the differ-

ence between the right angle DBC and the measured angle

DBC, we calculate the sides CC', CB. The first is the height

of the point C above the plane CAB, and is used in connexion

* When the question relates to points situated on the earth's sur-

face, we take the plane of the horizon for the plane ABC, the lines

CC and BD are then vertical, and their direction is given by the

plumb-line; the plane CCB, which passes through these lines, is

vertical, and is determined by the line DB and the point C, which is

seen from the point B. The line C B is horizontal and compre-

hended in the same plane.
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with the side .^C, to determine AO, by means of the triangle

CAC% right-angled at C. This being done, we have the three

sides of the triangle CAB, and the point C is therefore given.

43. It is for the sake of greater simplicity that I have sup-

posed the line AB in the plane, to which the points to be deter-

mined are referred ; when this is not the case, it is necessary to

Fig. 19. measure also the angle DBA {fig. 19), which this line makes

with the line DB perpendicular to the plane A'BC, to which

we would refer the point C. This being done, we calculate in

the first place, as before, tiie sides AC and BC, of the triangle

^5C, the sides CC and C'5 of the right-angled triangle C'BC;
then, in the triangle BA'A, right-angled at A', knowing AB and

the angle ABA', the complement of the observed angle DBA, we

calculate BA' and AA'.

If now we conceive AC" parallel to A' O, there will result

from it the triangle AC"C, right-angled at C", in which we have

given AC, the calculated side of the triangle ABC, and CC",

the difference between the lines CC and C'C, or AA', before

calculated; we can therefore calculate ./2C", or ./3'C. The tri-

angle BA'C then becomes determinate by means of the three

sides, as was the case with respect to the triangle BAC in the

preceding article.

44. If we take arbitrarily the sides BC and BA, and pursue

the course I have just pointed out, we can calculate the triangle

A'C'B, with the view to find the angle C'JS.^' formed by the lines

BC' and BA', which are, upon the Tp\^x\eA'BC, ihe projections oi'

the visual rays j5Cand BA, drawn from the point Bio the points

^and C.

The angle C'BA', comprehended between these projections, is

the angle CBA, reduced from the inclined plane to the plane

A'BC', on which the objects are considered with reference to

each other, and which is. generally horizontal. I shall give

hereafter (G2) a second method of reducing an angle from one

plane to another ; but for the most part, as these planes are but

little inclined to each other, the reduction may be made by ap-

proximate methods, that are much shorter. There are also tables

constructed for this purpose.

I will merely add, for the present, that if we observe at the

point A the angles EAC, EAB, and reduce by means of them

the angle CAB to the angle C'A'B, and then calculate A'B, by

multiplying AB by the cosine of the angle ABA' or the sine of
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the angle DBA, then knowing immediately the angles C'BA',

C'A'B, and the right line A'B, the determination of the point C
falls within the method laid down in art. 40.

Reduction to the plane of the horizon is not the only one,

which we have occasion to apply to the observed angles. It sel-

dom happens, that the observer can place himself at the remark-

able points selected, as the vertices of the angles, which are

ordinarily the tops of steeples and towers ; hence arises a new

reduction, which is called reduction of the angles to the centre of the

station. The student may consult upon this subject, as well as

upon every other connected with great trigonometrical opera-

tions, the work of M. Delambre, entitled Methodes analytiqucs

pour la determination d^un arc du meridien, and the treatises of

M. Puissant.

45. The third question, which I proposed to resolve, has for

its object, the determination of a point by means of the angles com-

prehended between three straight lines drawnfrom thispoint to three

given points ; it presents itself as one of the most convenient

methods of placing, upon a plan or map, a point which is not

marked.

When we consider this case in its most general point of view,

we shall find that it belongs to geometry in space ; but, when

the angles are in the same plane, there is always one which is

the sum or difference of the other two, so that it is sufficient to

observe these two in order to obtain the third, and the other

cases may be reduced to this, by the method of reducing angles

to a horizontal plane explained in article 62.

The graphical solution of this case consists simply in describ-

ing upon the lines^^and AC {fig. 20), which connect the three Fig.

given points A,B, C, two segments of a circle containing the

angles BDA, CDA, observed at the required point D, between

the points A and B, A and C. The circles cut each other, in

the first place at the point which becomes common to them by

construction, and afterward at the point D, which will evidently

be the point sought.

I shall not enter into a discussion of the different cases which

this problem admits of, arising from the different situations of

the given points A, B, C, with respect to the point sought, D ; I

will merely remark, that the sum of the observed angles BDA,
CDA, must show whether it is situated in the triangle ABC, or

Trig. 6
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without it. In the first case it will be greater than two right

angles, in the second it will be less ; and, if it be exactly equal to

two right angles, it will fall upon the line BC. This is too ob-

vious to require proof.

I shall here give one of the methods of applying the trigono-

metrical calculus to this problem. The things given are the

parts of the triangle BAC, and the observed angles BDA and

CDA ; I put therefore

AB= a,AC= b, BDA= «, CDA= ^,BAC= /,

and I take for the unknown quantities

ABD=x,ACD = y,

because, these angles being found, we shall have in each of the

triangles BAD and DAC, two angles and one side, from which

the other parts may be determined (34). This being supposed,

the triangles BAD and DAC will give

sin BDA : sin ABD :: AB : AD,
sin CDA : sin ACD ..AC: AD,

a sin X
sm a : sm a: :AD =

sm cc

I /iT-k b sm y
sin s : sm w : : 6 : AD = —.——

;

whence we obtain the equation

a sin x b sin y
sin a sin /3

'

which becomes, by multiplication and transposition,

a sin ^ sin a;— b sin a sm y = 0.

But, in the quadrilateral ABDC, we have

ACD = 4 right angles—A^D—ADC—BAC— ABD,
whence y = 4 right angles— a— (3— 7— x

;

if, for the sake of conciseness, we make

4 right angles— a— (3— y:= S,

it will become y^o— x, and consequently,

a sin p sin a;— b sin a (sin 5 cos x — cos 6 sin a:)= ;

whence

If we divide this expression into two parts, we shall have

a sin (3
— 6 sin a

1

sin
cos X

sin r
cosd

j
= 0;

cos X
= cot X = a sin /3 + b sin a cos<r

sm X b sin a sin S

ivide this expression into two parts, we shall
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a sm& . cos 3
cot X = -J—.

-. k + -. r
Sin a sin tf ' sin S

or rather

cos (Jcos (J / a sm jS , , \
cot X= -.—s i—- -—^ + 1 »sm (J \h sin a cos (? ' /

or lastly,

^ . / a sin /3 , 1 \
cot a? = cot d (

—^ ^-— + 1 .

\o sin «« cos S J

The question is then resolved, since by having the angle x we

can find that of y.



"44 Spherical Trigonometry.

CHAPTER II.

Of Spherical Trigonometry.

46. The spherical triangles usually calculated are those

formed on the surface of a sphere, by the intersection of three

great circles. A triangle of this description always determines

a triple solid angle ; and reciprocally, from a triple solid angle,

Fig. 22. we may always deduce a spherical triangle, hetABC {Jig. 22)

be any spherical triangle, and let the radii AS, BS, CS, be

drawn from its angles to the centre of the sphere to which it

belongs ; ABS, ACS, BCS, will be the planes of the great cir-

cles, in which the arcs AB,AC,BC, the sides of the proposed

triangle, are taken ; and these arcs measure the plane angles

comprehended on the respective faces of the solid angle SABC,
between the edges .S"^ and SB, SA and SC, SB and SC. The

inclination of two planes is measured by the rectilineal angle

contained by two straight lines drawn from the same point per-

pendicularly to the common intersection, the one being in one oi

the planes and the other in the other {Geom. 349); it follows

from this, that, if from the point A, the straight lines AI, and AK,

be drawn perpendicularly each to AS, the former in the plane

CAS, and the latter in the plane BAS, the rectilineal angle lAK
will measure the inclination of these two planes. It is moreover

evident, that the line Al will be a tangent to the arc AC, and

that AK will be a tangent to the arc AB ; and since, for the

angle formed by two curved lines, we take that contained by the

tangents drawn to the point where these lines meet (Geom. 471),

the angle lAK will also be the measure of the angle contained

by the arcs AC and AB. The same may be shown with respect

to each of the two other angles of the spherical triangle ABC ;

the inclination of any two faces of the solid angle SABC has

then the same measure as the corresponding angle of the spheri-

cal triangle ABC. The spherical triangle, therefore, and the

solid angle, consist respectively of six parts which correspond to

each other, namely ; the three sides of the triangle, answering to

the angles formed by the edges of the solid angle, and the three

angles of the triangle, answering to the several inclinations of the

faces of the solid angle.
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Euler repeatedly turned his attention to the subject of spheri-

cal trigonometry, and in order to exhibit it under new points of

view he published in 1779* a memoir, that may be regarded as

a complete treatise upon this branch of mathematics. Its form

being entirely analytical, I have been induced to present it to

my readers, with such alterations as make it to depend on a sin-

gle principle. I have also simplified some of the results.

47. All that I have to offer on the subject of spherical trigo-

nometry depends simply upon the following construction, which

ought therefore to be well understood.

- From the angle C of the triangle ABC, let fall a perpendicu-

lar CD upon ASB, the plane of the side BA opposite to this

angle ; from the point D draw the lines BE and DF perpen-

dicular respectively to SA and SB', join CE, CF, which will

be perpendicular respectively to SA, ISB, (Geom. 332). It fol-

lows from what has been said, that the angles CED, CFD, mea-

sure the inclinations of the planes CSA, CSB, to the plane ASB,

or, which is the same thing, give the values of the angles A and

B of the spherical triangle ABC. I shall in future distinguish

the angles of these triangles by capital letters, placed at the

vertex, and the opposite sides by the corresponding small let-

ters ; thus the side BC opposite the angle A, I shall call a, &c.,

as in art. 31. Then, radius of the tables being supposed equal

to unity, we shall have

CE = sin CA = sin b, SE = cos CA= cos b,

CF = sin CB = sin a, SF = cos CB= cos a.

In the plane triangle CDE, right-angled at D, and whose angle

CED= A, we shall find

CD= CE sin CED= sin 6 sin ^
; (30)

DE= CE cos CED= sin b cos A.

From the plane triangle CDF, also right-angled at D, and of

which the angle CFD= B, we obtain

CD = CF sin CFD= s\n a sin B

;

DF= CF cos CFD= sin a cos B.

The two expressions for the line CD, being put equal to each

other, give directly

* Acta AcademicB Scientiarum PetropolitancB, anno 1779, pars

prior ; see also Developpement de la partie elemcntaire des Mathe-

matiques, par Bertrand. Geneve, 1778, (Tom. II. pag. 576).
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sin 6 sin .^ = sin a sin B (A),

a result which is, with regard to spherical triangles, analogous to

that of art. 32 in plane trigonometry.

f

It will be seen that from a similar construction we may derive

the two following equations
;

sin c sin ./2 := sin a sin C
;

sin c sin ^= sin h sin C.

Now from the point E draw EG perpendicular to SB, and

through the point B draw DH parallel to SB ; we thus form a

right-angled triangle HBE, in which RED = ASB, since by

taking the angle GES from the right angle SED, we have re-

maining the angle HED, and since the angle ASB, or ESG, is

also the difference between a right angle and the angle GES.
From the resolution of the triangle EHD, we shall consequently

deduce HD==:DE sin DEH =DE sin c= cos ^ sin 6 sin c;

but SF= cos a= SG-^ GF^ SG -{- HD,
and SG = SE cos ESG= cos 6 cos c

;

we shall then have,

cos a = cosh cos c-\-cos A sin h sin c,

an equation that expresses the relation between the side a, the

two other sides h and c, and the angle which they contain.

It is evident that, by making a similar construction on the

planes of the other sides, we shall find two equations similar to

the preceding ; and we shall, in this way, form among the six

parts of the triangle ABC, the three equations;

cos a= cos h cos c-\-cosA sin h sin c
^

cos h= cos a cos c -(- cos £ sin a sin c ^ . . . . (B).
cos c= cos a cos 6 -j- cos C sin a smh)

48. These three equations involve the equation (A). To be

convinced of this, it is sufficient to take the values which they

give for cos A, cos B, cos C, and substitute them in the equations

smA~= 1 — cos.^^ (10),

sin B^ = \— cos B^,

sin C2 = 1 — cos C2.

We find by the first of these,

sin A^ =il *^°^ ""— ^ ^°^ " <^os 6 cos c -|- cos b^ cos c^

sin 6"2 sin c^

_ sin 6^ sin c^ — cos a^
-f" ^ <^os a cos h cos c— cos b~ cos c^

sin 6- sin c^

t It is evident that the equation (A) is equivalent to the proportion

sin yl : sin B : : sin a : sin h.
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(1—cos 62)(1— cos c^)—cos b^ cos c^—cos a2_j_2 cos a cos 6 cos ct

sin b^ sin c^

1 — cos a^— cos 6^— cos c^ -[- 2 cos a cos b cos c

sin 6^ sin c^
'

multiplying ihe two terms of this fraction by sin a^, and then

taking the square root, we shall obtain

- . ^ I — cos a^— cos b^— cos c'^+2 cos a cos 6 cos c
sin A = sma X ^^— -—j—-— .

sm a sm b sm c

If, in order to abridge the expression, we represent by M, the

quantity multiplied by sin a in the second member of this equa-

tion, we shall have sin A=M sin a.

We shall find, in like manner,

sin B^M sin 6, sin C == M sin c
;

and, by the elimination of M, we shall fall upon the equations

(A)f f . It may be observed that the three sides a, b, c, enter all

in the same manner into the expression M; for it is in conse-

quence of this that M is common to the values of the sines of all

the angles.

The equations (B) then will serve to resolve any spherical

triangle, when we know three of its parts, it being observed, that

a sine and cosine are to be regarded as only a single unknown

quantity, since one may always be expressed by the other.

The application of the equations (B) to the different cases

which may occur, becomes more easy by means of certain trans-

formations, which I proceed to make.

49. We may change angles into their opposite sides, and sides

into the opposite angles, by giving the sign — to the cosines.

To prove this, we substitute in each of the last two of the equa-

tions (B) for cos a, its value, cos b cos c+ cos .^ sin 6 ; we shall

have

cos b= cos b cos c^ -\- cos A sin b sin c cos c -j- cos B sin a sin c
;

cos c= cos h^ cos c -}- cos A sin b sin c cos b -\- cos Csin a sin b.

By substituting, in these results, 1 — sin c^ for cos c^, 1 — sin b^

t By developing (1 — cos 6-) (1 — cos c^), and cancelling those

terms which destroy each other.

ft Sin B ==; 31 sin 6, gives -:

—

j = M: and, substituting -.—t in
' ^ sm 6

' ^ sm 6

the place of 31 in the equation sin A= 31 sin a, we have

. sin JB
sm A= sm a -.—r-

,

sm
or sin ft sin ^ = sin a sin B.
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for cos h^, they may be reduced, the first becoming divisible by

sin c, the second by sin h ; and they may be written thus,

cos B s\n a z=. cos h sin c— cos A sin b cos c > /px
cos C sin a =: sin h cos c— cos A cos 6 sin c ^

' ' ' ^ ''"

If the second of these equations be muhiplied by cos A, and

added to the first, and 1 — sin A^ be substituted in the place of

cos A^, we shall obtain

sin a (cos B -\-cos A cos C)= sin A^ cos 5 sin c
;

but it follows from the equations (A), that sin c s'm A^=. sin a sin C

;

substituting this value in the second member of the above equa-

tion, it will become divisible by sin «, and we shall have for the

result

cos B -\- cos A cos C= cos 6 sin ^ sin C,

or, which is the same thing,

cos B =^ — cos A cos C -f- cos h sin A sin C.

Comparing this equation with the equations (B), we see that it

might be deduced immediately from the second of the equation

(B), by changing capital into small letters, and small into capital,

and giving to all the cosines the sign — , Indeed, by proceed-

ing thus, we have

— cos B= cos A cos C — cos b sin A sin C,

an equation, which is transformed into the preceding by changing

all the signs.

The relation which the angle B has to the two angles A, C,

and the included side b, necessarily exists in each of the similar

combinations of angles and sides _:
we have therefore at the same

time the three equations.

cos A= — cos B cos C -\- cos a sin B sin C J

cos B= — cos A cos C -{- cos b sin .y^ sin C > . . . (B').

cos C =— cos ^/l cos B 4- cos c sin A sin B )

50, It must be remarked, that by taking the cosines negatively,

we pass from the arcs a, b, c, and the angles A, B, C, to their sup-

plements, since—cos^=cos(29 — A),— cosa=cos(2? — a),

and so of the rest (art, 23). If we substitute these values in the

above equations, making, in order to abridge the expressions,

2« — A= A', 2? — a = a', &c., they will take the form

cos A' == cos B' cos C -j- cos a' sin B' sin C'
^

cos B'= cos A' cos C -\- cos b' sin A' sin C >
;

cos O= cos A^ cos B' -f~ cos c' sin A' sin' B' )

equations perfectly similar to the equations (B), and which con-

sequently belong to a spherical triangle, whose sides are A^, B',

O, and angles n', b', c' . Such a triangle has its angles measur-
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ed by the supplements of the sides of the triangle ABC, and its

own sides measure the supplements of the angles ABC; it is

called the supplemental or polar triangle ; and it is shown that

the vertices of its angles are the poles of the sides of the first

triangle, and vice versa, (^Geom. 476).

51 . The equations obtained in article 49, and designated by

(C), which involve five parts of the spherical triangle ABC, may

be transformed into others containing only four. In order to

, . , . r • . ,. r ^ sin b s'm A . .

this, we must substitute ior sin a, in llie tirst, -.—^— , and m

, , sin c sin ^4 , ,^. , cos p , n /- i

the second, r— „ (47), and as -^—- =cot », we shall find
' sin C ^ ^' sm p
„ cos & sine— cos ^ sin 6 cos c^

^°'^ ^ = sin ^ sin
6

(
^ sin b cos c— cos A cos 6 sin c (

cot C= : ^ 1
Sin ^ sin c y

If we examine these values, we shall readily see that others

analogous to them may be readily formed by proper permuta-

tions of the letters ; but it is particularly important to remark,

that, as these are deduced from the equations (B), we may, in

like manner as in these last, change sides into angles and angles

into sides, by giving to cosines and cotangents the contrary sign
;

they will thus become

, cos J3 sin C+ cos a sin B cos C\
cot b = 7-^ -.—

jpi fsm a sm i> \. /t\>\

sin B cos C 4- cos a cos jB sin Ck
cot C = .' .

y^ ^
sm a sm C -^

52. The five sets of equations (A), (B), (B'), (D), (D'), are

sufficient to resolve immediately all the cases which can occur

among spherical triangles. The first expresses the relation be-

tween the angles and their opposite sides.

53. From the second we deduce the following lormulas;

cos a= cos b cos c + cos A sin b sin c

cos b = cos a cos c -f- cos B sin a sin c

cos c = cos a cos b -j- cos C sin a sin b

^ cos a — cos 6 cos c ~\

cos A = '

cos B

sin 6 sin c
|

cos b — cos a cos c \

sin a sin c f

^ cos c — cos a cos b
cos C = :

;

sm a sm h J

Trig. 7
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Of these the first three make known a side by means of the two

other sides and the angle contained by them ; and the last three

give the angles by means of the sides.

54. The third set, like the preceding, furnishes six formulas,

which are,

cos A = — cos B cos C -j- sin B sin C cos a,

cos B =z — cos A cos C -\-s'm A sin C cos b,

cos C = — cos A cos B -j- sin A sin B cos c,

cos A 4- cos B cos C
cos a = .

' ^ . -y^ ,

sin B sm C
, cos B -4- cos A cos C

cos 6 =: .
' ,

sm A sm C
cos C-|- cos ^ cosB

cos c = ^J-——

^

—
.

sm A sm B
By means of the first three we can find an angle, when the

two other angles and the included side are known ; the last three

will give each of the :iides, when all the angles are known.

55. From the fourth set, after making all the possible permu-

tations, we obtain the six following formulas,

cos a sin b— cos C sin a cos b
cot A =

cot B =

cot A =

cot C =z

cot B =:

cot C =.

sin C sin a

sin a cos b— cos Ccos a sin b

sin C sin 6
'

cos a sin c— cos B sin a cos c

sin i5 sin a

sin a cos c — cos B cos a sin c

sin B sin c
'

cos 6 sin c— cos A sin b cos c

sin J. sin 6

sin b cos c — cos A cos 6 sin c

sin yl sin c
'

by means of which we may determine two of the angles of a

spherical triangle, when we know the third angle and the sides

which contain it.

56. The fifth set leads in like manner to six formulas, namely,

cos yl sin ^ 4- cos c sin A cos B
cot a ZZZ r-! : -r ,

sm c sm A
, sin yl cos U 4- cos c cos A sin B

cot b = r^ ^ 5 -,

Sin c sm B
cos A sin (7 4- cos b sin A cos C

cot a — --V-^

—

A -Jsm sin A
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sin A cos C -I- cos h cos A sin C
cot c = —^ . —

,

sm h sin C
. cos S sin C -4- cos a sin ^B cos C

cot 6 = —i:

—

^-^—- ,

sin a sin i>

sin B cos C -j- cos a cos 5 sin C
cot c = ~ ;

—

^ ;
sin a sin C

these will serve to deteraiine two of tlie sides of a triangle, when

the third and the two adjacent angles are known.

67, The formulas deduced from the sets (B), (B^), (D), and

(D'), (53—56), merit the greatest attention, as well for their ele-

gance as the property they have, of making known whether the

arc or angle, which they express, is less or greater than a quad-

rant or a right angle, a property which does not belong to the

expressions for the sines of the same arcs. Indeed, the sine of

an arc, and the sine of its supplement being the same both as to

its value and sign, whenever we know the sine only of an arc, it

is impossible thence to determine whether the arc be less or

greater than a quadrant. But, when we have the cosine or co-

tangent of an ace, and know also that this arc cannot be equal to

a semicircumference, which is the case with the sides of all

spherical triangles, and with the arcs which measure their an-

gles [Geom. 492), we are able to determine by the sign of the

result, whether the arc sought is, or is not contained between I'

and 2''. Both the cosine and the cotangent have the sign — in

the former case, and -f- in the latter.

If then we are careful to give to the known quantities, which

enter into the formulas above mentioned, the signs with which

they ought to be affected, according to the value of the arcs to

which they belong, the sign of the result will make known the

species of the side or angle sought ; that is to say, whether the

side be less or greater than a quadrant, and whether the angle

be acute or obtuse.

58. These formulas are very much simplified, when the trian-

gle proposed is right-angled ; that is, when one of its angles is a

right angle. Indeed, if we suppose C = }", we shall have

sin C=: 1, cos C = ;

also cos c =z cos a cos b (53),

COS^COSjB ^ r>/'^\/rv\cos c = -;

—

-r——= = cot A cot B (o4) (9),
sin Asm B \ J \ J^

coH j1 = s'm B cos a y /^^v
cos J5 = sin .^ cos 6 S

^^'
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sin a = sin c sin .^, sin b =z sin c sin B (47)

^ , cos B "^

cot 6 = -:
.—

^

sin a sin B
j

cos .^

sin 6 sin ^ /,. r \- I i

cos 6 cos ^ ^(^G,) whence <;

tang i z^ sin a tang J5 (9,8)

tang a =: sin b tang ^5

tan2;i = cos ^ tans; c

o'-j

sm 6

cos a cos i?
I -r,

cotcz::: : tang o == COS i/ tans! c
sma J 1^

taking among these formulas, those only which essentially differ,

we shall have the six following

;

cos c = cos a cos b,

cos c =: cot A cot B,

sin a = sin c sin ^,

tang a = sin 5 tang A,

tang a zr: cos B tang c,

cos A = sin 5 cos a.

These, by the changes of which they are susceptible, will serve

to resolve right-angled spherical triangles ; in which the side

opposite to the right-angle is called the hypoihemise, as in plane

triangles. Y/e might obtain analogous formulas, for the case in

which the proposed spherical triangle has one of its sides equal

to a quadrant ; but I shall not stop to deduce them.

59. For the convenient application of logarithms to the calcu-

lus of spherical triangles, the formulas of articles 53 and 54 may

be transformed into others, having their numerators and denomi-

nators decomposed into factors; Euler has done this in a manner

equally simple and elegant.

, T-i .
•

/I
cos a — cos 6 cos c . ,

1 . r rom the expression cos A= :

—

-.
—

-. , contained'^ sm 6 sm c

among those of art. 53, we deduce

cos (6 — c) — cos a ,,-.>.,
1 — cos A =i

1 -4- cos A =
sin 6 sin c

^

cos a — cos {b-\- c) ^

sin 6 sin c '

'

. rr.1 • / , . cos a cos b -\- sin a sin 6
. , , ^ ,

t 1 he equations cos (a— b) = j\ (1 l),when

^= 1, gives cos a cosb= cos (« — b)— sin « sin 6 ; whence, by

substituting for cos b cos c its equal cos (b— c) — sin 6 sin c, the

first of the above results is obtained ; and the second is obtained in

a similar manner.
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lence, since -—

|

= tang I A^ (- Ots
1 —]— cos XX

, .c, COS (6 — c) — cos a
we have tang; i A"= ^

'—r,
—

,

—
, ;^ "

cos a — cos (o -f- c)

but cos p— cos q=— 2 sin \ {p -\-q) sin | (p — q) (2T)
;

tiierefore,

^Ism 1 (a

— c -j- «) sin ^ (/) — c — a)

-{- 6 -|- c) sin 1 (a — b — c)

By proceeding in this manner with the other expressions of the

same article we shall arrive at similar results.

2. Taking in article 54 the expression

cos A -j- cos B cos C

we deduce from it

1 — cos a

sin B sin C

cos (1? -f O) -|- cos A
sin J5 sin C '

, ,

cos ^ 4- cos {B— C)
1 -f- cos a = n ^^sm B sm C

/hence tans;
_ cos (5 -|- C) 4- cos .4

^^ ~ ^(^ — C*) -]- cos^ '

but COS/) -f cos
17
= 2 cos | Q; -j-g') cos I (/?— 5) (27) ;

therefore,

tan<. X
,,
^ I- cos ^ (iJ + C+ ^) cosx ^B -\- C- A)

'='
~

^| cosi (15— C+ yl)cosi(5— C— ,4)'

a forranla, which the sign — of the numerator does not render

imaginary, because the arc ^ [A-\-B -\- C), exceeding a quad-

rant has its cosine negative."

3. The expressions of art. 53 give also,

cos a — cos h cos c= sin b sin c cos A,

cos b — cos a cos c = sin a sin c cos B
;

t In art. 27, the equation

cos b' — cos a' tang J- {a' -[- b) tang 1 (a' — b')

cos a' -\- cos 6' liL-

when I'= 0, and it= 1, becomes r-,—, = tang ^ a' tang 4 a'.
' '

cos a' -(- 1

* Euler, for the sake of giving greater uniformity to his results,

always employs the tangents of the arcs to be determined ; but we

may, by what precedes, arrive at the sines in a manner somewhat

more simple.
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dividing the first of these equations by the second, and observing

that, according to equations (A), we have

sin h s,\n B
sin a sin A'

we shall find

cos a — cos h cos c sin B cos A
cos h — cos a cos c sin A cos B '

If we add unity to each member of this last equation, it will

become

cos a— cos h cos c . sin B cos A
_

cos 6— cos a cos c ' sin yl cos B '

by reducing the two terms of each meniber to the same denomi-

nator, and substituting for sin A cos B -j- sin B cos A its value

sin {A -{-B) (ll)j it is transformed in'o

(cos a -}- cos h) (1 — cos^ sin (.4 -[- B)

cos b — cos a cos c sin J. cos B'

By taking away unity instead of adding it, we shall have

1st. We have 1— cos J. =2 sin ^ A~ (27)t, and by the formula

cos p — cos q= — 2 sin ~ {p -\- q) sin ^ (p — q),

we find

cos (b — c) — cos «= — 2s\n^j{b — c -|- a) sin ^ (6 — c— a);

or, by changing the sign of the arc 6 — c — a and of its sine,

cos {b — c) — cos a= 2 sin 4 (« + & — c) sin ^ {a-\- c — b);

substituting this value for its equal in the expression for 1 — cos A,

and taking the square root of each member, we have

J
sin i (a-{- b — c) sin 4 (a -[- c— 6)

sin b sin c

2d. If we also observe that 1 — cos « = 2 sin ^ or, and that the

expression for cos p -\- cos q, gives

cos(JB+ C) +COS .4= 2 cos ^ (i?+ C+ ./l)X cos 1(^+ C-^),
we shall find

^^_ |

- cos^ (^4-^ + C)cosi (

-
/Sj sin 1? sin C

BJ^ C —A)

t In article 27, the equation,
r)

sin J (a' -f- b') sin | (a' — 6 ) = ;^ (cos b' — cos a'),

when 6'= 0, and J2= 1 , becomes sin ^ a' sin ^ a'= ^ (1 — cos a')

whence the above equation is manifest.
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cos a — cos h cos c sin B cos A
cos h — cos a cos c sin A cos B '

whence we deduce

(cos rt— cos 5) (1 -|- cos c) sin (S

—

A)
cos h — cos a cos c sin A cos B'

This result, divided by the preceding, becomes ^

cos a — cos h 1 -]- cos c sin {B — A)
^

cos « -j- cos 6 1 — cos c sin {B -\- A)^
and since, by table page 24 (art. 27 and 9),

cos a — cos 6 /7 , N
1 ; =ian2; lib -{- a) tang I (6 — a),

cos a -j- cos h ssviy &3v ji

—^- ^ =cot I c^, (art. 27 and note to page 53),

sin p = 2 sin |p cos | p, (27),

we shall find

tang l(b — a) tang | (6 -|- «) cot | c^

_ sin ^{B — A) cos ^ (-B — .4)~ ^rni (J5 + ^)^'^^|r(^ _^ ^) • • • • C^)-

But unity being successively added to and subtracted from each

of the members of the equation -. = -. , then, one of the
^ sin a sm A

two results being divided by the other, we arrive at the equation

sin b — sin a sin ^ — sin A
sin h -f- sin a sin iJ -}- sin J.'

which may be transformed into the following, by the formulas

of table page 24

;

, /, V , /z I N
sin ^ (B — A) cos ^ (B 4- A)

.a„s K4-«) cotUi + a) = ~lj^^-jL_^^-±-ji
;

then, multiplying this equation and equation (a), member into

member, observing that

tangi(6-f fi)coti(6 + fi) = l (9),

we shall obtain

Ctano- ^ (b — a) ]^ cot ' c^— (^'" ^ (^ — A) )^
.(^tan^ 5 l^ (') ) cot , c —

^^.^ a (ij + JL) f

'

extracting the root of each member, we find

. 1/7 \ . 1
sinj (B—A)

tang i{b-a) cot
i-

c =—jp-q:^).

and dividing the equation (a) by this last, we have

, / , 7\ 1
cos 1(5— A)

tang I (a+ b) cot i c= -^^(^b ^TX)"
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Recollecting that ^-= tang p (9), we shall deduce, from the
^ cot p

two foregoing equations, the expressions

tang H^-«)= tang ^Jc-^^^^_p^J,

tang 1 {h + a)= tang i c - ."(jj^j ).

which will make known two sides of a spherical triangle, in

which we have the third side and the two angles adjacent to it
;

since, if we designate by b' and a', the values of the arcs 6 -[- a

and b — a, there will result

4. Again, taking in article 54 the equations

cos A -f- cos B cos C= sin _S sin C cos a,

cos B -{- cos A cos C= sm A sin C cos b,

and, dividing the former by the latter, we shall find

cos A -j- cos B cos C sin B cos a sin b cos a

cos B -j- cos jd cos C sin J. cos 6 sin a cos 6*

Unity being successively added to and subtracted from each

member of this equation, and one of the results being then divid-

ed by the other, we shall derive from it, as above (a),

cos A — cos B 1 — cos C sin (6— a)

cos A -\- cos B 1 -)- cos C sin (6 -|- a)'

tang i {B— A) tang 1(5 + ^) tang I C^

_ sin ijb — a) cos j {b — a) _ _ /^N .

sin ^ (6 -j- ") ^^^ 5 (^ ~i~ ")

, ,
. sin 6 — sin rt sin B— sin .4

, , .

and. as the equation -—r-i

—

'— ^ '~-—j7~<——"u employed m
> 1 sm 6 -[- sin a sm ii -j- sm A ' •'

the preceding transformation, may be written thus,

, / 71 ^\ / -r. , <N
sin I (6 — a) cos | (6 J- «)

tang l(B — A) cot \{B-\- A)^ . ;. ,
—

^

\), \^^^ ' -^ ' ^ sm| (6-(- «) cos i (6 — a)

by multiplying and dividing the equation (b) by this last, we

shall find

formulas, which will supply the place of the preceding, when we

know two sides and the angle contained by them.

60. By taking all the variations, of which the equations found

above are suscejjtible, we have
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tang I

tang i

tang I

tang I

tans;

^_ [
sin ^ {a-\-h —

•^Slll Ij \^U
—J-

o

>^sin I (a -j- c —

c=

a =

+^
sin 1 (« -|~ ^

tans; i c

\sin ^ (« +*—

& =

sin A (a -j- c — h)

sin ^. (a 4- 6 + g)sin ^. (a -f- 6 -{- c)

sin i (a -|- c — b)

sin i (a -)- 6 -j- c)

sin 4 (6 + c — a)x[b+c—a)
1 1 (a + ^— ^) sin ^ (a -4- 6 -j- c)

- cos j- (B+ C— yl) COS j- (.4 -f 1? -f C")

cosi (^ -f^— C) cos ^ (^ -J- C— 5)
.ens AM -l-C— JBUosiM 4- «-U (7^

^5" ^.(^ —J— i^ '-^y v^uo IJ yjri. —i— «^

_ — cos ^{A-\- C— B) cos I {A -{- B -\-, C)~
>s| cos^(jB + C— ^)cos^(^ J^B— C)

J
— cosj-^^+^— C)cosj-(^4-^-f C)

cos J^ (^ -j- C— jB) cos J- (5+ C— ^)^

tang

tang

tang

tang

U U, ,
Bill—-— = tang I c ^-

2 ° ^ sm

6 + g
-2- = ^^"

c — 6

i c
cos

2
tang I a

cos A

sin

2

« —

i(J3 + ^)

sin J- (C+jB)
cosj- [C — B)
cosi (C+^i
sin

== tang I b -.
liA-C)

tan

tang

sin ^ (4 -|- C)

t
7 cos ^ (^'— C)

2 "~ ^ '- cos^(.^ 4- C)

^^= cot I
ci^-ij^^

2 ^ sin J- (6 -[- «)

tang —
2

C—

sin 2" (6 -[- «)

. >-^ cos A (b — a)
cot I C TTT—

I

{cos 4- (0 4- «

1

2 " ^°^ ^ ^ cos 1(6 4- «)

—B
, ^ sin J- (c — 6)

^^— = cot i ^ -.^-^ j—r{2 sin h ic -\- b)

tanlo- i =

, 6)

sin X (c -]- 6)

, ^ cos J- (c — i)
cot I A f-) p^cos i (c -J-

o)

^ — C
, „ sin i (« — c)

tang —_ = cot i jD -;—=-7
i

't

* 2 ^ sin J- (a + c)

A-\-C
_

tang

'

. T> cos J- (rt — c)
-^--= cot I 5 f-)—j

^.2 - cos ^ (« -[- ^)

* In order to deduce these formulas from those analogous to them
in the preceding article, it is necessary to observe that

a — /3 — y = a — (/3+ y),

and that the sin (p—gr)= —sin (?~p), and cos (p—y)= cos {q-—p)-

Trig. 8
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From the last twelve formulas

will serve to find the third angle or the third side of a triangle,

when two sides and the two opposite angles are known.

tangic = tang 1(6 -«)_^-J^^
, //. , N cosJ^ (B -\-Jl)

tang Ic = tang 5(0 + ^/) - ^
' '

a = tang | (c — b)

a = tang
| (c + i)

cos ^{B — A)

^ml {C-\-B)
sini {C— B)

cosi (C— iJ)

tang|6=tans|(a-c)j;;;|||±^>

tang|6^tang|(a+c)£-;tiJ+^>cos 2" («/i C
)

cot i C= tan- 1 (B — A) g^"-iJ^ + ")
^ ' ^ ^ sin 1 (6 — «)

cot i C= tangUS + ^) ^£4#^
cos ^ (6 — a)

cot 1 .2= tang 1 ( C - S) £HLii^Jl41
^ ^ - ^ ^ sin i (c — 6)

cot|^ = tang|(C+^)
^"^ti^ + ?|cos A (c — b)

H^-C) sin ^ {a -\- c)

sin J^ [a — c)

cot i 5= tang I (^ + C) - 'tl''
+

'In.'^ ° ^ ^
' ^ cos ^ (a — c)^ ''

If to these equations, we add the equations (A) which are ap-

plicable to the case in which two sides and one of the opposite

angles, or two angles and one of the opposite sides, are known,

we shall have everything necessary for the solution of spherical

triangles. The preceding part of this chapter may therefore be

regarded as a complete treatise on spherical trigonometry.

By combining together the different formulas successively ob-

tained, we may deduce from them a great many others of very

frequent use in astronomical calculations. We are indebted in

* These formulas and the preceding are known under the name of

the Analogies of Napier, because they are deduced from the rules

given by that geometer, for the solution of spherical triangles. (Log-
arithmorum Canonis Descriptio.)
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this respect to M. Delambre, for very elegant and very numer-

ous results, and for important applications of approximate meth-

ods and series, to the cases which are susceptible of them.

Rccnjjitidntion of the Formulas necessary for the solution of any

Spherical Triangle.

61. Neglecting the variations which the same case may pre-

sent, we find only the sis. following formulas,

1. Given the three sides, (a, b, c), to find one of the angles (A).

^ Ism ^ {a-j-b —
ig 1 ^ = ]-.—"

;

) sin ^ {a-^c —

tanS 2

) sin 4- (« -|- 6 -|- c)*

2. Given the three angles (A, B, C), to find one of the sides (a)

.

_ i
— cos X (B+C— ^) cos X (^ -f- B -f C

)

3. Given two sides (b, c) and the contained angle (A) , tofind the

other angles (B, C).

, /Ti ^\ sin J- (6 — c)
,

_
tang \(B—C)= .

: ) ,—f cot| ^.
^ ^ ^ ^ sm J- (6 -j- c) ^

To find afterwards the third side (a), see the formula for case 6.

4. Given two angles, (B, C), and the included side (a), to find the

other sides (b, c).

,, , , cos^ (B—C)
tang 1(6 + c)= ,^,.(jg_^ej ''""^ ^ «'

, ,, . sin 1 (jB _ Cn
tang I (^-<^)- 3i„^(^^e) tang k a.

In order to find the third angle (A), see the formula for case 5.

5. Given two sides (a, c), ayid one of the opposite angles (C), to

find the other opposite angle (A).

* Instead of this formula and the preceding, we often make use of

the following, namely,

A= hj^LlSi _J_
6 — c) sinjja-f-_c — 6)

sin 6 sin c

sin ^ « = |

-cos^(^+^+C)cos^(i? + C-A)
^

n] sin £ sin C
obtained in the note to page 53, and which are analogous to that erfiv.

ployed for the corresponding case of plane trigonometry (38).
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sin a sin C
=in^ =

sin c

G. Givers two angles (A, C), and one of the opposite sides (c), to

find the other opposite side (a).

sin c sin Jl
sin a = -.

—^—

.

sin C
To find, in the two lust cases, the angle (B), and the side (b)

contained, one by the sides, the other by the angles, given or calcula-

ted, we may change in the formulas of case 3 and case 4, b into a,

B into A, and the contrary ; we shall thus have

1 f a I r'\ cos J- (a — c) . ^tangi(^+r)=^^-^_-jcot|B,

, / , . cos J- (^— C) .

tang . (« + c) = ^^,l\jij^c) ''"§ ' ^'

in which everything is known except cot I B and tang | b,

which will consequently be determined.

By means of this recapitulation, and of that of article 58, it is

easy to resolve any spherical triangle whatever,! by applying,

according to the enunciation above given, the letters A, B, C,

a, b, c, to the angles and sides given and sought. The arithmeti-

cal calculations are performed by means of the addition and

subtraction of logarithms, in the manner indicated in the exam-

ples under article 39 ; except that we employ only the table of

logarithms of trigonometrical lines, since we have to do with the

arcs of a circle only.

Whenever, in the four first cases, the circumstances of the

question leave it doubtful whether the arcs or angles sought are

greater or less than a quadrant or a right angle, the difficulty

will be removed by having recourse to the expressions for the

cosines or cotangents of the unknown parts (57). But in the two

last cases, it may happen that the proposed question is suscepti-

ble of two solutions ; we may be easily assured of this, by ob-

serving the manner of constructing a triple solid angle, when we

know two of its faces and the inclination of one of them to the

third, or when we know the inclinations of two faces to the third,

and one of the faces. I cannot here enter into these details,*

but give the results as follows.

t See note at the end of this chapter.

* It would be well to consult on this subject, D'evcloppemcnt nou-

veau de lapariie ekr/untaire des Jilatlumatiques o( Bertrand, torn. II.,

fprigonometrie, section 5, or his Elemens de Geometrie, third part.
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1. A spherical triangle can be constructed in but one way,

with a, c, and C, given,

when 0=1"
C<1'', «<1', c>a
c<\\ «>1'', c > 2« — cf.

C> 1", «<1S c < 2' — «

c>\\ «>1S c<a;
and it is susceptible of two forms,

when C < P, a < P, c <^a

C<1\ «> IS c < 2' — a

c>v, «<P, c > 2" — fi

c>is « > 1^ c>a
C < or > P, a = 1V^.

2 With A C, and c
,
given, it admits of but one form, when

C 1

c>lS ^> IS C<^
c>l', .^<1S C<2^—

^

c<l', ^>1S C>2''—

^

c<lS .^<1S C>.4;
and it admits of two, when

c > P, ^ > 1", C > .^

c>lS .^<1S C>2''—

^

c<lS ^>1S C<2«— .4

c<l', ^<1', C<./2
c < or > IS .^ = 1".

62. As an example of the use of spherical trigonometry, I shall

select the following problem. Given an angle MSN (fig. 23), Fig. 23.

measured in an inclined plane, and the anglesformed by a vertical

line SS' with the sides SM and SN of theformer, to find the angle

M'S'N'foi'med in the plane M'S'N', ivhich is horizontal, or perpen-

dicular to SS',by the projections 'M'S' and N^S^, of the lines MS
and NS.

The three lines SS', SM, and SN, determine a triple solid an-

gle, whose vertex is the point S, in which the three plane angles

MS^r, MSS', and JVSS', are known ; and the straight line SS'

being perpendicular to each of the lines M'S^, JY^S', situated res-

pectively in the planes »S'»Sjl7, S'SJ\"{Geom. Si 3)
-,
therefore, the

lines M'S', N'S', contain an angle equal to that which measures

the inclination of these planes [Gcom. 349). The proposed prob-

lem is therefore reduced to determining this inclination.

But we may obtain the angle sought by considering it as mak-
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ing a part of the spherical triangle BAC, formed by the circles

resulting from the sections, which the three planes MSJV, S'SM,
S'SJV, would make, of a sphere whose centre is S, and radius

equal to that of the tables. We have in this triangle the sides AB,
AC, BC, which are respectively the measures of the given angles

JYSS', MSS', MSJV; and the angle required is precisely the

angle A. This angle, therefore, may be found by the first rule

of the preceding article.

To give an example of the operation by logarithms, I shall

suppose that we have observed the angles with the proper instru-

ment, and determined their value, as follows, namely,

MSJV =110° 00' 00'' = BC
S'SM = 58 00 00 =r .^C
S'SJV=z 79 17 14 =AB.

These angles represent the sides of a spherical triangle, of which
the angle A is required. I put a =z 110°, b = 58^ c = 79° 17'

14", and I employ this .formula.

sin 1^= |

sirrHa + 6-c)sin^(. H-cjuJ) („,teto p. 59).N sm 6 sm c
^ ^ ^

The expression | (a+6_c)—|(o4-^>-fc—2c) = ''+'^+'' __ ^

is found by adding together the three sides a, 6, c, and from the

half sum subtracting c, one of the sides containing the required

angle. In like manner, i(a -}-c— b) is obtained by subtract-

ing from the half sum the other of the sides, containing the angle

sought. We have then only to add together the logarithms of

these remainders and the arithmetical complements of the loga-

rithms of the above mentioned sides, as exhibited below.

110° 00' 00"

58 00 00
79 17 14

Sum .... 247 17 14

Half sum . . 123 38 37
79 17 14

1st remainder . . 44 21 28 log. sin. 9,8445513
2nd remainder . 05 38 37 log. sin 9,9595173
^ 58 00 00 ar. comp. log. sin. 0,0715795
c 79 17 14 ar. comp. log. sin. 0,0076359

19,8832840

log. sin. 1^ = 9,9410420,
which in the tables answers to G0° 57' 28" = | A, and by doubling

this, we have A = 121° 54' 56". This is the value of the angle

MS'JV', corresponding to the jriven value of the angle MSA''.
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NOTE.

Refeneil to, page 60.

NAP lER'S RULES.

Certain rules were invented by Lord Napier, which afford very

important assistance to the memory in the solution of all cases of

right-angled spherical triangles and all but two of oblique-angled

triangles.

There being six things in a triangle which are the subject of con-

sideration, namely, three sides and three angles, in a right-angled

triangle, if we set aside the right angle, we shall have five things, or

parts, which may be reckoned round in succession, and are thence

denominated circular parts. Of these, three enter into every case

that presents itself, two being given to find the third ; and these

three parts must either be contiguous to each other, or (the right

ancrle not being considered as separating the sides which contain it,)

two of them must be contiguous, while the third stands by itself.

When the three parts are contiguous to each other, that which is in

the middle is called the middle part, and the two others are called

adjacent parts. When one of the three parts stands by itself, this is

called the middle part, and the two others are called opposite parts.

In applying what is here said, instead of the arcs and angles them-

selves the complements cere always to he used, except with respect to the

sides which contain the right angle ; that is, the complement of the

hypothenuse is always to be taken instead of the hypothenuse, and

the complement of each of the oblique angles instead of the angles

themselves.

Of the five parts of a right-angled triangle, each may become the

middle part, and of the remaining four, two will be adjacent and the

other two opposite parts. Thus, if CA (complement)
{fig. 24) be Fig- 2l-

made the middle part, the angles C, Jl, (or rather their comple-

ments), will be the adjacent parts, and CP, PA, the opposite parts. Fig. 25.

But if C (complement) [fig. 25), be made the middle part, then CA
(complement), CP, will be the adjacent parts, and A (complement,)

AP, the opposite parts.

This being premised, we have the following rules for the solution

of every case of right-angled spherical triangles.
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Rectangle of radius and sine of the middle part = Rectangle of

the tangents of the adjacent parts.

Rectangle of radius and sine of the middle part = Rectangle of

the cosines of the opposite parts

;

or, radius being put equal to unity,

1. Sine ofthe middle part :^ Rectangle oftJie tangents ofthe adja-

cent parts.

2. Si7ie of the middle part= Rectangle of the cosines of the oppo-

site paris.f

_.^ If, now, in the triangle ABC [fig. 22), supposed to be right-angled

at C, we take each of the five circular parts successively as the

middle part, we shall have all the varieties of results that can be

derived from the foregoing rules, and we shall find that they agree

with the formulas of art. 58, adapted to all cases of right-angled

spherical triangles.

1. If (co c) be made the middle part, we shall have

(co A), (co B), for the adjacent parts,

and a, h, for the opposite parts.

Then, by rule 1,

sin (co c) = tang (co A) tang (co B), or cos c = cot J. cot B j

and by rule 2,

(cos c) = cos a cos h.

2. If (co B) be made the middle part, we shall have

a, (co c), for the adjacent parts,

and (co A), b, for the opposite parts.

Then the rules give

. . ^ . , s
cos a cos iJ -ov

sm (CO J5,)= tang « tang (co f,) or cot c = -. \P),

sin (co B) = cos (co A) cos h, or cos J5 = sin ^ cos b.

3. If a be made the middle part, we shall have

b, (co -C), for the adjacent parts,

and (co c) (co A,) for the opposite parts.

Then

sin a = tang b tang (co B.) or cot b = -. r—^ (8, 9),o & \ " sin n em H ^ ' ''sm a sm
sin a = cos (co c) cos (co A), or sin a == sin c sin A.

i It will be of some assistance, in recollecting these rules, to bear in mind,

that the first vowel in the words tangents and adjacent is the same, as also in the

words cosines and opposite. A similar purpose is intended to be answered by the

following lines

;

The product of radius and middle part's sine,

Equals that of the tangents of parts that combine,

And also the cosines of those that disjoin.
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4. If 6 be made in the middle part, we shall have

a, {co A), lor the adjacent parts,

(co c,) (co B), for the opposite parts.

Then

. , / 4^ cos yl
Sin b = tang a tanff (co ^1), or cot a= -.—Tr^—-t,

sin 6= cos (co c) cos (co B), or sin 6= sin c sin B.

5. If (co A ) be made the middle part, we shall have

b, (co c), for the adjacent parts,

(co B), a, for the opposite parts.

Then

, , , cos 6 cos A
sui (co ^1) = tancr b tang (co <), or cot c = ,—

j

.

sin (co A)= cos (co B) cos a, or cos A = i'in B cos a.

Hence the above rules, which admit of no separate and indepen-

dent proof, may be considered as demonstrated.

In order to apply the method here given to oblique-angled spheri-

cal triangles, it is necessary to divide the proposed triangle into two

right-angled ones, by means of a perpendicular let fall from one of

the angles upon the opposite side ; the perpendicular being so chosen

as to make iwo of the given things fall in one of the right-angled trian-

gles, or in other words, the perpendicular ought to be let fallfrom the

end of a given side and opposite to a given angle* Each of the tri-

angles thus found contains, as above, five circular parts, the perpen-

dicular being counted, and bearing the same name in each of them
;

consequently, the parts of each triangle, similarly situated with re-

spect to the perpendicular, must have the same name

In every case of oblique-angled spherical triangles, there are

three parts given to find a fourth ; and, in making use of the method

of solution by means of the perpendicular, there will in general be

two of these four parts in each of the triangles, similarly situated with

respect to each other ; to each of these must be joined the perpen-

dicular, and there will then be three parts in each triangle, which

are to be named middle, adjacent, or opposite, according to the direc-

tions already given.

If now we put J/ for the middle part, A for the adjacent part, and

B for the opposite part of the triangle APC [fig. 26, 27, 28, 29), Fig. 26,

m, a, b, for the corresponding parts of the triangle APB, and P for
29

* When this can be done in two different ways, as in cases 2, 4, it will ge-

nerally produce the shortest solution to make use of that perpendicular which

does not divide the required side or angle into segments.

Trig. 9
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the perpendicular AP ; then, if P be an adjacent part, we shall

have, by the rules already established,

_ sin M
sin M= tang P tang ^ , or tang P = -^5

also sin m= tang P tang a,

sin 31

tang a

whence
tang ^ tang a'

or sin M : tang 4 : : sin m : tang a.

HP be on opposite part, we shall have

sin M= cos P cos B, or cos P =

also sin m = cos P cos b, or cos P=
sin M sin ??«

whence 5 = r,
cos is cos

or sin 31 : cos 5 : : sin m : cos 6.

We have, therefore, demonstrated the following additional rules

for oblique-angled spherical triangles, namely,

3. The sines of the nnddleparts are proportional to the tangents of the

adjacent parts.

4. The sines of the middle parts are proportional to the cosines of the

opposite parts

;

it being observed that the perpendicular, common to the two trian-

gles and bearing the same name in each, is not to be made use of in

the proportions, or counted as a middle part. This can produce no

embarrassment, as the cases of oblique-angled spherical triangles

may in general be solved in the shortest manner without calculating

the perpendicular, as will be evident by the following examples.

27^'28!' 1 • ^'"^" ^"'^ ^^"^^^^ ^^' ^^ (^S- 26, 27, 28, 29,) and an angle C
29. opposite to one of these sides ; to find BC and the angles A, B.

In the right-angled triangle ^PC, are given ^Cand C; and, by

marking it as in figure 25, CP may be found by rule 1, which gives

sin (co C) =tang CP tang (co AC),

or tang CP= cos Ctang AC* (9).

Then, in the triangles ABP, ACP, are given AB, AC, and CP, to

find BP. If to these is joined the perpendicular AP, it will be found

that in the triangle ^CP, (co^C) isthe middle part (fig. 26), and CP

* In putting this or any siinilai- expression in logarithms, the radius must be

neglected in the sum of the two logarithms of the second memher.
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an opposite part. The triangle ABP being marked in a similar

manner, we have, by rule 4,

sin (co AC) : cos CP : : sin (co AB) : cos BPf.

And BC=BP + CPp
By marking the segments as in figure 27, we have, by rule 3,

sin CP : tang (co C) : : sin BP : tang (co jB)
;

having found BC, the angle A may be found by the equations mark-

ed (A) (47), which are equivalent to

4. The sines of the sides are proportiotial to the sines of the opposite

angles.

This rule gives

sin AB : sin C : : sin BC : sin A.

Otherwise ; if the side BC be not required, the angles A, B, may

be found in the following manner. Marking as in figure 24, we

have, by rule 1,

sin (co AC) = tang (co C) tang (co CAP),
or cot CAP = cos AC tang C (9)

;

and, marking as in figure 2S, we have, by rule 3,

sin (co CAP) : tang (co AC) : : sin (co BAP) : tang (co AB),
or tang (co AC) : sin (co CAP) : : tang (co AB) : sin (co^^P).
Then A= BAP + CAP.
Marking the segments as in figure 29, we have, by rule 4,

sin (co C) : cos (co CAP) : : sin (co B) : cos (co BAP),
or cos (co CAP) : sin (co C) : : cos (co BAP) : sin (co B),

or sin CAP : cos C : : sin BAP : cos B.

Having A, C, and AB, we can find BC by rule 5, which gives

sin C : sin AB : : sin A : sin BC.

2. Given two sides AC, BC (fig. 26, 27), and the included angle C, Fig. 26,

lofind AB, and the angles A, B. ^^•

t It is evident, that the same result might be obtained directly, in each of

these examples, by means of the rules 1 and 2 ; thus, the same marking being

used as above,

sin (co AC)
sin (CO AC) = cos CP cos AP, or ^,>,— = cos AP,

^ ' cos CP

sin (co AB) = cos BP cos AP, or
^'"

^^°jf^^ = cos AP •

cos BP '

, sin (co AC) _ mi (co AB)
cos CP cos BP '

or sin (co AC) : cos CP : : sin (co AB) : cos BP ; and so of the others.

t The sign to signifies difference, and by the double +is to be understood the

sum or difference of the quantities between which it is placed.
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We have by rule 1, as in the former case,

tang CP= cos C tang AC,
then BP= BC + CP,
and, marking as in figure 26, we have, by rule 4,

sin (co AC) : cos CF : : sin (co AB) : cos BP,
or cos CP : sin (co JtC) : : cos BP : sin (co AB).
Marking as in figure 27, we have, by rule 3,

sin CP : tang (co C) : : sin BP : tang (co B).

Having found AB, we can find A by rule 5, thus,

sin AB : sin C : : sin BC : sin A.

If the angle A had been required, and not B, it would have been

shorter to employ a perpendicular, let fall from the point B, by

which means the required angle A would not be divided into seg-

ments. In this case the side AB and the angle A might be found in

^. a manner similar to that by which AB and B are found above.
Fig- 26, .

27, 28 3. Given the angles B, C, (fig. 26, 27, 28, 29), andthe opposite side

29- ' AC, tofind BC, AB, and the angle A.

We have, by rule ], as in case 1,

tang CP = cos C tang AC
Then, marking as in figure 27, we have, by rule 3,

sin CP : tang (co C) : : sin BP : tang (co B),

or tang (co C) : sin CP : : tang (co B) : sin BP,
then BC=CP + BP.

Again, marking as in figure 26, we have, by rule 4,

sin (co AC) : cos CP : : sin (co AB) : cos BP,
or cos CP : sin (co AC) : : cos BP : sin (co AB).
^C being found, we have, by rule o,

sin AC : sin B : : sin BC : sin A.

Otherwise; by rule I, we have, as in case I,

cot CAP = cos AC tang C:

and, marking as in figure 29, we have, by rule 4,

sin (co C) : cos (co CAP) : : sin (co B) : cos (co BAP).
or cos C : sin CAP : : cos B : sin BAP,
and A = CAP + BAP.
Then, marking as in figure 28, we have, by rule 3,

sin (co CAP) : tang (co AC) : : sin (co BAP) : tang (co AB)
A being found, we have, by rule 5,

'

sin B : sin AC : : sin ^ : sin BC.
Fig. 28, ^ Q-^^^^ ^J^^ ^^^^^^^ ^^ Q ^^g og^ 29), and the included side AC,

to find AB, BC, and the angle B.

By rule 1, we have, as in case 1,

cot CAP^ cos AC tang C,

and BAP = At CAP.
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Marking as in figure 28, we have, by rule 3,

sin (CO CAP) : tang (co AC) : : sin (co BAP) : tang (co AB).

Marking as in figure 29, we have, by rule 4,

sin (CO C) : cos (co CAP) : : sin (co B) : cos (co BAP),

or cos (co CAP) : sin (co C) : : cos (co BAP) : sin (co B,)

or sin CAP : cos C : : sin BAP : cos B.

B being found, we have, by rule 5,

sin i5 : sin ^C : : sin A : sin BC.

If the side i?C had been required, and not AB, it would have been

shorter to employ a perpendicular, let fall from the point C, by

which means the required side BC would not be divided into seg-

ments. In this case, the side BC and the angle B might be found in

a manner similar to that by which AB and B are found above.

Thus the rules of Lord Napier, together with the well known

rule, that the sines of the sides are proportional to the sines of the

opposite angles, furnish a complete solution of the various cases of

spherical triangles, except where three sides are given to find an

angle, or (which is nearly the same thing, by taking the supplemen-

tal triangle [Gcom. 476)) three angles to find aside.

In what relates to oblique-angled spherical triangles of the above

note, the writer has availed himself of the improved method of

Bowditch, contained in a memoir on the Application ofNapier's rules,

and published in the third volume of the Memoirs of the American

Academy of Arts and Sciences.
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CHAPTER III.

APPLICATION OF ALGEBRA TO GEOMETRY.

Of the Geometrical construction -of Algebraic Quantities.

63. As lines, surfaces, and solids are quantities, each admits

of the operations which are performed upon numbers and alge-

braic quantities. But the results of such operations may be

estimated in two principal ways, either by numbers or by lines.

The first of these, as it supposes that each of the given quanti-

ties is expressed by numbers, is at present attended with no

difBculty ; it is only necessary to substitute in the place of the

letters the numerical quantities which they represent, and to

perform the operations indicated by the disposition of the signs

and letters.

As to the manner of estimating by lines the results of solutions

furnished by algebra, it is founded upon the import of certain

fundamental expressions, to which all others are afterwards

referred. We proceed to make known these expressions, and to

explain how the others are referred to them. This is called

constructing the algebraic quantities, or the problems which have

led to these quantities.

64. Let it be proposed to construct such a quantity as — , in

which a, b, c, stand for known lines. We draw two indefinite

Fig. 30. lines AZ,AX {fig. 30), making any angle with each other ; upon

one of these lines AX, we take a part AB, equal to the line rep-

resented by c, and a part AD, equal to one or the other of the

two lines a and b, a, for example ; then upon the second AZ, we

take a part AC, equal to the line b. Having joined the extremi-

ties B, C, of the first and third by the line BC, we draw, through

the extremity D of the second, the line DE parallel to BC ; this

will determine upon AZ the part AE as the value of — . For

the parallels DE, BC, give this proportion,

AB.AD.ACAE {Geom. 191),
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or c : a : : h : AE
',

therefore AE = —

.

c

In other words, it is necessary to find a fourth proportional to

three given lines c, a, b ; and, as we have given the method ol

finding this fourth proportional, we can employ it for the con-

strnction of the quantity — . (Geo?/i. 237).

It will be seen therefore, that, if it were proposed to construct

, it might be do

line b is equal to a.

If it were proposed to construct -

—

~|^ . ; it is to be observ-

ed, that this quantity is the same as "T
j

; regarding there-

fore rt4-(Z as one line, represented by m, and c -{- d also as

one line, represented by n, we shall have — to be constructed,
11

which refers itself to the preceding case.

q2 JO
Let the quantity to be constructed be ; it will be re-

collected that a^— b~ is equivalent to (a -f-^) («— b,) [AJg.Si],

a^ . .—
5 it might be done in the same manner, since in this case the

, a b~
, , , , ,• i(i-\-b) (a—6)

so that may be represented under the lorm - -'

—

~ '
:

and we have only to find a fourth proportional to c, a-\-b, a— b.

If the quantity to be constructed be ^^ , we put it under this
ae

c ab c II- , ab . ,

lorm-^ X -; and, having constructed —- m the manner lust

explained, we call m the line given by this construction ; then

—r X - becomes — , which is constructed as above shown.
a e e

We see, therefore, that in order to construct —^r-, we represent

It under the form — X - ; ^ve then construct — : and, having
c c c

"

represented the value of this by m, wc construct —

.

ihus the whole art consists in decomposing the quantity into

portions, each of which returns to the form — , or -
; and, al-

c c
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though this process may appeal* difficult in some cases, yet we

easily arrive at the object proposed, by employing transforma-

tions.

If, for example, I bad to construct - -."["—:; ; I should put
a- -]- c-

"^

73 2 12 .1
a^-\-b^ a^^a~m ,.

,6-^ = «^/«, and c^= a n : then ~^.
^ becomes -^, , which

cf -j- t- a~-\-an

,
. ,r a- -\- a 111 (a-\-m)a .

,

reunces itselt to , or —^—^,a quantity easy to be
a-\- n ^ a-\-n ^ ^

constructed, after what has been said, when m and n are known.

Now to determine m and », the equations P= a-^ m, c^ =a n,

givo 7)1 = — , and n = — , wliich are constructed accordins; to

the method already laid down.

Thus, while the quantity is ratitjnal, that is, without radical

expressions, if the dimensions of the numerator do not exceed

those of the denominator except by unity, we may always re-

duce the construction 10 the finding of a fourth proportional to

three given lines.

It sometimes happens, that quantities present themselves under

a form, that seems to render recourse to transformations of no

use ; it is when the quantity is not homogeneous, that is, when

eacli of the terms of the numerator and denominator is not com-

posed of the same number of factors ; when the quantity, for

1 u a^ + b
example, is such as -x——-,.

c^ -\- d

But it sliould be observed, tliat we never arrive at a result of

this kind, except when, in the course of an investigation, we sup-

pose, with a view of simplifying the calculation, some one of the

quantities equal to unity. If, for example, in —0-37-^? 1 sup-

pose b equal to 1, I sliall liave -t^^--.,. But, as we never un-

dertake to construct a quantity without knowing the elements

which we are to use for this construction, we always know in

eacli case what is the quantity which is supposed equal to imity.

We can always therefore restore it, and the above difficulty can-

not occur ; because, as the number of dimensions must be the

s;ime in each term of the numerator, and also of the denominator,

altliougli the number of terms may be different in the one from
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what it is in the other, we restore in each term a power of the

line, which is taken for unity, sufficiently raised to complete the

number of dimensions; thus, if I have to construct ^ "'"
,

7~
^"

;

a -\-o^ '

d being supposed to be the line which is taken for unity, I write

—^^1 ^ , which I should construct by making b^ = d m,

c^ := d n, and a^ = d^ p, which would change it into

d^ p -j- b d^ -\- d^ n

ad -\- dtn
'

dp-\-bd-\-dn ip-[-b4-n)d . .,

or
I

'

, or -*—-^—j-'

—

'—, a quantity easdy construct-
a -\-m a -\-m ^ -^ •'

ed, when we have constructed the value of m, Ji, and p ; namely,

m =—,n= -J, p ^ — , which is readily done after what
d a d^ ''

has been said.

Hitherto we have supposed that the number of factors, or the

dimensions of each term of the numerator exceeds the number

of factors, or the dimensions of the denominator only by unity.

It may exceed it by two or even three, but never by more than

three, unless some line has been supposed equal to unity, or some

of the factors do not represent numbers.

65. When the dimensions of the numerator of the proposed

quantity exceed by two the dimensions of the denominator, the

quantity expressed is a surface, the construction of which can al-

ways be reduced to that of a parallelogram, and consequently to

that of a square. If, for example, the quantity to be constructed be

a -j- c

T 1 11 -1 • .. f^^ -\- f-b
TVT a -\- ab . ..

1 should consider it as a X • IMow is easily
a-\- c a -\- c •'

constructed, after what has been laid down, by considering it as

a X ~\
. Let us suppose therefore that m is the value of the

-fj^line thus obtained ; then a X \;_
will become a X m. Now

if we make a the altitude and m the base of a parallelogram, we

shall have a X m for the surface of this parallelogram (^Geom.

174), therefore, reciprocally, this surface will represent a X mi

or !-j .

a -\- c

Trig. ]
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Jn like manner, the quantity —! .—

!

may be reduced to

a similar construction by making b c= am, and d^ = an; for it

.„ , ,
a^ -\-am.c-\-and /a^A-m c-\-nd\ -^j

will then become j
—

'

, or a '-—j

—

'

. [Now
a-f-c V a -\- c J

, r a^ 4- 7n c -\- n d ^ • ,/• , ^^

the lactor '

j
— reters ilselt to the precedine construc-

a-\- c ' =>

tions, as also the values of m, n. Having found the value of this

factor, if I represent it by p, we have only to construct a X p,

that is, to make a parallelogram whose altitude is a and base p.

66. Lastly, if the dimensions of the numerator exceed the

dimensions of the denominator by three, the quantity expresses

a solid, the construction of which may always be reduced to a

parallelopiped. If, for example. I had to construct ^ ,

I should consider this quantity as the same as a i X —-j^— ; and,

having constructed —^— in the manner already explained, if

I represent by m, the line given by this construction, the question

will be reduced to this, namely, to construct ab Xm. Now a b

represents, as we have seenj a parallelogram ; if, therefore, we

conceive a parallelopiped, having for its base this parallelogram

and for its altitude the line m, the solidity of this parallelopiped... a36+a2j2
will represent a b X m, that is, -V .

67. What has been said will suffice for constructing any ra-

tional quantity ; we proceed now to radical quantities of the

second degree.

In order to construct y al, it is necessary to draw an indefinite

Fig. 31. line AB {fig. 31), upon which we take the part CA, equal to the

line a, and the part BC, equal to the line b; upon the whole AB
as a diameter, we describe a semicircle, cutting in D, the per-

pendicular CD, raised upon AB at the point C ; then CD will be

the value of y^ol* ; that is, the value of ^~ah is obtained by find-

ing a mean proportional between the two quantities represented

by a, b. Indeed, we have

AC: CD:: CD: CB,

or a:CD •
: CD.b;—

2

whence CD = ab, or CD = ^ab-
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If we have to construct ^y S a b -\- b^, or which is the same

thing, ^ {S a -\- b) b, we should find a mean proportional be-

tween S a-\-b and b.

In like manner, if the quantity to be constructed were

V a^— b^,

we should consider this the same as a/ {a-\-b) (a— b) {Mg. 34)

;

we then find a mean proportional between a-{-b and a — b. If

the quantity were ^ a^J^h c, we make b c= a m, and then we

shall have A/a^-\-avi, or a/ (a -j- »«) a, which is constructed by

finding a mean proportional between a -\- m and a after having

b c
constructed the value of m= — by the rules already given.

To construct ^ a^ _|_ 52^ ^e can in like manner make b^ =am,
and construct ^a^-j- a m, in the manner just explained. But

the property of a right-angled triangle furnishes a more simple

construction. If we draw the line AB (Jig. 32), equal to a, and Fig. 32.

at its extremity A erect a perpendicular AC, equal to b, joining

BC, we shall have BC= AB+AC=a^-{-b% and conse-

quenlly BC = A/a^-{- b^.

We can also, by means of a right-angled triangle, construct

j>y a^— b'^ in a manner different from that above given ; we draw

a line AB {fg- 34), equal to a, and having described upon AB, Fig. 34-

as a diameter, the semicircle ACB, we draw from the point A a

chord AC, equal to b ; then, if we draw BC, this line will be the

value of ^ d^— b^ ; for the triangle ABC being right-angled,

— 2 —2 —

2

[Geom. 128), we shall have AB =AC-\-BC; consequently.

BC = AB — AC =a^—b^; therefore BC = a/ a^— b^.

Hence, also, a^ a^ -\-h c admits of a different construction from

the above. We make b c = m^, and construct // a^ -[- m^, as

just shown, first finding for m a mean proportional between b and

c, as indicated by the equation bc= m^, which gives m = ^~Yc'

If there are more than two terms under the radical sign, the

construction is to be reduced to one of the preceding methods

by means of transformations. If, for example, we have

^a^ + bc + ef,

we make bc = am,ef=an, and we have /^ a^-^am-{- an,
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or a/ (a -f- w* 4" ") "'

which may be constructed by finding a mean proportional be-

tween a and a -\- m-\- n, after having constructed the values of

m and n, namely, m = — , n=—. We might, moreover, make

b c= m^, ef= n^,

and then we should have to construct ^a^ -j-wi^-j- n^. Now,

when there are several positive squares contained under the radi-

cal sign, as /^a^ -\- m^+ «^ + P^ + ^f^- we make

^ «2 -[- m^= h,

^}fi _|_ w2 == I, ^i^ -|_ j,2 = ^^ and so on ; and, as each of the

quantities is determined by the preceding, the last will give the

value of /s/^P^ m^ + «'^ + p^ + ^c. In order to construct

these quantities in the most simple manner, each hypothenuse is

to be regarded successively as a side ; having, for example, taken

Fig. 33, AB= a {Jig. 33), and raised the perpendicular .^C = c, we join

BC, which will be h ; then at the point C we raise upon BC the

perpendicular CD= n; and having drawn BD, which will be

i, at the extremity D, we raise upon BD the perpendicular

DE= Pi and BjEwill be k, and equal to f^ a^ -j- »j"^-|- ra-^ +P"^-

If some of the squares are negative, we combine the method

just given with that for constructing /^/a^— 6^.

Lastly, if the quantity to be constructed be of this form

^(6 J- c) (</ -f- e)

.

multiplying hy ^ d-{- e, we change it into a ^-^r^; ' '

then, finding a mean proportional between b-\- c and d-\-c, and

calling it W2, we have -r—,—, Vvhich is easily constructed.
=> a -\- e

•'

The construction often becomes much more simple by setting

out always from the same principles ; but these simplifications

are derived from certain considerations wliich are peculiar to

each question, and consequently can be made known only as the

occasion presents itself. We will merely remark, in concluding,

that although the construction of the radical quantities, vvhich

we have been considering, reduces itself to finding fourth pro-

portionals, mean proportionals, and constructing right-angled



Application of Algebra to Geometry. 77

triangles, still we can arrive at constructions more or less simple

or elegant by the method employed for finding these mean pro-

portionals ; we shall now, therefore, make known two other

methods of finding a mean proportional between two given lines.

The first consists in describing upon the greater AB {Jig. 34) Fig. 34.

of two given lines a semicircle ACB, and, having taken a part

AD equal to the less, raising a perpendicular DC and drawing

the chord AC, which will be a mean proportional between AB
and AD; for, by drawing CB, the triangle ACB is right-angled

(^Geom. 128), and consequently AC Is n mean proportional be-

tween the hypothenuse AB and the segment AD (Geom. 213).

The second method consists in drawing a line AB {fig. 35), pig. 35.

equal to the greater given line, and having taken a part AC
equal to the less, describing upon the remainder BC a semicircle

CDB, to which we draw the tangent AD ; this tangent is a mean

proportional between AB and AC {Geom. 228).

We see, therefore, that rational quantities may always be con-

structed by means of straight lines, and radical quantities of the

second degree may be constructed by means of the circle and

straight line united.

As to radical quantities of higher degrees, their construction

depends upon the combination of different curved lines. We
shall speak of these hereafter.

We proceed now to the consideration of questions, the solution

of which depends either upon rational quantities or radical quan-

tities of the second degree.

Geometrical questions, and remarks upon the manner ofputting

them into equations, and upon the different solutions derived from

these equations.

68. The precept which we have given {Alg. 14) for putting a

question into an equation is equally applicable to questions in

geometry. Here, also, the thing sought is to be represented by

a particular sign, and the reasoning is to be conducted by the

aid of this sign, and of those which represent the other quantities,

as if the whole were known, and we were undertaking to verify

it. The method or manner of proceeding is called Analysis.

In order to be able to carry on the investigation required for

this verification, it is necessary to know at least some properties

of the quantity sought. Moreover, it is not always necessary,
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in order to verify a quantity, to see if it satisfies immediately the

conditions of the question ; this verification is often made more

easily by inquiring whether this quantity has certain properties

which are essentially connected with the conditions of the ques-

tion. With this remark, which we shall have occasion to make
use of, we pass to examples, which on subjects of this kind are

always more easily understood than general directions.

69. We propose, for the first question, to describe a square

Fig. 36. ABCD {Jig. 36), in a given triangle EHI.

By a given triangle, we understand a triangle, in which every

thing is known ; the sides, angles, altitude, &:c.

With a little attention, we see that this question reduces itself

to finding, in the altitude EF, a point G, through which AB
being drawn parallel to HI, this line AB shall be equal to GF

;

thus the question present's itself very naturally, and we have

only to determine the algebraic expression of AB and that of GjP,

and then to put them equal to each other.

We shall therefore designate the known altitude EF by r/, the

known base HI by 6, and the unknown line GF by x ; then EG
will be equal to a— x.

Now, since AB is parallel to HI, we shall have

tF-.EG:: FI: GB : : EI: EB ..HI: AB,
consequently EF: EG :: HI: AB,
or a : a— x : : b : AB

;

whence AB= .

a

But AB=GF=x,
, r ^ b b X
theretore = x,

a

and ab— bx= ax, ab^ax-\-b x={a -{- b)x,

,
a b

whence a = r—=.
a -\-

To construct this quantity, it is necessary to find a fourth pro-

portional to a-\-h, b, and a (64), which is done in this manner.

We apply from i^ to O a line FO equal to a -\-b, that is, equal

to EF-{-Hl, and join EO ; then having taken FM=Hl= b,

we draw parallel to EO the line MG, which, by its meeting with

EF. will give the determination of GF or the value of a? ; for the

similar triangles EFO, GFM, give

FO:FM::FE: FG,
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or a-^b:b::a:FG',

we have, therefore, FG = =

.

a ~{- b

70. Let now the following question be proposed.

Given the length of the line BC (fig. 37), and the angles B, C, Fig. 37.

contained by this line and the two lines BA, CA, to determine the

altitude AD of the point of meeting of these two lines.

Angles are made to enter into an algebraic expression by the

aid of the lines employed in trigonometry, namely, sines, tangents,

&;c. Thus, when it is said that an angle is given, the angle C, for

example, it is to be understood that the value of its sine or tan-

gent is given. This being premised, we designate BC by a, and

AD by y. In the right-angled triangle ADC we have

CD: AD:: radius : tang ACD (30),

or CD : y : : r : m^i

designating the radius by r, and the tangent of the angle ACD
by m

;

whence CD^—.
m

In like manner, designating the tangent of ABD by 7i, we shall

have BD : y : : r : n,

whence BD == —

.

Now CD-}-BD=BC= a,

y ,
^y

therefore -^ -L--^= a,
m ' n

whence, making the denominators to disappear, transposing, and

reducing, we have

r n-\-r m

I'his expression may be rendered more simple by introducing

in the place of the tangents of the angles C, B, their cotangents,

which we shall designate by p, q. Recollecting that the tangent

is to radius, as radius to the cotangent (9), we shall have

m : r : : r
: p, and n : r : : r : q;

whence m = — , and w = —

.

V 9

Substituting these values in the place of m and n, we shall have
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ar'^ ar'*

, ^

q p p 9

71. Whence it will be perceived, that when, among quantities

that may be regarded as given, those employed do not lead to a

result so simple as may be desired, it is not necessary to com-

mence the work anew, to assure one's self whether, by employ-

ing other given quantities, we cannot arrive at a more simple re-

sult ; it is sufficient to express by equations the ratio of the given

quantities first employed to those which we would introduce, as

we have expressed m.n, hy the equations J/i:^— , n = — , which

led by substitution merely to a solution dependent upon p and q.

72. We shall take, for a third example, a question which will

show at once the manner of putting geometrical questions into

equations, and bow, by varying the preparation of these equa-

tions, new propositions may be discovered.

Fig. 38. Given the three sides of a triangle ABC (fig. 38), to find the

segments AD, DC, formed by the perpendicular BD, and the per-

pendicular itself BD.

If these lines were all known, 1 should verify them in this

manner. I should add the square of BD to the square of CD,

and see if the sum were equal to the square of BC, to which it

ought to be, since the triangle BDC is right-angled ; I should

also add the square o(AD to the square BD, and see if the sum

were equal to the square o^ AB.
Let us proceed then in this manner, designating the quantities

to be employed, as follows,

BD= y, BC= a,

CD=x, AB= b, AC=c;
then AD, ov AC— CD= c— x. Accordingly we have

x''-\-y^= n% and c^— 2cx-{- x^
-\- y^=b^.

As oc^ and y^ have in each equation only unity for a coefficient,

I subtract the second equation from the first, which gives directly

2 ex— c^= a^— V^ ;

whence we have
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which may be written thus,

Now under this form we see, after what has been said (64),

that to obtain x, we have to find a fourth proportional to c, a -|- 6,

and a — b, to take one half of this and add it to i c, or one half

of the side AC.
Several other conclusions may be derived from these equa-

tions; I shall deduce some of them, that the learner may be able

to read what is contained in an equation.

73. 1. The equation 2 c x — c^= a^ — b^

is the same as c (2 x — c) = {a -{- b) (a — b).

Now, since the product of the first two factors is equal to the

product of the last two, we may consider the first two as the

extremes, and the last two as the means of a proportion ; we

accordingly have

c : a -{- b : : a — b : 2 x — c or x — (c — x)
;

01 AC: BC-\-AB:.BC — AB : CD — ABf.

f This proportion may be readily obtained, geometrically ; thus,

from the point B (Jig- 38'), as a centre, and with the radius AB, Fig.

describe the circle AGFE ; then we have

CG = BC -\- BG = BC -{- AB,
CF=BC— BF = BC— AB,

and CE = CD — DE= CD — AD (Geom. 105.)

But since AC, CG, are secants, drawn from a point without the

circle to the concave part of the circumference,

ACCG :.CF :CE {Geom. 225),

that is, AC : BC J^ AB : BC — AB : CD — AD,
as above found.

Moreover, from this proportion we have

CD-AD= (BC+AB) {BC- AB)
A(-y ,

Now, if to the sum of two quantities we add their difference, we

shall have twice the greater; consequendy, half of the sum added to

half of the difference will give once the greater. Therefore,

which agrees with the analytical determination of x (72).

Trig. 1

1
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74. 2, If from the point C as a centre, and with a radius

equal to BC, we describe the arc BO, and draw the chord BO,
we shall have

BD-{-DO = Bd;
now DO = CO — CD = BC~ CD = a — x,

2

therefore BO = y^ -\- a^ — 2 a x -\- x^;

but we have found above y^ -\- x^ = a^

;

2

consequently BO = 2 a^ — 2 a x ^^ 2 a {a — x).

^2 J 2 I g2
Putting for x its value —J-— , (72),

since 2 a c — a^ — c^ = _ (««_ 2 a c + c^) = — (c— a)'^,

we shall have

BO = 2 . Ca + ^'-f-'")= 2 a (^ < c-o,^ -c^+ 6^

V 2c/ V 2 c

=
f (6= -(0 -«)=).

Now, by considering c — a as a single quantity, we find

ly" —{c — af={b + c — a){b — c + a) {Geom. 184) ;

hence

B()=:-{b-]-c — a) (b — cJ^a),

which may be put under this form,

.BO ==-^ (« + A + c — 2 a) (a + 6 4- c — 2 c).

If therefore we designate the sum of the three sides by 2 s, we

shall have

BO = -(2s — 2a) (2s — 2c)=4"(.9— o) (s — c).

Letting fall from the point C upon OB the perpendicular CI,

we obtain from the right-angled triangle CIO this proportion,

CO : 01:: R: sm OCT, (30),

that is, o :
i BO : : R: sin OCI,

, , _ -^ a sin OCT „^ 2 a sin OCI
whence I BO= 5 , or BO = =

;

fr>^ 4 a2 (sin OC7)2
consequently isO = ^ •

—

2

Putting these two values of BO equal to each other, we have

4 a2 (sin OCI)2 4a ,

or, dividing by 4 n, and making the denominators to disappear,

a c (sin OCIf == R^ {s — a) (s — c) ;
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that is, dividing by a c, putting R equal to 1, and extracting the

square root,

sin 0C1=
|

(^ - a) {s - c)
.

>j ac

which agrees with the formula of art. 38.

76. 3. The equation y^ -\- x'^= a^,

gives ^2 __ q2 — aj2
__ ^^ _|_ .^^ ^^ — ^y^

putting for x its value, we have

/ a2_62_f_c2\/ /,2_«2_c2\

— /2 g c 4- gg
-I- c2 — 62

>^ /'2 a c — a^ — c^ + ^^
\—

V
2"^ A 2 c ;

_ /(a + c)2 _ 62\ /62 — (c — a)2 \

^ /(«+c4-6)(a+c-6)\ /(64-c-a)(6-c + « )\
.

consequently,

4 c2 y2^ (a -}- c+ 6) (g + c— J) (5 + c— a) (6— c + a)

= (a+6+ c)(a+6+c— •26)(a+64-c— 2a)(a+ 6+ c— 2c);

or, designating the sum of the three sides a -[- 6 -f- c by 2 s,

4 c2 1/2 = 2 5 (2 s— 2 6) (2 s — 2 a) (2 5 — 2 c)

= 16 s (s — 6) (s — c) (s — a),

or, dividing by 16 and taking the square root,

2- = V s (s — h) {s — c) [s — a)-

„ cw AC Y BD . , ,. p , . 1 /iTi/'t TT
But -^, or

t^
isthesurlace ot the triangle ^ijC Hence,

tofind the surface of a triangle by means of the three sides, we

must subtract each side successively from the half sum, multiply

the half sum and the three remainders continually together, and

take the square root of this product.

76. 4. The equation 2 c x — c^ = a^ — b^,

gives ^2 __ ^2 _j_ g2 — 2 c x;

but, if the perpendicular fall without the triangle {fig. 39), since Fig. 39.

AD is now c -{- x instead of c — x, designating the sides as

before, we have

y^ + x^ = a^ and ?/2 + c2 + 2 c a? + a;2 = b^.

The first equation being subtracted from the second gives

c2 -f
o c^^iii_ f^2^ oj. c{c + 2x) = {b -\-a) {b — a) ;

whence c : b -{- a : : h — a : c -\- 2 x.
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Now c-\-2x, or x -\- c -{- x = CD -\- AD
',

consequently AC . AB + BC : . AB — BC : CD -\- AD\,
77. 5. The same equation c^ -\- '2 c x = h^ — a^,

gives Z»2 ^ a^ -f c2 -f- 2 c a;.

Comparing this with the equation

h'^ = a^ -{- c^ — 2cx,
which answers to figure 38 ; we see that 6^, the square of the

side AB, o[)positeto the acute angle C, is less than the sum of the

squares of the two other sides a^ -\- c^ by 2 c a: ; on the contrary,

the square of the side AB opposite to the obtuse angle, figure

39, is equal to a^ -|- c^ -|- 2 ex, that is, greater than the sum of

the squares of the two other sides by 2 c a; ; which agrees with

articles 191, 192, of the Elements of Geometry. By these propo-

sitions, we can determine, when the angles of a triangle are to

be calculated by means of the sides, whether the angle sought be

acute or obtuse.

78. 6. The two equations

52 == ^2 + c2 — 2 c 07, and IP = a"^ -\- <? + 2 c x,

confirm what has been before said v/ith regard to negative quan-

Fig. 38, tities ; for we see that the segment CD {fig. 38, 39), takes dif-

ferent directions, according as the perpendicular BD falls within

the triangle or without it. Now in these equations, the term

2 c X has in fact contrary signs. Hence, whatever result we

arrive at with regard to one of these triangles, we obtain that

which belongs to the analogous case of the other, by giving the

contrary sign to the parts which take different directions upon

the same line. Now in the above theorem, respecting the sur-

face of a triangle, the segment CD does not come into considera-

tion ; therefore the proposition is equally applicable to all kinds

of plane triangles.

+ This proportion may be obtained geometrically in a manner

Fig. 39'- similar to that of art. 73; thus, from B (fig. 39'), as a centre, and

with the radius BC, describe the circle ECFG ; then we have

AG= AB -\- BG= AB -\- BC,
AE= AB — BE= AB — BC,
AF= DF-\- AD = CD -{-AD;

but, since AG, AF, are secants drawn from a point without the

circle to the concave part of the circumference,

ACAG.AE: : AF,

that is, AC: AB-{- BC . AB — BC: CD -\- AD



Application of Algebra to Geometry. 86

We might deduce several other propositions from the same

equations ; but other objects claim our attention.

79. Although in putting geometrical questions into equations,

we have more resources and more facilities, according as we are

acquainted with a greater number of the properties of lines
;

still, as algebra itself furnishes the means of finding these proper-

ties, the nutnber of propositions really necessary, is very limited.

These two propositions, that similar triangles have their homolo-

gous sides proportional, and that in a right-angled triangle the

square of the hypothenuse is equal to the sum of the squares of the

two other sides, are the basis of the application of algebra to

geometry. But there are many ways of making use of these

propositions according to the nature of the question. Here, as

in other things, there is a discretion to be exercised in the choice

of means and manner of applying them. But, as this discretion

is acquired in a great degree by practice, we proceed to illustrate

these observations by several examples.

80. We propose, in the first place, this question. From a

point A (fig. 40), the situation of which is Jcnown, with respect to Fig. 40.

tivo lines HD, DI, that maJce ivith each other a knoivn angle HDI,

to draw a straight line AEG, in such a manner that the intercepted

triangle EDG shall have a given surface, that is, a surface equal

^0 a knoivn square c^.

From the point A we draw the line AB parallel to DH, and

the line ^C perpendicular to DG produced. From the point E,

where the line AEG must cut DH, let us suppose the perpen-

dicular EF. If we knew EF and DG, by multiplying them

together and taking half the product, we should have the surface

of the triangle EDG, which was to be equal to c^.

Let us then suppose DG = x ; with regard to EF, let us see

if we cannot determine the value of it, by means of x and what

is known in the question.

Since the situation of the point A is supposed to be known,

the distance BD of the parallel AB is to be regarded as known,

as also the distance AC of the point A from the line DG pro-

duced. Designating therefore BD by a, and ^C by b, we have

from the similar triangles, ABG, EDG,
BG:DG::AG : EG:

and from the similar triangles ACG, EFG,
AG: EG : :AC:EF;

whence BG : DG . : AC : EF;
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that is, a -}- X : X : : b : EF

;

therefore EF = -^ •

a
-f-

X '

and, since the surface of the triangle EDG must be equal to the

square c^,

we shall have EF X ^, or -^ X -= c^
2 « + a; 2 '

that is,
;5

p—- = c2,

or making the denominators to disappear,

b x^= 2 a c^ -{- 2 c^ X.

This equation, resolved according to the rules for equations of

the second degree, gives these two values.

b \c-

2aj

Of these values, that which has the sign minus is of no use as to

the present question. In order to construct the first, I put it

under the followins; form,

^=UM+'")t
Fig. 41. This being done, I draw the indefinite line PQ {Jig. 41), and at

some point C of this line, I raise the perpendicular AC = b^ and

upon CA, CP, I take the lines CO, CM, equal each to the side

c of the given square ; having joined AM, I draw parallel to it,

through the point O, the line OJV, by which we have CJV for the

c2
value of

J-,
since the similar triangles ACM, OCJY, give

AC :0C:: CM: CJV,

that is, b : c : : c : CJV

;

whence CJV= t-

o

and the value of x becomes

x= CJV-\- ^{CN+ 2 g) X CN.

Now />y{CJV -\- 2 a) X CJV expresses a mean proportional be-

tween CJV and CJV -\- 2 a (67). We have, therefore, only to

determine this mean proportional, and to add it to CJV. In order

lo do this, upon JVC produced I take CQ = 2 a ; and upon the

whole JVQ, as a diameter, I describe the semicircumference JVVQ,
meeting AC produced in V; 1 apply the chord JVV from JVto
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P, and I have CP for the value of x. For JVV is a mean pro-

portional between CJV and JVQ {Geom. 215), that is, between

CJV and CA" 4- 2 a
;

therefore, JVV, or PJV= V(C^+2a) X CN,

and CP = CA*-f P^= CJV + V(CiV + 2 rt) X CiV = a:,

If then we apply CP from D to G {Jig. 40), we shall have the Fig. 40.

point G, through which and the point A, AG being drawn, we

obtain the triangle EDG equal to the square c^.

81. If we would know what the second value of x signifies,

namely,

it will be observed that, as there is nothing in the question to

determine whether the inquiry relates rather to the angle EDG,
than to its equal E'DG' formed by the lines GD, ED, produced

;

and the given quantities being the same for this case as for the

other, this second solution must belong to the question in which

the object is to do the same with respect to the angle E'DG',

which has been done in the angle EDG. Indeed, if we desig-

nate DG' by X, the other quantities being represented as before,

the triangles ABG', £'DG', similar on account of the parallels

AB, DE', give BG' : DG' : : AG' : G'E'
;

and, by letting fall the perpendicular E'F', the similar triangles

ACG',E'F'G',^iye

AG' : G'E' ..AC'.F'E',

consequently BG' : DG' : : AC : F'E'
;

that is, a — x : x : : b : F'E'
;

whence F'E' = ;

a — a;

'

and, since the surface of triangle G'E'D must be equal to the

square c^.

we have

which gives bx^==2ac^ — 2c^x,

consequently
6 ±X+ b

'

values of x, which are precisely the same as those of the preced-

ing case, only the signs are reversed, as they ought to be, since

here the quantity x is taken in a direction opposite to that of the

first supposition ; a new confirmation of what we have already
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said more than once, that negative values are to be taken in a

direction opposite to that of positive ones.

The construction, which we have given for the preceding case,

Fig. 41. answers also for this, by applying JVP^ (^^. 41), from JV to ^
toward Q ; then the value of x, which in the preceding case was

CP, will be CK. Indeed, the value of x, which belongs to the

present case, is

F- c2 M
,

2_a_c2

=-? + J(t+-)or =— V+ .l("-+2a) Xp
that is, x = — CN-\- ^{CJV + 2 a) X CJV;

and, since NF= ^{CJV+2a) X CJV,

we have x = — CJY + JVF= — CJV -\- JVK= CK;

Fig. 40. thus we apply CK from D to G' (Jig. 40), and we have the

point C, through which and the point jl, AG'E' being drawn,

we shall have the triangle G'DE' equal to the square c~, or the

second solution of the question.

Fig. 40. 82. We have supposed the point A {jig. 40), above the line

Fig. 42, BG ; if it were below it {jig. 42), the quantity h, or line AC,

would be negative, and the first two values of x would conse-

quently be

^J
C4 2 « c2

62 b
'

^>(?—)? =

from which it is evident, that the problem is not possible, except

when 2 a is less than — ; since, when it is greater, the quantity

under the radical sign is negative, and consequently the values

of a? are imaginary or absurd {Alg. 107). When 2 a is less than

- , the two values of x are negative, that is, the problem is then
b

impossible with regard to the angle HDI, while there are two

solutions with regard to its equal E'DG'. In order to have these

two solutions, it is necessary to construct the two values.

b J(?--)'
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which is done in the following manner. Having determined, as

above, the value CJV, of — (Jig. 43), we take A*Q = 2 c, and Fig. 43.

having described upon JVQ, as a diameter, the semicircle A*FQ,

we draw the tangent CF; we then apply CF from C to P to-

ward JV, and from Cto K in the opposite direction ; then J\T*, JVK,

will be the two values of a? ; we apply them from D to G {fig. 42) , Fig. 42.

and from D to G', and drawing through the point A and the

points G and G' the straight lines EG, E'G', each of the trian-

gles EDG, E DG', will be equal to the square c^. As to what

we have said, that NP, NK {fig. 43), will be the two values of Fig. 43.

X, we deduce it from this, that CV, being a mean proportional

between CN and C^, is equal to a/ CQ X CJV, or putting for

these lines their values CF, or CP, or CK = \(- 2a)—;

hence NP = CJV— CP=^-— |(^_2a)^,
_C2_ |/c2

and iV^= CJV4- CX= ^+ \('L—2ay^.

Now these two quantities are the same as the values of x, the

signs being changed ; therefore these same quantities applied

from D toward G {fig. 42), will be the values of x. Fig, 42.

83. If the point .^ {fig. 44), were in the angle itself HDl, BD Fig. 44.

falling in the direction opposite to that in which it first fell, a

would be negative, and the first two values of x would become

h ^62
2ac2

which are the same, the signs being changed, as those which we

have just constructed. We ought, therefore, to construct them

as we have done {fig. 43), but we should apply the values of x, rig. 43.

JVP, ISK, from D toward J, {fig- 44), and we shall have the Fig. 44.

two triangles DEG, DE'G', both of which satisfy the question.

84. Lastly, the point A {fig. 45), may be situated below BD, Fig. 45.

but in the angle BDE. In this case a, h, will be both negative,

which would give

2772"

b

of which the signs are exactly the reverse of those belonging to

the first values of x, found above. We should construct them,

Trig. 12
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Fig. 41. therefore, as we have done {fig. 41), and CZ" would be the posi-

tive value of a:, and CP its negative value ; and we should apply

Fig. 45. the former from D to G {fig. 45), toward B, and the latter in

the opposite direction from jD to G'.

We have insisted upon the different cases of this solution, in

order to show, how they are all comprehended in a single equa-

tion, how they are deduced from this equation by merely chang-

ing the signs, and how the different positions of lines are denoted

by difference of sines, and the reverse. It still remains to point

out some of the uses of this solution.

85. If we had proposed this question
; from a given point A

Fig. 46. (fig- 46), without, or within, a given triangle DHI, to draw a line

AF dividing this triangle into tivoparts DEF, EFIH, ivhich shall

be to each other in a given ratio, expressed bym:u; this question

would have its solution in that of the preceding. For, since the

triangle DHI is given, and it is known what part of DHI, DEF
is required to be, if wo seek the fourth term of this proportion

m -{- 71 : m : : DHI : x,

this fourth term, or x, will be the triangle DEF. Now we can

always find a square c^ equal to this triangle [Geom. 243) ; the

question then reduces itself to this, namely, to draw through the

point A a line AEF, which shall form with the two sides DH,
Dl, a triangle DEF equal to the square c^, which is the same

as the preceding question.

86. It will be perceived also, that we can reduce to the same

solution the following question, namely, to divide any rectilineal

Fig. 47. figure {fig- 47), by a line drawn from any point A, into two parts

BCFE, EFDHK, which shall be to each other in any given

ratio. Indeed, the figure BCDHK being supposed to be known,

all its angles and sides are known ; we may regard as known,,

therefore, the triangle BLC formed by the two sides KB, DC,
produced, since a side BC o( this triangle, and the two adjacent

angles LBC, LCB, the supplements of the angles CBK, BCD,
are given; and, as EBCF is a determinate portion of the whole

surface, this is also known ; the question then is reduced to this,

namely, to draw a line AEF, which shall form in the angle J^jLZ?

a triangle equal to a known square. It is moreover evident that

this figure may be divided into a greater number of parts, of

which the ratios are given.
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87. A further remark might be made, that if some of the given

quantities, belonging to an equation, which serve to resolve a

question, are such that a change of the signs does not change the

equation ; or, if a change of the line or lines sought does not

involve a change in the position or magnitude of the given lines
j

then among the different values of x, when there are several in

the equation, there will always be found one which will be the

proper solution for the case indicated by this change. For ex-

ample, in the question which we have been considering, we have

seen that one of the values of x gave directly the solution for

the case in which the line AEG {fig. 40), was to traverse the Fig. 40.

angle HDl, as we had supposed in making the calculation ; but

we have seen at the same time, that the second value of x gave

the solution of a case, not contemplated, which did not relate to

the angle HDl, but to the angle opposite to it at the vertex.

The reason of this is, that having in each case the same given

quantities to employ, and the same reasoning to go through, we
cannot but be conducted to the same equation ; therefore the

same equation ought to give the two solutions. This will be

illustrated by other examples as we proceed.

88. Let the following question be proposed. From a given

point A, it'ithout a circle BDC (fig. 48), to draw a straight line Fig. 48.

AE in such a manner that the part DE, intercepted in the circle,

shall be equal to a given line.

Since the circle BDEC is given, its diameter is supposed to be

known ; and, since the point A is given, if we draw through the

centre O the straight line AOC, the line AB is to be considered

as known, and consequently the line AC. In order to know
how the line AE is to be drawn, we have only to determine

what ought to be the magnitude q{ AD, that, when produced, the

part DE should be equal to the given line. I designate AD by

X, AB by rt, AC by b, and the given line, to which DE is to be

made equal, by c.

Since the figure BDEC is a circle, the secants AC,AE, must

be reciprocally proportional to the parts without the circle;

that is, AC : AE : : AD : AB {Geom. 225) ;

or b : X -\- c : : X : a;

whence x^ -\- c x = a b,

an equation of the second degree, which, being resolved, gives

X z=^\c dsz a/ \c^ -{- ab.
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of which the first value only, — I c -\- /^\ c^ + a 6, satisfies the

question under consideration.

In order to finish the solution, it is necessary to construct this

quantity, which can be done without employing the transforma-

tions made known, art, 64. For this purpose we draw from the

point A the tangent AT, which, being a mean proportional be-—

2

tween AB and AC, gives AT = ah; the value of x therefore

becomes

x = —\c-^^\c'-\-AT.

The radius TO being drawn becomes a perpendicular to .^T; if

then we take Tl equal to | c, by drawing Al, we shall have

Al ^S \c^ \- AT; therefore, ill order to obtain x, we have

only to apply Tl from /to R, and to describe from the point A,

as a centre, and with the radius AR, the arc RD, which will

determine the point sought D ; for

AD,ovAR= Al— 1R= A1— TI=^ ^c^ -{-AT—lc= x.

In order now to know what the second value of x signifies,

namely,

x = — |c — /^ I c^ -\- a b,

it must be observed that, as it is wholly negative, it can only fall

in the direction opposite to that toward which AD tends. Let

us see, then, if there be a question, depending upon the same

quantities and the same reasoning, which fulfils this condition. If

now we suppose a and b negative, the equation x^ -\- c x = a b,

undergoes no change ; since, therefore, when the circle BDEC
becomes B'D'E'C, situated toward the left in the same manner

that BDEC is toward the right, it follows that the solution of

this case is contained in the same equation ; the second value of x,

or — I
c — a/ \ c^ -\- a b, belongs to the same case, and satisfies

the same conditions ; if, therefore, in the preceding construction,

we apply IT from 1 to R' on Al produced, and from the point A,

as a centre, and with a radius equal to AR', we describe an arc

cutting the circumference B'D'E'C in E, the point E will be

such that the part intercepted ED' will be equal to c. Indeed

AE' = AR' = Al + IR' = ^ kc"" + AT + I c,

that is, AE is equal to the second value of x, the signs being
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changed. Now, since we apply this quantity in a direction op-

posite to that in which x tends, it follows that AE' is in reality

the second value of x.

In fine, as the two circles are equal and situated in the same

manner, the two solutions may both belong to the same circle, so

that if we describe from the point A, as a centre, and with a

radius AR', the arc R'E, the line AE will also resolve the ques-

tion ; indeed, it is evident that the point E, determined in this

manner, is in the line AD, (obtained by the first construction),

produced. But of the two solutions, furnished by algebra, the

first falls on the right of the point A, and appertains to the point

D of the convex circumference, while the second falls on the left,

and appertains to the point E' of the concave part of the circum-

ference.

89. Let us now suppose that it is proposed to find in the direc-

tion of the given line AB (fig. 49) a point C, such, that its dis- Fig. 49.

tance from the point A shall be a mean proportional between its

distance from the point B and the whole line AB.

I shall designate the given line AB by o, and the distance

sought AC by a: ; then BC will be a — x ; and, as the propor-

tion required is

AB : AC : : AC : CB,
or n : X : : X : a —~ x,

we shall have

x^ = a^— a X, or x^ -\- a x = a^,

an equation of the second degree, which, being resolved, gives

X = — I a ± a/\ a^ -{- a^.

In order to construct the first value of x, we must, according

to what has been said (67), raise at the point B, the perpendicular

BD = i a ; and, having drawn AD, we shall have

AD = \BD + Zb = Vi «^ + a^;

we have then only to subtract from this line the quantity | a,

which is done by applying DB from D io O ; then we shall have

AO= v' ? o^ + a^— I ff, that is, it will be equal to x. We then

apply AO from Ato C toward B, and C will be the point sought.

As to the second value of x, namely,

X = — la — a/ I
Q^ -{- a^,

if we apply BD from D to O' on AD produced, then we shall

have

AO' = ^a-{- V5«^ + a^
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and, as the value of x is this quantity taken negatively, we apply

jiO' from A to O on AB produced in a direction opposite to that

toward which x is supposed in the solution to extend ; and we

shall have a second point O, which will also be such, that its

distance from the point A will be a mean proportional between

its distance from the point B and the whole line AB.
We remark in passing, that this question contains that of di-

viding a line in extreme and mean ratio ; also the construction

which we have obtained, is the same as that given in the Ele-

ments of Geometry (240). But it will be perceived, that we are

made acquainted with this construction by algebra, whereas in

the Elements of Geometry we supposed the construction and only

demonstrated its truth.

90. With a little attention to the course pursued in the pre-

ceding questions, it will be evident that we have always taken

for the unknown quantity a line, which being once known serves,

by observing the conditions of the question, to determine all the

others. This is the course to be pursued in all cases, but there

is a choice with regard to the line to be used ; there are often

several, each of which has the property of determining all the

others, if once known. Among these, some would lead to more

simple equations than others. The following rule is given to aid

in such cases.

91. ]f among the lines or quantities, which loould, ivhen taken

each for the unknown quantity, serve to determine all the other

quantities, there are tivo which would in the same way answer this

purpose, and it could be foreseen that each would lead to the same

equation (the signs -f- and— excepted) ; then ive ought to employ

neither of these, but take for the iinknoivn quantity one ivhich c?e-

pends equally upon both; that is, their half sum, or their half dif-

ference, or a mean proportipnal between them, or &;c., and we

shall always arrive at an equation more simple than by employing

either the one or the other.

The question we have resolved art. 8S, may be used to illus-

trate what is here said. In this question there is no reason for

Fig. 48. taking AD {fig. 48), rather than AE, for the unknown quantity;

by taking AD for the unknown quantity x, we have x -i- c for

AE'j and, by taking AE for the unknown quantity cr, we should

have X — c for AD; and, as to the rest the mode of proceeding

is the same for each case ; so that the equations differ only in the
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signs. If, therefore, instead of taking either for the unknown

quantity, I take their half sum, and designate it by x, since their

half difference DE= c is given, we shall have

J]Ez=x+\c, and JiD^x — \c, {Note, page 81) ;

whence, according to the proposition adopted in the first sokidon,

(x -^\c){x — \c) = ah,

or x^ — \c^ = a b,

a more simple equation than the former, and which gives

X == a/Ic^ -j- a b;

and, since AE= x -{- ^ c, we have immediately

AE= ^c-{- ^lc^-\-ab,

and AD = — lc-{- ^J7~^fVb,
as before found (88).

The following question will furnish several examples of the

applicadon of the same principle.

92. From a point D (fig. 50), situated in the right angle lAE, Fig. 50.

and equally distantfrom the two sides IA, AE, to draw a straight

line DB in such a manner that the part CB, comprehended in the

right angle EAB shall be equal to a given line.

Having let fall the perpendiculars DE, DI, I can take indif-

ferently for the unknown quantity CE or AB, AC or IB, CD or

DB. If I take, for example, CE for the unknown quantity
;

designating CE by x, and each of the two equal lines DE, DI,

supposed to be known, by a ; calling at the same time, the given

line to which jBC is to be made equal, c, I shall have

AC = AE — CE = a — X

;

and the similar triangles DEC, CAB, give this proportion,

CE : DE: : AC : AB,

that is, X : a : : a— x: AB,

u an «^--«5
whence 'fl.ti = .

X

Now, by the property of right-angled triangles,

AC-{-AB = BC;
substituting for these lines their algebraic values, we shall have
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or, making the denominators to disappear, transposing and re-

ducing,

x4 _ 2 a a;3 -f 2 «^ a:2 — c2 a;2 — 2 a3 ^ -|- a^ = 0,

an equation of the fourth degree, but which is much less simple

than others which may be employed for the solution of this

question.

If, instead of taking CE for the unknown quantity, we take

IB', and, designating IB by x, proceed as above, we should have

an equation which does not differ from that just found, except

that, instead of a — x, we should have x — a, which would lead

to precisely the same thing, since the squares of these quantities

are employed. If we should lake AB for the unknown quantity,

the result would differ only in its signs from that in which ^C is

taken for the unknown quantity. With regard to DB and DC,
the equation in which one is taken for the unknown quantity

would not differ, except in its signs, from that in which the other

is taken for the unknown quantity ; therefore neither of these

lines should be used for this purpose. But, if we take for the

unknown quantity the sum of the two lines DB, DC, and repre-

sent this sum by 2 x, we shall have

DB = x-\-\c, and DC = x — lc.

Now, in order to find AB, AC, on account of the parallels DI,

CA, we have the following proportions,

DC: CB : : lA or DE : AB,
DB: CB::DI:AC,

that is, X — I c : c : : a : AB,
X -{- I c : c : : n : AC,

whence AB = —
-, and AC

J-
c X -{- ^ c

consequently, since the right-angled triangle CAB gives

we shall have

AB-\-AC = BC,

«2 r2 /72 r2

or, making the denominators to disappear and dividing by c^,

a^ {x + I of + a^{x-l cf= {x -lcf{x + \ f)^

which, by performing the operations indicated, becomes, after

reduction,

x' — (I c^ + 2 fl") T? = \a''c' — ^^ c\
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to an equation of tlie fourth degree, indeed, but one which may

be more easily resolved than the preceding, since the resolution

may be effected after the manner of an equation of the second

degree {Alg. 160).

We can moreover arrive at equations sufficiently simple, by

employing two unknown quantities, one being the sum and the

other the difference of the two lines AB,AC ; that is, if we make

AB-\-AC = 2x\ and AB — AC = 2y,

which would give

AB = X -\- y, and AC = x — y,

the right-angled triangle ABC gives

AB -{. AC = BC,
and the similar triangles ABC, IBD, give

AB'.AC: :1B ID,

from which we obtain the two equations necessary for determin-

ing X and y. The value of x'^, being deduced from one of these

and substituted in the other, will give for y an equation of the

second degree. But, leaving what remains of the calculation as

an exercise for the learner, we return to our equation.

According to the rule for completing the square we have

-^^— (I c'+ 2 a~) x^+ (i c^+ a")-= (i c^ -f a^)^ -{-^aH^— ^\ c»

= a-c^ -^ a*,

or, extracting the square root,

a;2 _ (1 t2 -j_ a2) = -t- ^a-" e + a^,

and consequently

x"" = i c" -f-
«^ ± V"^ c- + a",

extracting the square root of this, we have

^4\c- -\- a- -^ i>J a- c"" -\- a%

or ^ = ± V I c^ + a^ ± fl V c= + a^-

Of the four values of x resulting from the double combination

of the two signs ±, there is only one which relates to the ques-

tion, as it has been proposed, and this is

'^ '^ S\e ^ a- ^ a Vc' + aK

The value, x == J^ \ ic" -\- a" — a ^c" -\- a% resolves the

question for the case in which it is required that the line CB
should be in the same angle with the point D {fig. 51), when x Fig 51

Trig. 13
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represents not the half sum, but the half difference of the two

lines BD, DC; of this we may be easily satisfied by calling

this difference 2 x, and resolving the problem in the manner

above given. For we shall have

DB = I c + x, CD = \c ~ X,

and the parallels Dl, CA, give

DB : CB..DI: CA, and CD : CB :. AI : AB,
or ^ c + a: : c : : a : CA, rind I c—x : c : : a : AB

;

whence CA = -, j— , and AB =
,

"^
^

,

consequently, the triangle CAB being right-angled, we have

\ n r ^\i. — ^ '

or ^£4 „ (^ (;2 _^ 2 a2) a;2 ^ ^ «2 ^2 _ q^ ^1^

an equation precisely the same with that which we found for the

Fig. 50. sum of the two lines BB, CD i^fig- 50). Therefore, as the

same equation satisfies the two cases, one of the roots must be

the sum and the other the difference of the two lines. Now it is

evident, that the two roots that must be taken, are those we have

been considering, since the two others, being wholly negative,

can only relate to cases entirely the reverse of tliose contem-

plated in each resolution.

As to these two other roots, in order to find to what cases

they belong, it is to be observed, that there is nothing in the pre-

sent question, or at least in the equation, to determine whether

Fig. 50, the point D {fig. 50), is, as we have first supposed, below AI
and on the left of AE, or whether it is above the first and on

the right of the second, as it is represented relatively to A'l',

A'E'. Now, in this case the quantity a, falling in a direction

opposite to that in which it first occurred, is negative ; conse-

quently, we shall have the solution adapted to this case, if we

put — a in the place oi -\- a in the equation

x^ — (5 c^ + 2 «2) a:2 = J (fi (? — _i^ c4,

found above ; but, as this substitution produces no change, it

follows that this same equation ought also to resolve the two new

cases ; therefore, these two other values of .t are, the one the

Fig. 50. sum of the two lines DB' , DC, (fig. 50), and t!ie other their

Fig. 51. difference (fig. 51) ; and we see indeed that in this new position,

the points B, C, fall in directions opposite to those in which they
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first occurred, and that, consequently, the sunn as well as the

difference of the two lines DB', DO, ought to be negative, as in

fact they are, according to the equation.

In order to construct the solution just found, we take upon

EA produced {fig. 50, 51), the part AJ^= c, and having pig. 50,

drawn IJV, we apply this last to i)/ produced, from lioK; upon ^^•

DK, as a diameter, we describe the semicircle KLD meeting Al
produced in L. From the middle H of AJV, we draw IH, and

apply it from 1 \o M (fig. 50), and we have LM for the first Fig. 50.

value of X. But in figure 51 we describe from the point Z< as a

centre, and with a radius equal to IH, a small arc cutting IK in

M, and IM will be the second value of x ; and, since BD is

equal to a? + J c, we have BD = LM -\- AH (fig. 50), and Fig. 50.

BD = IM+ AH (fig. 51 ) ; Fig. 51.

thus we have only to describe from the point D, as a centre, and

with the radius BD just found, an arc cutting lA produced in

some point B, the straiglit line DB will be the line required.

Indeed, the right-angled triangle lAJV (fig. 50, 51), gives Fig. 50,

51.

uv, or ifir= VZi + Ajv= v^M^^;
and, since LI is a mean proportional between Inland IK, we have

1l = DIx IK= a V«' + cK

Now the right-aniiled triantrle lAH z\ves

IH, or (fig. 50) Bl, or (fig. 5
1
)LM= S lA-{-AH=V«^+ \ ^^

I ^']S- so.

and the right-angled triangle LIM (fig. 50), gives
Fif.' 50!

LM=^1M -I- 1l = Va2 J_ 1 e2 -f fi V^^M^^ = ^;

and (fig. 5 \),1M=SLM—lL^Sa^ -f ^ c^— a ViH^=^. Fig. 5i.

It should be observed, with respect to this last value, that the

construction which we have given supposes that IH (fig. 51) is Fig. 51.

greater than IL, or at least equal to it. If it were less, the ques-

tion would be impossible with respect to the last case. This also

will be made evident by the aid of algebra ; lor, in the value

if a^ -|- 1 c^, which is IH, is less than a a/q^ -{- t^, which is IL,

the whole expression taken together is negative, and consequently

the value of x becomes imaginary.
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By taking for the unknown quantity the sum of the two lines

Fig. 50. DB, DC, {fig. 50), or the difference {fig. 51), we arrive at an

*^" equation more simple than by taking; CE, or AC, or AB, or IB
;

because the relation of the lines DB,DC, to the lines IB, AB, is

similar to that of these same lines DB, DC, to the lines v2C, CE;
that is, we can determine them by similar operations, whether

we employ IB, AB, or AC, CE. As, in general, the equation

ought to contain all the different relations which the quantity

sought can have with those on which it depends, this equation

will "be the more simple, according as the quantity, selected for

the unknown quantity, shall have a smaller number of different

relations with the others. See a striking example of this in the

following solution of the same question.

Fig. 52. 93. Since CAB {fig. 52) is a right-angle, if we imagine a cir-

cle described upon CB as a diameter, the circumference would

pass through the point A. We draw the line DA, which, pro-

duced, would meet the circumference in M ; then it is evident,

that since the lines DI, DE, are equal, the angle DAI, or its

equal BAM, will contain 45°
; and since this last has for meas-

ure half of the arc MB [Geom. 126), this arc will contain 90°
;

if then we draw the radius LM, the triangle DLM will be right-

angled, and, consequently, by letting fall upon DM the perpen-

dicular LJV, the side LM will be a mean proportional between

DM and MJV {Geom. 213), or since Af^ is equal to JVM
{Geom. 105), between DM and AJV. Hence we shall arrive at

a very simple solution hy taking AJV for the unknown quantity.

We represent this line AJV by x, and the line DA, supposed

to be known, by d; then DM will be d -\- 2 x ; and, since, ac-

cording to what has been said,

DM : LM : : LM : M.Y,

we have d -\- 2 x : ^ c : : ^ c : x;

whence d x -\- 2 x'^ = ^ c^, or x^ 4- ^ d x = \ c^

resolving this equation, we have

x = -id±^'^^dr+JV^
In order to construct this quantity, I write it thus,

a: = — i rf ± VtV cI^ + tV c' + tV c'-

I then take, upon the sides A o, AI, of the right-angle lA o, the

parts A m,An, equal each to I c, and finishing the square Ampn^
1 draw the diagonal A p, which will be perpendicular to DA, and
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equal to VtV c^ + tV c^ ; 1 take, upon AD, a part .^ r equal

to I d, or ^ AD, and, drawing j;? r, I have

^ r = \lAr -\-Ap = VtV d^ + iV c' + tV c^-

In order, therefore, to obtain the first value of a; I have only to

subtract from p r the quantity ^ d, which is done by describing

from the point r, as a centre, and with the radius r p, an arc

cutting DM in JV, which gives AJV for the first value of -x ; so

that by raising at the point JVthe perpendicular JYL, and cutting

it in L by an arc described from the point A, as a centre, and

with the radius | c, we shall have the point L, through which,

and the point D, DCB being drawn, the solution is completed.

As to the second value of x, namely,

00 = - Id — VtV d^ + tV c' + tV c\,

it is obtained by applying r p from r to JV' , for tlien AN', being

equal to .^ r -f r N', is equal to ^ f/ + VtV ^'^+ tV <^ + tV c"^'

that is, it is equal to the second value of x, the signs being

changed ; and as it falls in a direction opposite to that of the

first value, it will be the true value of x for the second case. We
raise, therefore, at the point N' the perpendicular N'L', and

cutting it in L' by an arc described likewise from the point A, as

a centre, and with the radius ^ c, we draw through the points L'

and D the straight line B'L'D, and we have the second solution

of which the question is susceptible. To be convinced of this

we have only to apply to figure 53 what we have said of figure Fig. 53.

52 at the beginning of this solution ; we shall see, that calling

AJV or JVLN, x, and retaining the other denominations, we shall

have

DJ[1 .ML-.'. JUL : JWJV,

that is, 2 X — d : ^ c : : ^ c : x
;

whence 2 x'^— d x = i c^,

and x=ld±^ikd^ + tV ^^ + tV ^^

of which one of the values is precisely the same as that under

consideration, the signs only being different, as they ought to be.

But it is important to remark in this place, that it may happen

that the arc which we would describe from the point A {fig. 52), Fig. 52.

as a centre, and with the radius ^ c, will not meet the perpendic-

ular JV'L', because the quantity | c may be less than AJ^'. Now
we have said that, when questions of the second degree are im-

possible, algebra makes it known ; still in the equation
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^ = - I ^- VtV d^ + tV c^ + tV ^'

there Is nothing to show in what cases this inipossibility exists

;

for the whole under the radical sign is necessarily positive.

See the solution of this difficulty. It is not to be denied, that

when a question expressed algebraically is impossible, algebra

' manifests this impossibility ; but it is to be carefully observed,

that this is the case, when we have expressed by algebra every

thing which the question supposes, either expressly or by impli-

cation ; now this is not done in the case before us. The ques-

tion implies that the three points 1>, A, L, are not in the same

straight line ; and this is what we have not expressed algebrai-

cally ; we have expressed that LM is a mean proportional be-

tween DM and JVM, a property which belongs indeed to a right-

angled triangle, but which may also take place, when the three

points D, A, L, lire supposed to be in a straight line. Indeed, it

is evident that this question may be proposed. To find in the

Fig. 54. direction DL (fig. 54), what distance must be left between the two

straight lines DA, ML, of known magnitude, in order that x\lL

may be a mean proportional between DM and MN, the point N
being the middle of AM. Now this question leads, as one may

easily assure himself, to precisely the same equation as the above,

and this equation gives two solutions, one for the case where the

two points A and M are between D and L, and the other for the

contrary case. It is not surprising then, that, when the first

question becomes impossible, at least in one of its cases, algebra

should give no intimation of it, since it gives the solution of this

second question which is always possible.

94. We are led by what is here said to remark, that there

are two kinds of questions, namely, concrete, and abstract. By

the first, we are to understand such as are of a nature similar to

tlie one before the last, in which the thing sought is specified or

pointed out by some condition, property, or peculiar construc-

tion, which the equation does not express ; abstract questions,

on the contrary, are those in which the quantities are considered

simply as quantities, and in which the equation expresses every

thing contained in the question, as in the one last solved. These

may always have as many answers, either positive or negative,

as there are real solutions to the equations, whereas the number

of answers to a concrete question is often less than the number

of solutions, and less even than the number of positive solutions
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of the equation. The following question is of this kind and will

illustrate what is here said.

95. hetABED (Jig. 55), represent a sphere generated by the Fig. 55.

revolution of a semicircle ABE about its diameter AE. The
sector ABC, by this revolution, generates a spherical sector,

which is composed of a spherical segment generated by the rev-

oluiion of the semisegment ABP, and of a cone generated by the

revolution of the right-angled triangle BPC. It is required to

find when the spherical segment and cone are equal to each

other.

In order to resolve this question, it must be recollected that

the spherical sector is equal to the product of the surface of the

zone BAB by a third of the radius ^C (Geom. 546). Now the

surface of the zone is found by multiplying the circumference

ABED by the altitude AP of this zone {Geo7n. 538) ; conse-

quently, if we represent by r : c the ratio of the radius of a circle

to its circumference, and if we designate ^C by a, and AP by

X, we shall have the circumference ABDE by this pioportion

r:c::a: ABBE, and ABDE =— •

r '

therefore the surface of the zone will be —^—; and, consequently

tlie solidity ol the sector X n «, or, -^—

.

To obtain the solidity of the cone, we must multiply the sur-

face of the circle which serves as a base, that is, the surface of

the circle whose radius is BP, by a third of the altitude CP
{Geom. 524). Now, since CP = CA — AP = a — x, and

CB = a, we have in the right-angled triangle BPC,

BP=SCB—PC = s/a^—a^^2ax—x^= ^^2ax—x^.
But the surface of the circle whose radius is BP, is found by

multiplying its circumference by half of the radius ; and this

circumference is the fourth term of the proportion

? : c : : ^^ax — x^ {Geom. 287),

multiplying this by half o(^ 2 a x— x^, which is the radius, we

have
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c {2 ax — a;2)

for the base of the cone. If we multiply this by a third of the

altitude CP, that is, by —-^-. the result

c{2ax —..^-)^^«-x
2r ^ 3

is the solidity of the cone.

Now, in order that the cone may be equal to the segment, the

sector, which is the sum of both, must be double of each ; hence

a~ c X _, ^2 a X — x^ a — x

3 r
^

2 r ^ 3 '

or, by suppressing the factor 2, common to the numerator and

denominator of the second member,

a^ c x c (2 a X — x'^) {a — x)

"37" ~ 37 '

the equation which resolves the question.

And this equation may be simplified by suppressing the common
divisor 3 r, and the common multiplier c x, which will leave

a^ = (2 a — x) [a — x),

or x^ — d a X ^ — a^,

from which we obtain

X ==
I a ziz a/ ^ a^.

Of these two solutions, only a? = § a — V I «^ can satisfy the

question, since it is evident that x ^ I a -{- \/ ^ a^, being more

than 2 a, that is, more than the diameter, cannot belong to the

sphere.

To construct the solution a; = | a — Vl a^, we put it under

this form, x = ^ a — VI «^ — «^; a"d having taken AM equal

to I a, we describe upon AM, as a diameter, the semicircle AOM,
then inscribing AO equal to a, we draw OM, and apply it from

JW to P toward A ; the point P, thus found, will determine the

altitude AP or x. Indeed, on account of the right-angled trian-

gle AOM, we have

OM, or PM = slAM—Ad=^la^ — a'';

therefore AP = AM — PM = § a — VT^^^-^^ =
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As to the second solution, x = I a -\- a/ ^ a^, it is inapplica-

ble to the present question ; we shall see that it belongs, as well

as the first, to this other question, of an abstract nature, furnished

by the equation

x'^ — 3 a X = — a^, or Sax — x^ = a^.

The known line AN (fig. 56), being divided into three equal Fig. 56.

parts at the points B and D, to find in the direction of this line

a point P, such that the part AD shall be a mean proportional

between the distances of the point P from the extremities A and

N. Indeed, if we designate the third AD of the line AK by a,

and AP by x, we shall have PJV* :^ 3 a — x ; and the condi-

tions of the question give this proportion

X : a : : a : 3 a — x;

whence Sax — x^ = a^,

of which the two roots are

x = la:h Vr«^5
as above found. We shall have both also by the same construc-

tion, except that for the second root, or § « -j- ^ » ^a^
^^,^ apply

MO from M to jP toward JV, and then AP and AP' will be the

two values of x.

Other Applications of Algebra.

96. In order to resolve the last question, we were obliged to

calculate the algebraic expression of a spherical sector, and of

the cone, which makes a part of it. The bodies, which are the

subject of consideration in geometry, being the elements of all

others, often present themselves in our inquiries, and especially

in physico-mathematical questions.

If we represent by r : c the ratio of the radius to the circum-

ference of a circle, a ratio which is known with a degree of ex-

actness sufficient for practical purposes (Geom. 292), the circum-

ference of any other circle whose radius is a will be —
, {Geom.

287), and its surface — X h a, or
^
— (Geom. 289). From this

it will be evident, that the surfaces of circles increase as the

squares of their radii ; for —- being always of the same value,
,i r

Trig. 14
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the quantity —— increases only in proportion to the increase of a^.

If h be the ahitude of a cylinder, the radius of whose base is

a, we shall have -^— X h for the solidity of this cylinder [Geom.

a''^ c
51 6")

: for the same reason we shall have —-— X hf for the so-

lidity of another cylinder, whose altitude is h' and the radius of

whose base is a' ; consequently the solidity of the two cylinders

will be to each other

::tlxh:^ X h', ov : : a^ h : a'^ h'

;

2r 2 r

that is, the solidities of cylinders are to each other as the alti-

tudes multiplied by the squares of the radii of the bases. If the

ahitudes are proportional to the radii of the bases, we shall have

h : h' : '. a : a'^

and consequently h' = —

,

and the ratio a^ h : a'^ h'

becomes a^ h :
,a

or, multiplying by a and dividing by A,

a^ : a'^

;

that is, the solidities are as the cubes of the radii of the bases

(Geom. 518).

We have seen in the Elements of Geometry, that surfaces de-

pend upon the product of two dimensions, and solids upon the

product of three dimensions ; so that, if the several dimensions

of one of two solids, or two surfaces, which we would compare,

have to the several dimensions of the other, each the same ratio,

the two surfaces will be to each other as the squares, and the

two solids as the cubes, of the homologous dimensions ; and more

generally still, if any two quantities of the same nature are ex-

pressed each by the same number of factors, and if the several

factors of the one have to the several factors of the other, each

the same ratio, the two quantities will be to each other as their

homologous factors, raised to a power whose exponent is equal

to the number of factors. If, for example, the two quantities

were a h c d, a' h' d d', and we had
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a : a' : : b : b' : : c : : & : d : d',

then we should have

, ,
a' b

I
a! c .^ a' d

a a a
'

and consequently,

z J / 7 / y 7, I 1 a'^ b c d
a b c d : a' b' c' d' : '. a b c d : ^—

,

a^ '

«'4

What is here said is true not only of simple quantities ; the

same may be shown with respect to compound quantities. Let

the quantities whose dimensions are proportional be

ab -\- c d, a' b' -\- c' d'

;

since, by supposition,

a '. a' '. :b :b' '. : c : c' : : d : d'.

we shall have

,, a' b a' c
-ti

a' d

a
'

a
'

a
'

and consequently

ab A- c d : o' b' -\- d d' :: ab -\- c d : 1 ^

: : a b -\- c d
u~

: : a^ (a b -\- cd) : a'^ (ab -\- c d),

:: a^ : a'\

It follows, from what is here demonstrated, that the surfaces of

similar figures are as the squares of their homologous dimensions,

and that the solidities of similar solids are as the cubes of their

homologous dimensions ; for, whatever these figures and these

solids may be, the former may always be considered as compos-

ed of similar triangles, having their altitudes and bases propor-

tional {Geom. 219), and the latter as composed of similar pyra-

mids, having their three dimensions also proportional (^Geom.

433).

It will hence be perceived, that quantities may be readily com-

pared, when they are expressed algebraically ; and this may be

done, whether the quantities be of the same or of a different

species, as a cone and a sphere, a prism and a cylinder, provided
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only that they are of the same nature, that is, both solids, or

both surfaces, or both &,c.

97. We are taught in the Elements of Geometry, how to find

the solidity of the frustum of a pyramid, and the frustum of a

cone (Geom. 422, 527). If now we designate by h the altitude

of the entire pyramid, and by h' the altitude of the pyramid cut

off, by s the surface of the inferior base, and by s' the surface of

the superior base, we shall have

s : s' : : }fi : h!^ (Geom. 409),

and consequently h'^ == ,oi'h'=h I—

But, if we designate by k the altitude of the frustum, we shall

have A; = h — h',

or, substituting for h' its value

, U Ayr— Ay?
Jc = h-h ^-= -^ (Alg. 165) ;

whence we deduce, by the common rules of algebra,

Now the solidity of the entire pyramid is s X 1^=—,
o 3

and the solidity of the pyramid cut off is s' X -^ = -^,

or, putting for h^ its value,

* X 3 ^7'^

hence the solidity of the frustum will be

A ^ A 5V^
or ^ ('- — ^' ^^^ - ^ ^^ ^^ ~ ^' ^^
sV ~7r>^\ :y7

—
)3 3y-' 3V ^s

putting for h its value, found above, we shall have

I' 'yJ y {s VT — s' y?)
3 (yr - y,7)

^
^i

which is reduced to

^ AyJ— 5'y?\

3V vi-vi' r
or, the whole being divided by y7— y^S

3 (5 + yiJ' + s').
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We see, therefore, that the frustum of a pyramid, or of a cone,

is composed of three pyramids of the same altitude, of which one

has for its base the inferior base s of the frustum, another the

superior base s', and the third the mean proportional between

these yJP, which agrees with the propositions above referred to.

98. If a represent the radius of a sphere, -^— will be the sur-

face of a great circle of this sphere, and —^— or will be

2 a^ c
the entire surface {Geom. 536) ; consequently, x 3 «> or

^—^ X 5 a, or :^ X —^ vvill be the solidity of this sphere
2 r -i r 6

{Geom. 546).

If we designate by x the altitude of any segment, we shall

have, as in art. 95, -75 for the solidity of the sector, and —

(2 a X— x^) —o— ^01' the solidity of the cone, which makes a

part of it ; hence the solidity of the segment will be

a^ c X c ,_ q\ a — ^

-3T--27(2«*-^)-3-
2 a X — x2

~¥~r\
c /3 a x2 _ a;3\ c x2=

3-A-
2—j=2-r(«-*^)^

— 2 gg X -[- g x^ 4. 2 a x2 _ a:3^

r2

from which it will be seen, that the solidity of the segment is

equal to the product of the circle, whose radius is the altitude of

this segment, multiplied by the radius of the sphere minus the

third of this altitude.

When we have the algebraic expression of quantities, it is

easy to resolve several questions that may be raised respecting

these quantities. If, for example, it were asked, what must be

the altitude of a cone which shall be equal in solidity to a given

sphere, and which shall have for the radius of its base, the radius

of the sphere ; designating this altitude by A, and the radius of

the base by a, we shall have for the solidity of the cone

c a2 A
.

27 ^ T"'
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and, since it must be equal to the sphere, which has also a for

its radius, we have

27 ^ "3~—
2"r ^ "3"'

whence h = 4 a.

The altitude of the cone, therefore, must be double the diameter

of the sphere, a result, the truth of which is evident from the

consideration, that the sphere, being § of the circumscribed cy-

linder (Geom. 549), is double a cone of the same base and same

altitude, that is, equal to a cone of the same base and double the

altitude {Geom. 525).

Of Curved Lines and particularly of Conic Sections.

99. Curved lines are not merely a subject of speculation. So

long as the questions, which we have to resolve do not exceed

the second degree, we have no occasion for these lines ; but in

questions of higher degrees, they become necessary. We pro-

ceed now to give a general idea of curved lines, and of the use

that may be made of them in the construction of equations, to

which we arrive in the solution of questions.

Among the curved lines, which are considered in geometry,

some are such that every point may be determined by the same

law, that is, by like calculations and operations ; with respect to

others, the several points are determined by different laws, that

is, by different calculations and operations ; but this difference is

subject to a law.

As to lines drawn at random, such, for example, as are traced

by the pen in writing, they are incapable of being made the sub-

ject of a strict geometry. Still the researches with which we

are occupied lead, by direct and certain processes, to the con-

struction of figures that seem to be regulated by no law.

100. To be able to describe the curved lines, which make the

subject of geometry, it is necessary to know the law to which

the different points of a curve are subjected. Now this law may

be given in several ways ; one is by indicating a process, accord-

ing to which the curve may be described by a continued motion

;

of this nature is the circle, which is described by making a given

line to revolve in a plane about a given point. Another way is

by making known some property that belongs to every point of
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the curve ; thus, knowing that every angle which has its vertex

in the circumference of a circle, and the sides of which are

drawn to the extremities of the diameter, is a right angle, we

can find successively each of the points of a circle, whose diam-

eter is known, by drawing from one of the extremities A (Jig. 57) Fig. 57.

of this diameter, a sufficient number of lines AC, AD, AE, AF,

&c., and letting fall from the other extremity the perpendiculars

BC, BD, BE, BF, &c. ; then C, D, E, F, &c., determined in

this manner, belong each to the circumference of a circle, whose

diameter is AB.
Lastly, this law may be given by an equation, and it may

always be supposed to be thus given, because the two other

ways, of which we have spoken, serve to find the equation which

expresses this law. It is principally under this last point of

view, that we shall consider curves. It is at the same time the

most simple and the most comprehensive, for recognizing the pro-

perties, peculiarities, and uses of curves. Let us then see how

an equation may be made to express the nature of a curve ; and

since, as yet we are acquainted with the circle only, we begin

with this.

101. Let us accordingly suppose that AMB [Jig. 5S) is a Fig. 58.

curve, of which no other property is known except this, that the

perpendicular PM let fall from any point M of this curve upon

the line AB is a mean proportional between the two parts AP,
PB. Let us see how, by the aid of algebra, we can find each of

the points of this curve, and its different properties. If I desig-

nate the line AB by a, the part AP by x, and the perpendicular

PM by y; then PB mW he a — x ; and, since we have sup-

posed PM a mean proportional between AP and PB, we shall

have

X : y : : y : a — x
;

and consequently y^ ^ a x — x^.

Let us imagine AB to be divided into a certain number of

equal parts, ten, for example, and that through the several points

of division, perpendiculars p m, p m, he, are raised ; it is evi-

dent that if, in the equation just found, we suppose x successively

equal to each of the lines A p, A p, he, y will be equal to the

corresponding lines p m, p m, &,c., since, according to the equa-

tion y^, = a X — x^, y is always a mean proportional between x

and a — x, whatever x may be, which is the property belonging
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by supposition, to each perpendicular p m. We can, therefore,

find successively each of the points of this curve, by giving suc-

cessively to X different values, and calculating the corresponding

values of y. If, as we have supposed, a be divided into ten

parts, we shall have a = 10, and consequently

7/^= 10 a; — x^.

If then we suppose successively

a? = 1, a? = 2, 0? = 3, a? = 4, a; = 5,

x = 6, a: = 7, a; = 8, X = 9, a? = 10
;

we shall find successively

y = ^V, y = n/Tg, y = ^/21, y = ^24, y = V25,

y = ^24, y = ^21, y = ^16, y = ^9^ y = VOT
or

3/
= 3, y = 4, y = 4,5, t/ = 4,9, 3^ = 5,

y = 4,9, 2/ = 4,5, 2/
= 4, J/ = 3, y=0.

Thus, if we apply these values of y successively to the perpen-

diculars corresponding to the values 1, 2, &.C., of a?, the points

m, m, &.C., determined in this manner, will belong to the curve,

the property of which is, that each perpendicular^ m is a mean

proportional between the two parts A p and p B of the straight

line AB, a curve which we shall soon see is the circumference

of a circle.

It will be recollected that each of the expressions yg^ ylcj
&,c., has two values {Alg. 106), the one positive and the other

negative. Thus, besides the values of y, given above, we have

also these others,

y= — S, y=— 4, y=— 4,5,y= — 4,9,y=— 5,

y=— 4,9 ,?/=— 4,5,3/==— 4, 3/= — 3' y=0.
To obtain the points of the curve, according to these new

values of y, it is necessary, conformably to the doctrine of nega-

tive quantities, to produce the perpendiculars p m, p m, &,c., and

to apply in the opposite direction, that is, from p to m' the quan-

tities p m', p m', &;c., equal respectively lo p m, p m, &lc.

In order to have a greater number of points belonging to the

curve, it is only necessary to suppose AB divided into a greater

number of parts, a hundred, for example ; or, in other words,

preserving a of the same value, and giving to x intermediate

values between those above assumed, we might find intermediate

values of y, and consequently new points of the curve.
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From the value y= 0, found above, it is evident that the curve

meets the line AB at the point B, where x= a^= 10 ; since the

perpendicular p m m this case, having zero for its value, the

distance of the point m from the straight line AB is 0. It is

manifest, that it ought to meet the line AB at the point A also.

Indeed, since at the places where the curve meets this line, the

value of y must be 0, to find these places, it is only necessary to

suppose y equal to zero, in the equation y^ = ax — x^, which

then becomes = ax— x^= x {a— x); and this is zero in two

cases, when x= 0, and. when x= a; accordingly, y will be

equal to zero in these two cases. Now x is evidently equal to

at the point A, and it is equal to a at the point B ; therefore the

curve does in fact meet the line AB at the points A and B.

From this example we shall begin to perceive how an equa-

tion serves to determine different points of a curve ; before pro-

ceeding to others, we must explain certain words that we shall

have occasion to use hereafter.

102. When we would express, by an equation, the nature of a

curve, we refer, or are supposed to refer, each of the points m,

m, he, to two fixed lines AB and OAO, which make with each

other a determinate angle, either acute, rigtit, or obtuse ; and,

by imagining that from each point 7W, lines m jy, and mp',&LC.,

are drawn parallel to OAO and AB, it is evident that the situa-

tion of this point will be known, when the lines mp' or Ap, and

p m, are known ; or, which amounts to the same thing, if we

know one of these lines and its ratio to the other. Now, when

it is said that an equation expresses the nature of a curve, it is to

be understood that this equation gives, for each point m, the

ratio of ^ p to p m, so that one being known, the other is found

by this means, and, according as this ratio is more or less com-

pounded, the curve itself is of a higher or lower order.

The lines A p, or m p', which measure the distance of each

point m from OAO, one of the lines of comparison, are called

abscissas ; and the lines mp, or p' A, which measure the distance

AB of the other line of comparison, are called ordinates ; the

line AB\s called the axis of the abscissas, and the line OAO the

axis of the ordinates ; the point A, from which we begin to count

the abscissas, is called the origin of the abscissas, and that from

which we begin to count the ordinates, the origin of the ordinates.

In figure 58 these two points are the same, namely, A. There is

Trig. 15
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nothing which reqtiires us to count the abscissas from the same

point to which the ordinates are referred ; but, when there is no

circumstance to determine us otherwise, it is always most simple

to count them from the same point.

The lines Ap, p m, have the common name of coordinates of

the curve; and, considered as belonging indifferently to any point

of the curve, they are called indeterminate. The same name is

given to the letters or algebraic characters, by which these lines

Ap;pm, &c., are designated.

103. Let us now return to our equation, and see if we can de-

duce from it the properties of the curve.

1. From the middle C o{ AB, we draw to any point M of the

curve, the straight line CM; wherever this may fall, the triangle

MFC will be right-angled, and we shall accordingly have

MP + PC = MC,

that is, since PC = AC— AP = i a — x,

jfj^ia^ — (ix-\-x^ = MC.

Now, since MP, or y, is a mean proportional between AP and

PB, we have y^ =^ ax — x'^; whence, by substituting for y^

this value, we have

ax — x^-]-la^ — ax-}-x^ = MC,

or k a^ = MC;
which gives MC= -}a; and this is the casein whatever part

of the curve M falls ; therefore, every point M is equally distant

from the point C, that is, the curve is the circumference of a

circle.

2. From any point Jlfof the curve, the straight lines MA,
MB, being drawn to the extremities A, B, the right-angled tri-

angles MPA, MPS, give

AP + PJ\1 = AJ\I, and PM -\- PB = MB,
or, substituting the algebraic values,

^2 -f 2/^ = -^l antl y^-\-a'- — 2aX'\-x'' = MB;
adding these two equations, and putting for ?/- its value ax — x^,

we have

flS __ 2 ^ 3, _|_ 2 0:2 -f 2 a a; — 2 a:^ = ^^i + iS

;

that is, AM-\-MB = a^ = AB,
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the property of a right-angled triangle, from which we learn that

the an2;le ^MB is always a right angle, in whatever part of the

curve iVi falls {Geom. 128).

3. If, in the equation

x^ -\-y^ = AM,
we put for y~ its value ax — x~, we shall have

2

x^ -}- a X — a;- = a X = AM

;

from which we obtain this proportion

a : AM : : AM : x,

or AB : AM : : AM : AP
',

that is, the chord AM is a mean proportional between the diame-

ter AB and the segment, or abscissa, AF (^Geom. 213).

We might thus find all the other properties of the circle made

known in the Elements of Geometry, by setting out always with

this supposition, that the ordinates p m are respectively mean

proportionals between Ap and p B.

We have counted the abscissas from the point A, the origin of

the diameter, and we have had the equation y^ = ax — x^. If

we would count the abscissas from the centre, or in other words

would take CP, C p, he, for the abscissas; designating these

lines by z, we should have

CP = AC — AP,
or z = ^ a — X,

and consequently, x = ^ a — z.

Putting, therefore, for x this value in the equation

y- = ax — x~,

we shall have

y^^ = a{^a-z) — {hct- z)%

or 1/2 = 1 a2 — z%

for the equation of the circle, the coordinates being supposed to

be perpendicular, and to have their origin at the centre.

In fine, any property, which belongs essentially to every point

of the curve, will give, by being translated into algebra, the same

equation for the curve, at least so long as we take the same ab-

scissas and the same ordinates ; but when we change the origin

or direction of the coordinates, or both, we may have a different

equation ; still it will always be of the same degree. We have

just seen the truth of the last part of this proposition in the

change of the abscissas, which, instead of y^ =zax— x", led to
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the equation jr^= I a- — z^ ; and this, being deduced from the

first, has for its basis the same property. But if we were to set

out with this property, namely, that the several distances MC
are all the same, and each = I a; then designating CP by z,

and PM by y, we should have on account of the right-angled

triangle MPC

which gives y^ = \ a^— z^',

the same equation as that just obtained, although deduced from a

different property.

Of the Ellipse.

104. Let us now inquire what would be the curve in which

Fig. 59. the sum of the distances MF+Mf (fg. 59), of each point from

two fixed points F,/, is equal to a given line a.

To find the properties of this curve, which is called an ellipse,

an equation is to be sought which shall express the relation,

arising from this known property, between the perpendiculars

PM, drawn from each point M to a determinate line, as Ff, and

their distances FP, or AP, from some point F, or A, taken

arbitrarily.

For this purpose, I take for the origin of the abscissas the point

A, determined by applying from the middle C of Ff the line

CA = I a; and having made CB= CA, I designate the lines

to be used, as follows, namely,

AP = X, PM = y,

FM = ~, AF, supposed to be known,= c,

then FP = AP — AF=x — c(*),

Mf= FMf— FM= a — z,

fP = PB — Bf= AB — AP— Bf= a— x— c.

This being supposed, the right-angled triangles FPM, fPM,
give

FM=PM-\-FP, and Mf=PM+fP,

(*) If the point i?/had been taken in such a manner, that the per-

pendicular MP would fall between A and F, then FP would be

c— z\ but this would produce no change in the final equation, be-

cause, in the formation of this equation, we employ only the square

of FP, which is always r!^— 2 c a; -f- c^.
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or ^2 = ^2 4-^2„2ca: + c2,

anda2-2fl2:+ z2 = 3/2 + a2_2a:r + a:2— 2ac+ 2cx + c2.

Subtracting the latter of these equations from the former and

suppressing a^, which is found in both members of the result,

we have
2 az= 2 ax -\- '^a c— 4 ex,

and consequently

a X -\- a c — 2 c X
z = •

a

Putting for z this value in the equation

z'^ = y^ -\- x^ — 2 ex -{- c^,

we have

a^x^-{-2a^cx-\-a^c^ — iacx^ — A ac^x-}-4:C^x^

= 2/2 _j_ ^2 _ 2 c a; + c2

;

or, making the denominator to disappear, transposing and re-

ducing,

a^ y^ = 4 a^ c X— 4 a c^ X— 4 ac x^ -^ 4 c^ x%

or a^y^ = {4ac— 4c^) ax-^{4c'^ — 4ac) x%

or, since 4 c^ — 4 ac is the same as — (4ac— 4c^),

a^ y^ = (4 a c— 4 c^) a X — {4 a c — 4 c^) x\

or, lastly, a"" y^ = {4 ac— 4 c"") {ax— x^)
,

whence
4 a c — 4 c~ , ox

y =—^^— (" ^ — ^ )•

Such is the equation of the curve, in which, any point M being

taken, the sum of the distances MF, Mf, from two fixed points

F, f, is equal to a given line a.

105. This equation would enable us to describe the curve by

points, if we were to give successively to x different values, as

we have done above, with respect to the circle. But, the mode

of proceeding being the same, we shall not repeat the calculation.

106. We can also describe the ellipse by points, in this man-

ner ; having made CB {fig. 60) = CA= i a, we take B r, equal Fig

to any part of AB less than Af, and from the point /, as a cen-

tre, and with a radius equal to B r, we describe arcs above and

below AB, which we cut by arcs described from the point F, as

a centre, and with the radius A r', all the points M, M', M",

M", found in this manner, belong to the ellipse.

107. The fundamental property, from which we have derived

the equation, furnishes also a very simple method of describing

iir. 60.
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this curve by a continued motion. Having taken the two points

^'S'^^- F,f(Jig. 60), at pleasure, and having fixed at these points, by
means of pins, the extremities of a thread of a greater length

than the distance Ff, if we stretch this thread by a style M,
carrying it round at the same lime, the style will trace the curve

in question, since the sum of the two distances of the style from

the two points F,f, will always be equal to the whole length of

the thread.

108. It will be perceived then, that, if the length of the thread

is taken equal to JIB, the curve will pass through the two points

Jl,B; for, since Cf= CF, we have AF=Bf, and consequently

^F +Jlf=Af+Bf=a,
and BF+ Bf= BF+ AF= a.

This is made evident also by the equation ; for, in order to know
where the curve would meet i^/ produced, we must makei/=0 j

now this supposition gives

4 « c — 4 c2 .—— (ax — X-) = :

a^ ^ y >

J 4 a c — 4 c^
,

and, as ^ cannot become zero, the equation requires

that

ax — x^, or X (a — x) = 0,

which can take place in two cases, namely, when x = 0, that is,

at the point j1, and when x = a, that is, at the point B.
109. It is also evident from the equation, that the curve ex-

Fig. 59. tends above, as well as below, the line AB (fg. 59), and that it

is the same on each side of the axis. Indeed, the equation gives

U ac — 4c-.= =^^| a^
(«a:-^-),

from which we learn, that for each value of x, or AP, there are

two values of ?/, or PM perfectly equal ; but, having contrary

signs, they must be applied in contrary directions.

It is moreover evident, that if from the middle C of AB, we
raise the perpendicular DD', the curve will be divided into two

parts perfectly equal and similar ; this is a consequence of the

manner in which it is described ; it is also a consequence of the

equation. But this will be more easily perceived, after we have

further considered this equation.
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110. The line AB is called the transverse axis of the ellipse,

and the line DD' the conjugate axis. The two points F,/, are

called /oci ; and the points A, B, D, D', the vertices of the axes,

and the point C the centre.

111. If we would obtain the value of the ordinate Fm", which

passes through the focus, we must suppose AP, or a? = AF=c.
In this case we shall have

4 « c — 4c2 2\ 4 (fl c — c2)2
y'= oT- {ae-c^)= ' ^, ' ',

and, extracting the square root,

y = ±—^ -;

, r n ,u 4 (a C — C2)
ther.efore m" m'" = -^ .

a

This line 7n" m'" is called the parampAer of the ellipse. The pa-

rameter, then, is less than the quadrvple of the distance c of the

vertex from the focus, since its value —^ -, which is the

same as 4 c , is obviously less than 4 c.
a •'

If we designate this value of the parameter by p, we shall have

4ffc — 4c2 , ,« 4ac— 4 c- ,

p = , ann consequently -= ^ j "^^ equa-

tion of the ellipse, therefore may be changed by substitution,

into one of a more simple form, namely, y~ = — {ax — x^).

112. If we would know what is the value of the line CD, we

have only to suppose, in the equation

2 4 a c — 4 c-

that AP, or x, is AC, or \ a ; we shall then have

g 4ac — 4 c-.. 2 1 ox

which is reduced to ?/2 = « c — c^
;

that is, CI) = a c — c2 = c (a — c) = ^F X BF,

whence ^F : CD : : CD : BF.

We see, therefore, that CjD, or the semiconjugate axis, is a mean

proportional betiveen the two distances of the same focusfrom the

vertices A, B.
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As the line DD' is one of the most remarkable lines in the

ellipse, we shall introduce it into the equation in preference to the

line AF, or c. For this purpose we designate DD' by b ; and we

b
—

^

shall have CD =^ ; and, since we have found CD = a c — c^,

b-
we shall have — = a c — c^, or b^= 4 n c — 4 c^. By mak-

ing this substitution, the equation of the ellipse becomes

We have found p= , or p a= 4 a c — 4 c^ and
^ a

b^= 4 a c — 4 c^; therefore

p a = b^,

or, reducing this equation to a proportion,

a : b : : b : p ;

in other words, the parameter is a third proportional to the trans-

verse and conjugate axes.

113. If, in the equation y^ = —^ (ax — x^), we make the

denominator to disappear, we shall have

^2 j^2 __ ^2 ^Q J, ^2j^

and consequently, y^ : a x — x^ : : b'^ : a^,

or, since ax — x^ = x (a — x) = AF X FB,

PM : AF X FB :: DD : AB;
that is, the square of any ordinate is to the rectangle of the corres-

ponding abscissas, as the square ofthe conjugate axis is to the square

of the transverse ; and since this properly belongs to every point

of the ellipse, it follows that the squares of the ordinates are to

each other as the rectangles of the corresponding^ abscissas.

b"
1 1 4. The equation y^ == -^ [ax— x^) does not differ from

the equation of the circle (101), described upon -45, asadiame-

Fig. 61. ter {fig. 61), except that the quantity ax — o;^ is multiplied by

52
-g- that is, by the ratio of the square of the conjugate axis to the

square of the transverse ; so that if we designate by u any ordi-

nate PJVof the circle, we shall have

u^ = a X — x^x
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putting for ax — x'^ its value u^ in the equation of the ellipse,

we obtain

2 ^^ 2

or, extracting the square root,

y = - u, or a y = u,

which gives y : m : : 6 : a,

or P;H :PJV:: DD' : ^5,
:: CD :ACovCE.

It will hence be perceived, thai the ordinates of the ellipse are

merely the ordinates of the circle described upon the transverse axis,

diminished in the ratio of the transverse axis to the conjugate.

The ellipse, therefore, is easily described by means of the

circle, which may be regarded as an ellipse, of which the two

axes a, b, are equal, or in which the distance from the vertex to

the focus is equal to the semitransverse axis, or in which the

parameter is equal to a diameter ; for, by supposing, in the above

equations, b = a, ov c= ^ a, or p=-a, we have y^= a x— x^,

the equation of the circle.

115. It is clear, therefore, from the equations already obtain-

ed, that it is not with the ellipse as with the circle; for a single

line, namely, the diameter, determines the circle, whereas the

transverse axis is not sufficient for determining the ellipse ; it is

necessary to know further, either the conjugate axis, or its pa-

rameter, or the distance from the vertex to the focus. When
we know the transverse axis and the distance c, the ellipse is

easily described, as above shown. But if the transverse and

conjugate axes are given, it is necessary, in order to describe the

ellipse by a continued motion, to determine the foci, which is

easily done by describing with the semitransverse, as a radius,

and the extremity of the conjugate, as a centre, two arcs cutting

the transverse at the two points jPand f{fig- 59), which will be Fi^. 59.

the foci ; for the sum of the distances FD -\- Df being equal to

a, when these two lines are equal, each must be equal to J a.

If the transverse axis and the parameter are given, the conju-

gate axis is determined by finding a mean proportional between

these lines, as is manifest from the proportion a : b : : b : p {\ 12).

The conjugate axis being found, we can proceed in the manner

already explained.

Trig. 16
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Fig. 59. 116.
]f,

through any point M (fig. 59) of the ellipse, we draw

the line {MGfrojn one of the foci, maJcing the part MG equal to the

distanceMF ; and, having draivn GF, we let fall upon this line the

perpendicular MOT, this last willhe a tangent to the ellipse, that is,

it will meet it in only one point M.
Indeed, on account of the equal lines MF, MG, the perpen-

dicular MT bisects FG ; consequently, if from any other point

JV of the line MT, we draw the two straight lines NG, JVF,

these will be equal to each other. Let us then suppose MT to

meet the ellipse in some other point JV; drawing JVf we should

have FJV-^JYf=MF-}-Mf=GM + Mf=Gf;
but Gf ]s less than GJS -|- JVf [Geom. 40), and consequently

less than FJV-\- JVf; therefore the point JVis without the ellipse

{Geom. 97).

117. The angles FMO, OMG, are equal, according to the

construction just given ; but OMG is equal to the opposite angle

fMJV; consequently, FMO\s equal tofAIJV; therefore two lines

drawn f-om the two foci to the same point nf the ellipse, make equal

angles ivith the tangent to this point.

We learn by experiment that, when a ray of light falls upon

a plane surface, the angle of reflection is equal to the angle of

incidence ; therefore, all the rays proceeding from one of the

foci F, and falling upon the curve MAM', supposed to be capa-

ble of reflection, would be conceiitrated in the other focus.

If from the point ^i we raise upon MT ihe perpendicular Ml,

which will at the same time be perpendicular to the curve, this

line will divide the angle FMf into two equal parts ; for, if

from the right angles IMT, IMN, we subtract the equal angles

FMT, fMJV, the remaining angles FMl IMf, will be equal.

118. We can therefore determine the distance PI, from the

ordinate to the point where the perpendicular Ml meets the axis.

This line PI is called the sub-normal, and the line Mlrhenormal.

To obtain the value of PI, w-e first find that of Fl. Since the

angle FMf'is divided into two equal parts by MI, we have

Mf : MF ::fT:Fl (
Geom. 20

1 ),

and hence Mf + MF : Mf— MF : ://+ Fl.fl-^ FL
But Mf+ MF= a,

and, since MF= z,

we have *^/= « — ^^

and consequently Mf— MF= « — 2 z

;
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also //+ Fl=Ff= AB— 2 AF= a— 2 c,

and fl—FI=Ff—2FI=a~2c— 2FI',

therefore, putting for the above lines their algebraic values, we

have

a : a— 2z : : a— 2 c : a— 2 c— 2 Fl,

whence

a^— 2ac — 2a X FI=a^— '2 a c— 2 a z -^ 4 c z,

and from this we deduce

r,T a z — 2 c zFl= ;

a

a X -4- a c — 2 ex
or, putting for z its value ' (104), we have

^, _ a'ic—2ac^-\-a^x — Aacx-\-Ac^x
^

hut FI = FP ^ PI = AP — AF -\- PI ^ X — c + PI,

therefore FI— x -^ c = PI,

or substituting for FI the above value,

„, a^ c — 2ac^4-a^x — 4:acx4-ic^x
PI = !

^5

! — X 4- c,

_a^ c — 2ac^-\-a^x— Aacx-{-Ac^x—a^x-\-a^c-
a'

'

_2a2c — 2ac2— iacx-\-4:c'^x

2a{ac — c^) — Ax{ac — c^)_ 2a — 4.x „
~2 —

t;^ V" t^
'- ;.

or, putting for a c — c^ its value j- (112),

119. P/being found, it is easy to determine the distance PT
from the ordinate to the point of meeting of the tangent, which is

called the subtangent
',

for, the triangle IMT he'in^ right-angled,

and PM a perpendicular let fall from the right angle,

PI :PM::PM:PT, {Geom. 213),

that is ^I{^a-x): y :: y : PT,

whence PT = ^,^^^l_^y
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putting for y^ its value, — {ax

^ a — X

By means of the algebraic expression of the lines PI and PT,
we can draw a perpendicular and a tangent to the ellipse at any

point M', for, when the point M is given, the perpendicular MP
being drawn, we have the value of AP, or x ; and, as a and h

are supposed to be known, every thing is known which enters

into the value of P7and that o{ FT.
J 20. From the expression for PT, we shall perceive, that if

we draw a tangent to the circle described upon the transverse

Fig. 61. axis JlB {Jig' 61) at the point iV, where the circumference of the

circle is met by the ordinate PM oi' the ellipse, the tangents iVT,

MT, will meet the transverse axis in the same point T. For,

since the conjugate b does not enter into the expression for PT,
this line PT will always remain the same, while a and x remain

the same. Thus the tangents to the corresponding points of all

the ellipses described upon AB as the transverse axis meet in

the same point T.

Fig. 59. If to PT(^^. 59) we add CP, which is ^ a— x, we shall have

CT= <^^:^^ + i «_.= -t^^ =^:^ a — X '
'^ ^ a — X C\F

whence CP : AC : : AC : CT.

121. If we would have the expression for TM, it is easily ob-

tained by means of the right-angled triangle TPM, which gives

— 2 —2 —

2

(ax x^\^ ' b^TM =TP4- PM = " %i- 4- ^ (a a: — x')^^
{} a — x)~ ' «' ^ ''

ax + x^--\-— {±a—xy

Fig. 59. 122. If from any point M {fig. 59) of the ellipse, we draw to

the conjugate axis JDD' the perpendicular or ordinate MP', de-

signating DP' by x', and MP' by y', we shall have

DP'= CD — CP' = CD — PM,
that is, x' := i b — y,

and consequently y =. \b — x'

.

In like manner, we shall have

MP' ^ CP — CA — AP
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that is, y' =z ^a — x,

and consequently x= ^ a— y'.

If we substitute for x and y these values in the equation

y^ = ^l^{ax — x^), or a^y^=::b^{ax — x^),

we shall have

a2 (1 6 - xo ^ = 6^ (« a«— /) - a « - 3/0')

a^ (iP—bx^ + x'^) = b^ {la^ — a y' — ka^ -i- ay' — y'^)

^.a^b^ — a^bx'-\-a^x'^ = \a^b'' — b'^ y'^

b^y'^ = a^bx' — a^ x''\

whence

an equation similar to that obtained for the transverse axis, and

from which similar results may be derived ; thus, the square of

the ordinate P'M to the conjugate axis is to the rectangle oj the

abscissas DP' X P'D', as the square of the transverse axis is to the

square of the conjugate; for, from the above equation, we have

the proportion,

y'^ : bx' — x'~ : : a^ : h^

;

in which b x' — x'^ = X' {b — x') = DP' X P'D'.

We infer also from the same equation, that the squares oftheordi-

nates to the conjugate axis are to each other as the rectangles of the

corresponding abscissas ; and that the ellipse may be constructed by

means of the circle described upon the conjugate axis, by producing

the ordinates of the circle in the ratio of the conjugate axis to the

transverse. See fig. 61.

123. We see, therefore, that the properties relating to the

conjugate axis are similar to those we have found, with respect

to die transverse, at least, so far as the foci are not concerned.

If we would determine on the conjugate axis the lines PT,
P'T, CT, and MT {fig. 62), we can readily obtain ihem by Fig. 62.

means of the analogous ones, found on the transverse, and the

similar triangles, which will be immediately seen by recurring to

the figure. If we would obtain the value of these lines by means

of the abscissas DP', or x', we shall always find the expressions

similar to those we have found, by means of x, for the analogous

lines on the transverse axis.

We give a parameter also to the conjugate axis ; but we un-

derstand by this line, not one which passes through a focus,
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for the conjugate axis has no focus, but a third proportional to

the conjugate axis and the transverse.

124. Hitherto we have counted the abscissas only from the

vertex ; if we would count them from the centre C, designating

the abscissa CP by z, we shall have

AP, or X ^la — z,

hence, in the following expressions, namely,

52

2/' = -2 («^ — ^')»

p^^ ax — x^
(119),

(120),

r-'M=(''^-^' + 5a«-^)')(f|^. (121),

if we substitute for x the above value, \ a — z, we shall have

successively

y' = ^^,{a {la- z) - [la- zY)

= g (I a^-az-\a^ + a z - z') =^^, (| a^-z%

Pi = ^ (i a — (i o — ^) = ^(i a — 1 a + z) = ^ z,

^y ^ g (^ g - 2) - (^ « - z) ^ _ i «^ - 2^

^a — {^a— z) z

The equation y~ = —-{\ a~ — z^) gives

3/ = dr - V* « — 2:^
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from which it is evident, that for each value of CP or z we have

two ordinates PM and PM'. As the values of 2 begin at C and

end at A, this equation would at first seem to give only half of

the ellipse DAD' ; but there is no reason for giving to z positive

rather than negative values ; by giving the latter, we have the

ordinates ;j m, which determine the second half of the ellipse;

and, since putting— z for -f- z in the expression ± - a/I a^— z^

does not alter its value, it follows that the half DBD' is perfectly

equal and similar to the half DAD'.

125. If, from any point ^of the ellipse [fig. 63), we draw Fig. 63.

through the middle C of the axis AB^ that is, through the centre,

the straight line MCM', terminated by the other part of the

ellipse, this line is called a diameter ; and, if through the vertex

M, we draw the tangent MT, and through the centre Cthe diam-

eter NN' parallel to MT, NN' is the conjugate diameter of MM'.

A line m O drawn from a point m of the ellipse parallel to MT,
and terminated by the diameter MM' . is called an ordinate to

this diameter, and MO is called an abscissa. The parameter to

the diameter MM' is a third proportional to MM' and JVJV'.

126. We proceed now to show that the ordinates m O, to any

diameter have properties similar to those of the ordinates to the

axes.

In order to this, I let fall from the points m and O the perpen-

diculars m p, OQ, upon the axis AB ; I draw the line m S par-

allel to the same axis, and 1 designate the lines to be used, as

follows, namely,

AB = a, PM = y, CP = z, ^p = g, Cq=^k;
and I have

AP = ia — z,PB = ia-\-z,

Ap= CA—Cp=CA—Cq— qp = h "—k—g,
pB = CB + Cp = ^ a + k -\- g.

The similar triangles TPM, m S O, give

TP: PMiimSov ^p : SO;
that is,

whence SO = ,
^/ ^

.,
.

J- a^ — z^

The similar triangles CMP, COq, give
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CP : FM : : Cq : QO,
that is, z : y :: k : qO;

whence qO =^
;

therefore p m = qS = QO — SO = ^-^ ^ ^^
.^ ^

z I a-2 — z2

Now, since the point m is a point in tlie ellipse,

—2 2

pm : PJk/: : A p X p B : AP X PB (113),

tiiat is,

(T-i&)--3/'^:(i«-^-^)(i«+^+^):a«-^)(i«+ ^),

or

Z:^ y^ 2gky'^z g^ y^ z^
^

s^ z (i a2 — 2^) + (1 a2 _ 2-2)2 • 3/

multiplying the extremes and means, and observing what quan-

tities are multiplied and divided at the same time by I a^ — z^,

or by z, we shall have

= .^a^ f _y^ f __2 gl< y^ - g^ f,
k^ ?/2

or, by developing the term —|^ {\ a^ — z^), suppressing the

common terms, — 1c^ 3/^, and— 2 g k y^, and dividing by y^, we
obtain

the equation required for our purpose ; but before employing it

in the way intended, let us deduce from it a proposition which

we shall have occasion for.

If we suppose the point O, here considered as any point what-

ever, to be the point C, that is, if the line O m pass through the

centre, or become CK, then CQor k becomes zero, and the line

qp or g becomes CR. Now, if, in the equation just found, we

make A: = 0, we shall have, after making the denominator to

disappear, transposing and reducing, and dividing by \ a^,

^2 1 „2 »2

that is,

CR = \a^ — z''={ka— z) {\a-{-z) = AP X PB.
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Returning to our inquiry, we designate the lines CM, CJV, he,

as follows, namely,

CM=la', CJV^lh', 7)1 = y', CO = z'.

The similar triangles CPM, CqO, give

CM: CO.: CF :Cq,

or I a' : z' : : z : k
;

Z Z' 2^ Z' 2

whence k = -—
-, and k^ = -—-..

The triangles CJVR, in S O, similar on account of the sides

being parallel, give

mO :mS:: CJV: CR,

or y' : g '.: \h' : CR,

whence CR = -^~^, and CR^ o.. /^^_i*''^^

therefore ^ J =\a^ — ^s

from which we deduce

Resuming now the equation

z2 ^ J. a2 _ 22 4 a 5^,

and substituting for g^ and Jc^ the values above found, we shall

have

4
|.a'2 22-r i5/2(^a2_22) 5«

^ j.g "t" JPF'
or, reducing, and dividing by \ a^,

Z'2 _ y'2

or, making the denominators to disappear,

I
6'2 z'2^ j^ rt/2 5/2 __ 1 ^,2 y/2^

from which we obtain

and thence the proportion

y'i
:

1 a'2-_;2/2: ;
5/2

: rt/2,

or m~d : MO X OJW' : : JW : MM'.
Trig.
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Thus the equation, with respect to any two conjugate diameters,

is similar to that before obtained respecting the two axes.

127. If, in the equation y'^ = —^ {\a'^— z'^), we make y' = 0,

we shall have

and consequently z' = ±i\ a'.

The curve, therefore, meets the line MM in two points M and

M, equally distant from the centre C ; thus, in the ellipse, all the

diameters bisect each other at the centre.

6'2

128. As the equation y'^ = -^- (| a'^ — z'^) gives
a'

2

y = zfc-7 Via' '2

it is evident, that if m O be produced, so as to make Om'= Om,
the point m' will belong to the curve ; therefore, each diameter of

the ellipse bisects the lines drawn parallel to the tangent ivhich

passes through the origin M.

129. We may hence infer; 1. that the tangent, at the ex-

tremity JV of the diameter NN', is parallel to the diameter MM'
;

2. sincey= rb - Vl «'^— ^'^= ±- VG «' + -^0 {I a' —z%
we may infer, that the ordinates O m to the diameter MM', are

those of the circle, having MM' for its diameter, but diminished

or augmented in the ratio of a' to b', and inclined at an angle

equal to that of the conjugate diameters. If a' = b', these ordi-

nates are precisely equal to those of this same circle.

If we would know in what part of the ellipse the two conjugate

diameters are equal, we have only to find in what part CP= CR,—2 2

or CP =: CR, or z^ = \ a^ — s^. Now this equation gives

z^ -j-z^=\ a^,

whence z^ z= | a^, and z = ^ I
a^ =i

I a /s/ ^,

which may be thus constructed ; having described upon the

Fig. 61. transverse axis AB {jig- 61), as a diameter, the semicircle

AJVEB, cut in E by the conjugate axis CD, we bisect the arc

AE in JV", and letting fall the perpendicular JV" P, which cuts

the ellipse in M'' and M', CM', CM', equal to each other, will

be the semiconjugate diameters. For, if we designate CP by z,
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since the triangle CPN " is right-angled and isosceles, the angle

dCJV" being 45°, we have

z^-]-z^=^ CN" = \a\

hence z^= | a^,

and z = \a /^\.

130. If, from the centre C {jig. 63), we draw to TM the Fig. 63.

perpendicular CF, the similar triangles TPM, TCF, give

TM.PM:: CT: CF',

whence
^„ PM X CT
^^ = TM~-

In like manner, the triangles TPM, CJVR, similar on account of

the parallel sides, give

TM'.TP:: CJV: CR;
whence

consequently, multiplying the above equations, member by mem-
ber, we have

rr^TM P^X CTxTMxCR PMX CTXCR
^^ X Ljs

tm^^Ttp
=

TP '

or, taking the squares,

Now, we have already found

-2

TP

2 ^2

a"

CT=^ (124),

2 (X fl2 22N2

C^^=:ia2— z2 (126);

substituting these quantities for their equals in the above result,

we have

-3 -2 ^ia«^-^^)4^ a«^-^^)
CF X CJY=z -

^2
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2 2 „o o

CFx CJV=-—
(1 ga _ g2)2

= tV «' ^'^

and CFx CN= ka b.

If now we draw the tangent NT", which produced meets TM in

7, CN X CF expresses the surface of the parallelogram CMUV;
and \ a b, or I a X h ^5 expresses that of the rectangle of the

two semiaxes ; therefore, the parallelograms, formed by tangents

drawn through the vertices of conjugate diameters, are equal to

each other, and equal to the rectangle of the two axes.

131. The similar triangles TPM, CRN, give, also,

PT.PM:. CR.RN,
whence

PT

(Ia2_s2)2 '

_ 62 22

but the right-angled triangles CRN, CPM, give

CR-\-RN= CN, CP-\-PM= CM,
whence

CR + RN-\- CP + PM= CN-\- CM',

substituting for the lines in the first member their algebraic

values, we have

. a2— Z2 _|_^ 4. .2 ^ L' (1 o2 _ .2) ^ C]^J^ cH,

or, the whole being reduced,

.a2_^ . j2.^ ^_|_ CM',
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therefore, the sum of the squares of any two semiconjugate diameters

is equal to the sum of the squares of the semiaxes.

132. If, in the equation

CN=CR + RJY,

2 2

we substitute for CR and RN their algebraic values, we shall

have
2 AZ 2-2

CJV=ka^-z^ + -^,

but TM^(ka^-^' + -"
},. (121),

consequently TM= CJV X ^
""' ~ "'"

.

Now the similar triangles TPM, MP'T, give, by taking the

squares of the homologous sides,

FT: fM::P^M:MT',
(Xft^ 23 \ 2 2 JL flt ^2 -—2

whence iWT' = CJV X
ia^ — z^'

and, multiplying together the members of this equation, and that

above, we have
2 2 / 2 J. «2 22\ / 2 ^2 \

TJ\IXJ\IT'= (^CJVX '\,
j
(CA-X

^ ^3 _ 22 j>

= G/V,

or TM X MT' = CJV.

If now we designate the parameter to the diameter MM' by p',

we shall have

2 CM: 2 CJV:: 2 CJVip' (125),
2

whence 2p' X CM= 4 CJV,

or jy X CM= CJV;
2

therefore, comparing this value of CJV with the one above, we

have

TM X MT' = \p' X CM,
or, in other words,

CM: TM'..MT' .IP'.
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Fig. 64. If upon TT' {jig. 64), as a diameter, we describe a circle, the

circumference will pass through the point C, since the angle

TCT' is a right angle. If now we produce CM till it meets the

circumference in V, we shall have, by the nature of the circle

{Geom. 223),

CM: TM::MT':MV;
therefore, comparing this proportion with the one above, we

obtain

MF= \ p'.

133. From what is here shown we may easily find the axes of

an ellipse, and consequently derive a simple method of describ-

ing it, when we know only two conjugate diameters MM', JVJV',

and the angle contained by them.

We produce CM, making JWF'equal to the semiparameter, and

from the middle Xof CV, we raise a perpendicular XZ, meeting

in Z the indefinite line TT^, drawn through the point M parallel

to JVJV ; from the point Z, as a centre, and with the distance

ZC, as a radius, we describe a circle meeting TT' in two points

T, T, through which and the point C, TC, T'C, being drawn,

these are the directions of the two axes. We then determine

the magnitude of the two axes by letting fall the perpendiculars

MP, MP', and taking CA a mean proportional between CT and

CP ; and CD, a mean proportional between CT' and CP' ; for

it has been shown (120), that CP : C.4 :: C^ : CT; and it is

easy to prove, by means of the similar triangles TPM, TCT',

m
and the known values of TP, PM, and CT, that CT = ~,
that is, that CP' : CD : : CD : CT'.

Of the Hyperbola.

134. Let us now consider the curve, the property of which is

Fig. 65. that the difference of the distances from any point M [fig. 65)

to two fixed points F,f, is the same throughout, and equal to a

given line a.

We proceed to find, as in the case of the ellipse, an equation,

which shall express the relation between the lines PM perpen-

dicular to Ff and their distances FP, or AP, from some fixed

point F, or A, taken arbitrarily upon the line Ff.
Taking for the origin of the abscissas the point A, determined

by applying from the middle C of F/ the line CA equal to * a, I
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make CB equal to CA. This being done, I designate the lines

to be used as follows, namely,

AP = x,

'

PM=z y,

FM = z, AF, supposed to be known, = c
;

then FP = AF—AP = c —x (*),

fPz^fA^AP=fB+AB-{-AP = c^a-\-x',

and, since Mf—MF— a,

we have Mf = a -{- FM = a -\- z.

The right-angled triangles FPM, fMP, give

FP + PM= FM, and fP ~\- PM=fM,
that is,

c2 _ 2 c a: + ^2 _|_ ^2 _ _j;2^

and

c2 _|_ 2 a c + a2 -f 2 c a:+ 2 fi 07 + a;2-f 2/2 r= a^ + 2 fl. z -}- ^2^

Subtracting the first of these equations from the second, and sup-

pressing a^ common to both members of the result, we have

4cCX-\-2ac-\-2 ax ^'^ az^

. ^ c X -\- a c -\- ax
whence z = ' '

;
a

putting therefore for z this value in the first of the above equa-

tions, we obtain

,2 gc-c
1

.t2
[

^2_ 4^^^^+4«c^^+a-^c24-4acx2+2a2c,-|-a%2
^

or, making the denominator to disappear, transposing and re-

ducing,

a^ y^ ^ A a^ c X -\- A a c^ X -\- A a c X'^ -\- A (? x^,

^ [A a c -\- A c^) [a x -j- x^)
;

whence y^ = ^ [a x -\- x^).

135. This equation will enable us, by giving to x successive

values, to describe the curve by points.

We can moreover trace the curve by means of points, if we

take an extent B r {fig. 66) greater than BF, and describe from Fig. 66.

the point/, as a centre, and with the radius B r, an arc to be

cut by another arc described from the point JP as a centre

and with a radius equal to A r.

(*) If the point P were on the other side of F, with respect to A,

FP would he X — c ; but this would not change the final equation.

See note to page 116.
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Lastly, this curve may be described by a continued motion,

in the following manner. We fix at the point / a rule which

admits of being turned about this point. At the point jP and

some point Q of this rule, we attach the extremities of a thread

FM^, less than/Q, the difference between which and/Q being

equal to AB ; then, by means of a style M, we apply a part MQ
of the thread against the rule, moving the style toward A, turning

the rule at the same time, and keeping the thread stretched, the

part FM will thus become less and less, and the style M will

describe MA, a part of the curve in question, and which is called

a hyperbola. Indeed, it isevident, that as the whole extent/ Q,
orfM+ MQ^, is always of the same magnitude, and FM-\-M%
also of the same magnitude, the difference between these, or

fM -\.Mq — FM— Mq,
or fM—FM,
will in like manner be throughout of the same magnitude.

^ (I c ' 1

'

4 c^
136. Since the equation y^ = -^ {a x ~{- x^) gives

= ± J
5^—- (ax + x%

it is manifest, that for every abscissa AP or x, we have two equal

ordinates PM, PM, which fall upon opposite sides of AB pro-

duced ; thus the curve has a second branch AM perfectly equal

to the first, and each is of unlimited extent, since it is evident

that the more we increase x, the more we increase the values of

J4
a c -4-4c2

y, or ± ^1 ^1
{ax^ x^).

137. If, in this same quantity, we make x negative, that is, if

we suppose the point P to fall above A, it will become

|4 a c -{- 4 c2
~"

now x^ — a a;, or a: {x — a), being negative so long as x is smal-

ler than a, the quantity

J4ac4-4c2.3 ,^— i^'-ctx)

is imaginary ; consequently y has no real value from A to B

;

but as soon as x is greater than a, x^ — a x becoming positive,

the values of y become real ; there commences, therefore, at B
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a new portion of llie curve m B m', which, like the first, extends

wiihoiit limit on each side of AB produced. This is moreover

perfectly equal io MAM, for, if we take JB;^ equal to AP,

a;2 — (tx, or Ap X p B, becomes equal to AP X PB; conse-

quently, p m\s also equal to PM.

138. If in the equation f = ^f (« ^ + x) ^^'e make

y = 0, we shall find a x ^ x^, ov x {a -{- x) = 0, which gives

X = 0, and x -\- a=0, or x=— a; therefore the curve meets

AB at the two points A and B. This line AB is called the

transverse axis.

131). If we suppose AP= AF, that is, a; = f , for the purpose

of obtaining the value of the ordinate Fm", passing through the

point F, (which is called ihe focus, as also the point/), we shall

have

y = ± ^
^= (fl c + c2),

_ , |4 (« c + c-^f 2{ac-\. cS)

~^^J -^^
==^

a
'

whence the double ordinate m^' m!" = —^^ ^-—'-. This line is
a

called the parameter of the hyperbola ; if we represent it by p,

we shall have

4 (« c + c2)

^ a

and consequently,

p 4(ac + c2)

a~ a2

Substituting - for its equal, in the equation of the curve, we have

From the value of p we may draw the conclusion, that ihe

parameter of the transverse axis of ihe hyperbola is more than quad-

ruple the distance of the vertex k from the focus F ; for this value,

p= " ^"i —-
, reduces itself to p = 4 c -| , which is evi-

dently greater than 4 c.

Trig. 18
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140. If upon the middle C of AB we raise a perpendicular

DD', making the half CD a mean proportional between c and

a -\- c, that is, between AF and fjl, this perpendicular is called

the conjugate axis of the hyperbola. Designating DD' by 6, we

shall have

c : i b : : ^ b : a -{- c,

whence ^ 6^ = c (a -{- c), or b^ = 4 a c -\- 4 c^.

Putting 6^ for its equal in the equation

2 4ac-4-4c2
2/^= 5 (aa: + a;2),

the equation of the curve becomes

The three equations above obtained, it will be seen, do not differ

from the corresponding ones, respecting the ellipse, except in the

sign of c^ and x^.

The equation y^ = ~ (^a x -\- x^) makes known also a pro-

perty analogous to what we have remarked in the ellipse ; in-

deed, if we make the denominator to disappear, we shall have

^2 y-i __ J2 ^Q ^ _j_ j,2
^^

which gives this proportion

y^ : ax -{- x^ : '.h^ : a^,

or PAl :AFxPB:: DD' : AB,

..CD : AC;
therefore, the square of an ordinate to the transverse axis ofa hy-

perbola is to the rectangle of the corresponding abscissas, as the

square of the conjugate axis is to the square of the transverse, and

consequently, the squares of the ordinates are to each other, as the

rectangles of the corresponding abscissas.

When the two axes a, b, are equal, the equation becomes

y'^ z= ax -{- x^,

which does not differ from the equation of the circle, except in

the sign of the square x^. The curve in this case is called an

equilateral hyperbola.

ri 1 • 4 a c -f- 4 c'
, ,

h rom the equation p = , we deduce

ap = Aac-\-Ac^',

but b'^ = Aac^Ac^,
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consequently ap ^=h^,

which gives a : b : : h : p ;

therefore theparameter to the transverse axis is a thirdproportional

to this axis and the conjugate.

141. If from the point D to the point A we draw the straight

line DA, the rigiu-angled triangle DCA will give

=V^DA = MCDi-AC=V\b^ + \a^

or, substituting for b^ its value 4 a c -{- 4 (^,

DA = ^/c^ + a c 4- i fl^

= c + la = AF+CA= CF.

Therefore to find the foci, when the axes are given, we have

only to apply DA from C lo F and /; and reciprocally, to find

the conjugate axis, when the transverse and the foci are given, we

describe from the point A, as a centre, and with a radius equal

to CF, an arc cutting the perpendicular DD'' in the points Z), D\
142. We see, therefore, that the description of the hyperbola

depends upon two quantities, namely, the transverse and conju-

gate axes, or the transverse axis and the foci, or the transverse

axis and the parameter. After what has been said, the descrip-

tion is easily reduced to one of the methods just explained. If,

for example, we have given the transverse axis and the parame-

ter, taking a mean proportional between these two lines, we have

the conjugate axis, by which we are enabled to find the foci.

143. If we take upon Mf {fig. 67) the part JWG, equal to MF, Fig. 67.

and joining FG, draw through the point M perpendicularly to

FG the line MOT, this line will be a tangent to the hyperbola,

that is, it will meet the curve only in one point M.

From some other point JV, taken in TM, let the two straight

lines JV/, JVjP, be drawn to the foci, and join NG ; it is evident

by the construction, that NF, JYG, are equal (Geom. 52) ; now

JYf is less than NG -j- Gf, and consequently less than JVF+ Gf;
therefore JVf— JVF is less than Gf, that is, less thanMf—MF;
accordingly the point JY is without the hyperbola. The same

may be shown with respect to any other point in TM, except M.

The angles FMO, OMG, are equal by the preceding con-

struction ; but OMG is equal to its opposite JVIMQ, consequently

FMO is equal to JVMCl ; therefore FM, drawn from the focus F,

and JWQ, (/M produced,) drawn from the other focus, make
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equal angles with the tangent at the point M. Accordingly, if

F were a luminous point, all the rays proceeding from this point

and falling upon MAM', would, after being reflected, take the

direction of rays coming from the point /.

144. Let us now determine the subtangent FT. Since the an-

gle FMf'is bisected by the tangent MT, we have

fM:MF::fT:FT (Geom. 201)

;

now, MF being z,fM is equal to z -\- a ', moreover

Ff, or Bf-irJlB-\-AF=a + 2c,

fT, or Ff—FT=a + 2c — FT',

consequently, substituting these values in the above proportion,

we have

z-}-a'.z'.:a-]-2c — FT:FT,
whence z X FT + a X FT= a z -\- 2cz — z X FT,

or {2z-\-a)FT=az-\-2cz,
which gives

2z-\- a

(2 c 4- g) z

(2z + «) ^

, , f.
, 2cx4-ac4-nx /-<,.x

but we have lound z = i^'^^ji
a ^ '

, 1-10
,

4c3:-f-2«r-|-2 nT-\-^^
and accordingly 2z A- a=

(2 c -f g) 2 a: 4- (2 c + g) g

a

__ (2 c -f g) (2 3? 4- g) ^

a

substituting these values in the place of z and 2 z -f « J" the

above expression for FT, we shall have

pr =
(2 c + g) ^^ ^

1^ i

72T+~^ '

r 2c+ a
or, suppressmg the common factor,

'—
a

^^ — 2x4-a

Having thus found F7, it is easy to obtain the value of the

subtanaent PT^ for
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FT=FT—FP = FT—AF-\- AP = FT—c-\-x,

or, putting for i^T its value,

2 X -\- a

2cx-S[-nc-^ax — 2ci -\- 2 x~ — a c -\- ax_
2x-\- a

2 a a: + 2 a;2

2 X -j- «

_ ax-\-x^

2; -j- ^ a'

We see, therefore, that the expression for the subtangent in the

hyperbola does not differ, except in the signs, from that found

for the Shblangent in the ellipse (119).

145. If from PT we subtract AP, we shall have AT, or the

distance from the vertex to the point where the tangent meets the

axis; that is,

ia-Jg-x

^ ax

^ a -\- X

146. From this expression of AT, we shall take occasion to

make some remarks upon the curvature of the hyperbola. We
have seen that each of the two branches AM, AM', is infinite,

Siill the curvature is such that all the tangents, that can be drawn

to the several points of these infinite branches, meet the axis in

the space comprehended between A and C. Indeed, if in the

value of AT we substitute for x all imaginable quantities from

to infinite, the value o^ AT increases only from to ^ a ; for,

when X is infinite, the denominator \ a -\- x must be regarded as

the same as x ; since, if J a is to be retained, it would imply that

X could be augmented, and consequently would destroy the sup-

position we have made, that x is infinite. Now in this case the

quantity -4T reduces itself to "—— , that is, to ^ o ; therefore, the

tangent at the extremity of each of the branches AM, AM', would

jiass through the centre C; and, since the opposite branches

B m, B m', are equal to AjM, AM', and the points A and B are

equally distant from C, it follows that these same tangents are

also tangents at the extremities of tlie branches B m, B m' ; thus

CX, CY {fig. 6G) produced, would represent the lines in ques- Fig.

tion.
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147. These tangents are called the asymtotes of the hyper-

bola ; they are, as we have seen, lines which, proceeding from

the centre, approach continually the hyperbola without meeting

it, except at an infinite distance.

Fi^. 65. 1^ through the vertex A {fig. 65) we draw the straight line A t

parallel to FM, the similar triangles TA t, TFM, give

TP:P3l::TA:A t,

that is,

a X 4- x"^ ^ a X
' '

%j
• •

.—

=

ia-f-x ' J ' ' X a -\- X

whence

At = ^

: At
;

X a X -^ x^ a -|- x'

or, putting for y its value, - ^/n x + x

a -\- X '

which, when x is infinite, becomes ~-—^— , that is, | & or CD,

since a x must be suppressed against x^ and a against x. We
determine the asymtotes in this manner. We raise at the point

Fig. 66. A (fg. 66) a perpendicular AL, and produce it so as to make

AL, AD, each equal to CD ; then through the centre Candthe

points L, L', two straight lines CL, CL', being drawn, these will

be the asymtotes.

Fig. 65. 148. In order to find the expression for CT {fig. 65), .^Tis

to be subtracted from CA, which gives

^ ^a-|-x ^a-\- X Cf '

from which we have this proportion

CP: CA:: CA: CT.

149. If we would have the expression for TM, the right-

angled triangle TPM gives

fM = PJ\l + PT,

or, taking the algebraic values of the terms of the second mem-

ber, (140, 141), we have -

^



a^ + :''•vvPI

PI=

..'^^[ax + x%

Application of Algebra to Geometry. 143

150. To obtain the expression for PI, or the subnormal, the

triangles TPM, MPI, similar on account of the perpendicular

PM being let fall from the right angle TMI, give

TP: PM:: PM : PI,

whence

151. We proceed now to find the equation with respect to the

conjugate axis DD'. In order to this we let fall upon the con-

jugate axis the perpendicular MP', and designating MP' by y'^

and DP' by x', we shall have

CP' = PM=y =\b — x',

P'M^ CP = la-\-x= y', and hence x = y' — | a.

Substituting, therefore, for x and y, these values in the equation

^2 = ^ (o a: + a;2), or a"" y^ = b^ {a x -}- x^),

we shall have

a^ilb- x'Y = b^^ (a(y' - i a) + ^y _ x
„)2)

a2 (1 52 _ ^ ^, _|_ a;'2) = 62 (fl y' _
I a2 + 3/'2 _ a ^/ + 1 ^2)

= 62(_|a2 + y.)

y" = f2(^^'-^^' + ^'')'

We see, therefore, that it is not with the hyperbola as with the

ellipse, since the equation with regard to the conjugate axis is

not similar to that respecting the transverse.

152. If we would have the equation with respect to the axis

AB by counting the abscissas from the centre Cj designating

CP by z, we shall have

z= CA + AP=ia-{-x,
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and X = z — | o.

Substituting this value for x in the equation

we shall have

3/^ = ^(-^-10,

for the ecjiiaiion, with respect to the transverse axis, the abscis-

sas beins, coiinied iVnin the centre.

Will) regnrfl to the conjugate axis DD', if we designate CF%
by z', we shall have

z' = CD — DP' = Ih — x\

and hence

x'=.\h-z'.
Substituting this value for x' in the equation

3/'^ = ^ a ^^ - ^ ^' -f ^'')'

already found for the conjugate axis (151), we shall have

153. If we would refer to the centre, the expressions for PjT,

CT, PI, and TJl, above found (144, 148, 150, 149), we have

only to substitute, as in the first part of the last article, z — 5 a

for X ; thus,

PT= «^+ ^' = a{z-ia) + {z-^ay^ ^ z^- j a^
^

x-f^a z—Xa-\-^a z

cr^r^"^ =
, i"' =^;

^ a -\- X -^ a -\- z — ^ a 2

Pi='-Ai^ + ^) = -.M^ + ^-i^') = -^>

If JWTbe produced till it meets the conjugate axis in T', the

similar triangles TPM, TCT', give

TP.PM:: CT: CT',
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whence

CT'= '^'a^y

but, from the equation y^ = — {z^ — ^ a^) (152), we have

z ^a — ^.^ ,

consequently,

62 CD CD
a^ ~ y ~ PM~~ CP'

therefore,

CP' : CD :: CD: CT'.

154. If, through the centre C of the hyperbola {fig. 68), we Fig. 68.

draw any straight line MCM' terminated in each direction by

the hyperbola, this line is called a diameter. Any straight line

m O, drawn from a point m of the curve parallel to the tangent at

JIf and terminated by the diameter MM' produced, is called an

ordinate to this diameter. MO, OM' are the corresponding ab-

scissas. We proceed to show, that the properties of the ordinates

m O, with respect to the diameters terminated by the curve, are

the same as those of the ordinates MP to the transverse axis.

We let fall from the points m, O, the perpendiculars jnp, OQ,
upon the transverse axis AB ; and from the point m we draw

m S parallel to AP. Designating PM by y, CP by z, Q^phy g,

and C(^ by k, we have

AP= CP— CA= z —la,
BP= CP +BC= z -{-la,

Ap= Cy— CA=Cq—qp—CA= k— g—\a,
Bp= Cp +BC = k —g-\- a.

The similar triangles CPM, CQO, give

CP .PM:: cq-qo,
that is, z : y : : k : qO;

whence qo = ~.

The similar triangles TPM, m SO, give

PT: PM::mS or qp: SO,

Trig. 1

9
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that is, (153),

whence

^:y::g:SO,

SO- ^y
22 — X a2

'

therefore

Now, since the point m belongs to the hyperbola,

p m : PM ::Ap X pB :AP X PB (140),

that is,

or !f_£ _ ^gky'^z _^ ^2 ,,2 ,2

z{z^ — la^) ' {z^ — xa^y
2— ^a2;:: 1(^— 2 gk-j- g^ — ^a^ : z

taking the product of the extremes and means, and observing

what quantities are at the same time multiplied and divided by

z^ — 5 a^, and what by z, we shall have

1.2 1,2

Z^
{f-\a^)-2gkf^

t2

f — ^glif + ^2^'2 „2

or, developing the term —^ {z^ — i a^), suppressing P y^,

and— 2 gky'^, common to each member, and dividing by y^, we

obtain

_if!i: + _^_L-L, _.2_,,2

an equation which will serve to demonstrate the property in

question. But, before making use of it, we shall observe that, if

on each side of the centre C, we lake upon the axis AB the part

CR a mean proportional between BP and AP, that is, such as

will give

CR = AP X PB = z' — i a2;

and if, having raised the perpendicular RN', terminated in JV*'

by the line NJV', passing through the centre C parallel to TM,
we make CJV= CJV', the line JVJV', is called a diameter, and
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the conjugate ofMM' ; also the third proporlional to MM' and

JVJV' is called the parameter to the diameter MM'.

Returning to our inquiry, we designate CM, CJV, he, as fol-

lows, namely,

CJJf= i a', CJV or CJV' = i h', CO = z',Om = y'.

The similar triangles CPM, CqO, give

CM: CP :: CO : CQ,

that is, ^ a' : z : : z' : Jc
;

whence

^ =— , and ^^ = TV-.-

The triangles m SO, CJV'R, similar on account of the sides

being parallel, give

CA"' : CR: : mO :mS,
that is, I b' : CR : : y' : g;

CRxy' A 2 ^ X y' 2

whence g^ ^p-^ and g^ = ^^,f ,

—

2

or, since CR =z^— \ a^, by construction,

Resuming now the equation

1 ^2 A;2
I

^2 z2

22 _ ^ a'

and, substituting for k^ and ^^ the values above found, we shall

have

_ I a2 22 z'2 1/2 z2(z2 — I a2) _ y'2(z2_^q2) ^ ^ ^

^ a'2 z2 -t- ^ 6/2(22 _ ^ «2)
—

^6/2 * « '

or, reducing and dividing by ^ a^,

_ j^ y^
.

.

i.a'^2 — i6'2

or, making the denominators to disappear,
^ _ 1 6'2 ^/2^ _ I ^/2 y2 _ 11^ a'2 b'%

from which we obtain

an equation similar to that respecting the transverse axis.

1 55. If we make y'= 0, we find 2;' ^— \a'^= 0, which gives

z' :^ ± I a'
',
the curve, therefore, meets the line MM' in two

opposite points M and M', distant from the centre each I a', or

CM ; thus all the diameters bisect each other at the centre.

.. +s^rT:7?= s^-5«=
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156. Since the equation y'^= -^ (^z'^ — i a'^) gives

y =^±-Vz'^

that is, two equal values having contrary signs, it is evident that if

m O be produced, so as to make O m'= Om, the point m' will

belong to the curve; therefore, each diameter, MW
,
produced,

bisects the lines drawn parallel to the tangent that passes through

the origin, M.

157. From the same equation, y'^ = - - [z'~ —
\
a'2), we ob-

tain

a"y'' = h'^{,'^-^^a'%

and thence the proportion

y'2 :z'^ — \ a'^: : b'^ : a'^,

or mO: MO X OM' : : JW : ml' :

that is, the square of any ordinate m O, to a diameter terminated by

the curve, is to the rectangle MO X OM' of the corresponding ab-

scissas, as the square of the conjugate diameter is to the square of
the first diameter.

158. If from the centre C we let fall upon TM the perpen-

dicular CF, the similar triangles CFT, TPM, give

TM :PM'.:CT: CF;
whence

^„ P3I X CT

The similar triangles CRJV', TPM, give

PT'.TM:: CB : CJV' or CJV;

whence

Multiplying the above equations, member by member, we have

i.± X Ljy - tm^xPt '

— J"^^ X CT X CR— prj. ;

or, taking the squares of both members,

PT
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But p}w = 2/2 = ^(z2_i„2) (152)^

PT= ^- ^f^^ (153),

CR = z^—\a^ (154),

CT=~^' (153);

substituting these values for the quantities which they represent '

in the above equation, we shall have

_, _. '^(-=- J «^) X 3|^ X (^ - J «')

CFX CA-=^^ (.._^,y
'

or CJ' X CN=\a h.

Now, if we produce JiT {fig. 68) to the asymptote in /, JW/will Fig. 68.

be equal to CJV, as we shall see below, and CIMJV will be a

parallelogram, the surface of which will be

CF X Ml= cFx c^r',

therefore, wherever the point M shall fall, the parallelogram

C7MJV* will always be equal in surface to the rectangle of the

two semiaxes, that is, to I a X § b, or \ ab.

159. The similar triangles TFAJ, CRJV' {fig. 68), give Fig. 68.

TP : PM: : CR : R.N''
;

whence

PM X CR
RJV' =

and RJ?=

TP '

PMx CR

TP
or, the algebraic values of the terms of the second member being

substituted,

-2 ?^(^'-i«')(^'-i«')
RJV' =

62 22

But the right-angled triangles CPM, CRJV', give

CM= CP-}- PM, and CJV' or CJV= OR -f RJ^\
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consequently, subtracting the second equation from the first, we
have

Om'— CK= CP + PM— CR-^ Rn\
or, substituting the algebraic values,

CM- CJ\ = z^ + ^' {f- \ «')- {z'- k a^)-^
ri. I o^ — \ h^

;

that is, the difference of the squares of two semiconjugate diameters

is alioays the same, and equal to the difference of the squares of

the semiaxes.

It follows from this, that in the equilateral hyperbola each

diameter is equal to its conjugate ; for, if a = J, we shall have

CM— CJV = 0, and consequently CM = CJV.
2 2 2

160. If, in the equation CJV =z CR + i?JV', we substitute for

CR and RN' their algebraic values, we shall have
2 7,2 -^2

CN=z^-ka^+'^',

but, according to what has already been shown (153),

therefore
2 2 -2 J. „2

TM = 6W X f-^.

Now the similar triangles MPT, MP'T', give, by taking the

squares of the homologous sides,

Ft.TM.: P'M: tSl

TM= { —o- +z^— ia'

CNX {z^ - i«^)
Z2

TM-^'^X,

whence

Multiplying therefore the two last equations, member by member,

we shall have

TM X tS = CJV,

or TM X T'M = CJV.

If now we designate by p' the parameter to the diameter MM^
we shall have
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2CM:2 CJV::2 CJV: p';

whence 2fx CM= 4 CJV,

or ^p' X CM= CJV,

therefore, TM X T'M=\p' X CM,
which gives the proportion

CM .TM:: T'M :
i p'.

161. From what is here said we may readily find the axes of

the hyperbola, and thence derive a simple method of describing

the curve, when we have given only two conjugate diameters

and the angle contained by them. We take upon MC (Jig. 69), Fig-

a line MH equal to | p', and from the middle iof CH we raise a

perpendicular iZ cutting in some point K the line MT drawn
through the point M parallel to the conjugate JVJY'. From this

point K, as a centre, and with a radius equal to the distance

from ^to C, we describe a circle meeting MT in two points T,
T', through which and the centre TC, CT' being drawn, these

will be the directions of the two axes; for it is evident, 1. that

the angle TCT' will be a right angle, since the circumference

passes through the point C, and has TT' for its diameter ; 2. by
the nature of the circle, we have

CM :TM:: T'M : MH,
therefore, since by construction,

MH = ip',
we have

CM: TM: : T'M:lp'.
Having thus found the direction of the two axes, we determine

their magnitude by letting fall from the point M the perpendicu-
lars MP, MP', and taking CA a mean proportional between CP
and CT, and CD a mean proportional between CP' and CT
agreeably to what has already been made known (148, 153).
When the two conjugate diameters are equal, the parameter

is of the same magnitude ; accordingly MH = MC, the two
points of section H and C coinciding, and MC is a tangent to the
circle

;
so that to find the centre K, it is only necessary to raise

upon CM a perpendicular at the point C.

Of the Hyperbola with reference to its Asymptotes.

162. The hyperbola, considered with reference to its asymp-
totes, has certain properties, a knowledge of which may be
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useful. We proceed, therefore, to consider them. It is necessary

here to recollect how the asymptotes are determined. See art.

147.

Fig. 70. We now refer each point E (Jig. 70) of the hyperbola to the

two asymptotes CLO, CL' o, by drawing the line £Q parallel to

• one of them, and we seek the relation subsisting between the

lines Eq and CQ.
In order to find this relation, we draw through any point E,

the line OE a parallel to the conjugate axis DD', and the line ES
parallel to CLO; through the vertex A we draw AG parallel to

CL' 0, and we designate CA, CD, &c., as follows, namely,

CA = la, CD or AL or AL' = | 6, CP = z,

PE = y,AG = m, GL = n, Cq= t, QE = u,

The similar triangles CPO, CAL, give

CA.AL:: CP : PO,
or |« :

' 5, or a : h : : z : PO
whence we1 have

PO = Po = ^,

also

Cl

EO = y, and E o =

and consequently

EOxEo = ^"f '.

_bz
~ a

or, putting for 2/2 its value ^{z^ — \ a^) and 1

that is.

EOxEo = \h^

EOx Eo= CD = AL,

+ y,

a property which belongs to every point of the hyperbola, since

the point E has been taken at pleasure in any part of the curve.

103. The similar triangles Q£0, ES o, and AGL, give

AL-.AG:: EO : Eq,
AL: GL::Eo:ES',

whence, multiplying the proportions in order, we have

AL: AG X GL : : EO x E o : Eq x ES,
that is,

\b~:mn::ib^:ut;
whence ut = mn,
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the equation of the hyperbola with reference to its asymptotes.

Thus at any point E of the hyperbola, we have always JE'Q X ES
or rather E^X Cq = AG X GL.

If now we suppose the point E to fall upon A, we shall have

CQ= CG, and Eq = AG;
and consequently,

CGXAG = AGX GL,
from which we deduce

CG= GL;
and, since the point G thus becomes the middle of CL, we shall

have

CG = AG= GL;
for the circle, described upon CL, as a diameter, and which

would consequently have CG for its radius, must puss through

the point A, since the angle at .4 is a right angle, we have there-

fore

and hence ut = mP = CG.

This constant square m^ or CG, to which the product v t or

CQ. X Q-B is always equal, is called the power of the hyperbola.

164. By means of the property just demonstrated, we can

deduce this other; namely, Iffrom anypointE of the hyperbola,

we draw any straight line RE r terminated by the asymptotes, the

parts RE, m r, intercepted beUveen the curve and the asymptotes,

will be equal. For, if through the point m we draw hmH, paral-

lel to OE 0, the similar triangles REO, R mH, give

ER'.Rm..EO'.Hm;
and the similar triangles r hm, r o E, give

Er : mr : : E : mh;
multiplying these two proportions in order, we have

ER X Er:Rm X mr::EO X Eo:Hm X mh.
Now the two products EO X E o, H m X mh, are equal each

2
,

to CD {162); consequently,

ER X Er = Rm X mr,
or

ERx{Em-{-mr) = {ER -\- E m) X mr,

the multiplications indicated being performed, and ER X m,r

being suppressed in each member, we have

Trig. 20
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ER X Em = Em x mr,

therefore ER = mr.

165. From what has been proved, we infer, that every tan-

gent T? to the hyperbola, terminated by the asymptotes, is bisect-

ed at the point of contact M.
166. If through the point M, we draw IMi parallel to DD',

and if through any point E we draw REr parallel to the tan-

gent Tt, the similar triangles TMI, REO, give

TM :M1::RE:E0;
and the similar triangles M it, Eo r, give

MtorTM.Ml.iEriEo',
Multiplying these two proportions in order, we have

TM : Ml X Mi : : RE X Er : EO X E 0.

Now the two products MI X M i, EO X E o, are each equal to

2

CB; therefore,

™=REx Er.

167. If from the centre C we draw the diameter CMV, it will

bisect the line R r parallel to T t, since it passes through the

middle Mo{ Tt (165, a/it/ Geom. 211) ; accordingly, designating

CM, TM, he, as follows, namely,

CM = la', TM= lq, 0^= 2;', and the ordinate VE = y'',

we shall have, from the similar triangles CMT, CVR,
CM :TM:: CV : VR,

that is,

\a' : ^q, ov a' : q: : z' : VR
;

whence

a'
'

consequently

RE=^^— y', and Er = ^ 4- y';
a' ^ '

a' ' ^ '

and, since RE x Er = TM^ i q^,

we shall have

but

y'^=r^

3/'' = S(^"-^«'')(1^4);
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therefore, by substituting this value for y'^, we have

and

%"=

Z'2
nnd, dividing by -^— i, we obtain

(5^
-*'Ha-^^ -'; = "'

Dbts

^2 _ 5/2^0,
which gives

that is, JWTis equal to ON, CJV being the semiconjugate of CJIf,

which we promised some time since to show (158). We have

therefore {jig. 68) Ml = CJV. Fig. 68.

168. We have moreover for every straight line REr, parallel

to the conjugate CJV {Jig. 70), RE X Er = CJV. Fig. 70.

169. We see, therefore, that knowing two semiconjugate diam-

eters CJyi, CJV {Jig. 71), and the angle contained by them, it is Fig. 71.

easy to describe the hyperbola by points. Indeed it is evident,

from what has been said, art. 165, 167, that, drawing from the

origin J[l of the semidiameter CM, the line TM t parallel to CJV,

and taking in each direction from the point M the parts MT,
M t, equal each to CJV, if, through the centre C we draw the

lines CT, C t, these will be the asymptotes. And, from what

has been demonstrated (164), it will be seen that, if through the

point M, we draw as many lines PMQ, P31Q, as we please,

making in each PO = M(^, the points O thus found will belong

to the liyperbola sought. We can then, by means of the points

O, find other points, as F, V, &ic., by drawing the straight lines

ROS, ROS, he, and making SV= RO.
170. We hence see also how, between two lines given for

asymptotes, we can describe an hyperbola which shall pass •

through a given point between these lines.

171. Lastly, by bisecting the angle of the asymptotes and its

supplement, we shall have the directions of the two axes, the
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magnitude of which may be determined in the manner already

explained (161), which furnishes another method of resolving the

question considered in the article here referred to.

Of the Parabola.

172. We now propose to find the properties of the curve, in

Fig. 72. which each point is equally distant from a fixed point i^(^^. 72),

and a straight line XZ, the position of which is known ; that is,

of a curve, from each point of which letting fall the perpendicu-

lar MH, we have throughout MF = MH.
From the point F we draw FV perpendicular to JiZ, and

bisect FF in A; A will be a point in the curve, since AV= AF;
this point is the vertex.

In order to investigate the properties of this curve, which is

called ?i parabola, we proceed to find an equation, which shall

express the relation between the perpendiculars MP, let fall

upon FV, and their distances AP from the point A. We desig-

nate the lines to be used, as follows, namely,

AV or AF =.c, AP = x, PM = y ;

and we shall accordingly have

VP=AV+ AP = c-\-x = MH',

also, since MF= MH,
MF =c -\- x;

moreover

FP=AP — AF=x — c.

Now the triangle FPM gives

FP-\-PM = FJ\l,

that is, the algebraic values being substituted,

2 c a; -f c'-^ + 1/2 = c2 4- 2 c a: + a;2,

or, transposing and reducing,

y^ = 4 c X
;

the equation of the curve, from which we learn its properties.

1. This equation gives 3/ = ± y4 c x; whence, for the same

value of X or AP, we have two equal values of y or PM ; but, as

one is positive and the other negative, they fall upon opposite

sides of the indefinite line APT, called the axis, that is, they are

PM and PM' ; the curve, therefore, has two branches AM, AM',

perfectly equal, and of unlimited extent, since it is evident, that

the more we increase x, the more we increase y4 c x or y.
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2. If we make x negative, we shall have

that is, imaginary ; the curve, therefore, does not extend above

the point »4.

3. If we make x= c, for the purpose of obtaining the ordinate

passing through the point F, which is called ihe focus, we shall

have

y = ± a/T?= ± 2 c,

that is, F m" is equal to twice AF, and 7n" m'" equal to four times

AF. This line which passes throu|;h the focus is called the

parameter of the axis. Thus, in the parabola, the parameter of

the axis is quadruple the distance of the vertex from the focus.

4. Accordingly, if we designate this parameter by p, we shall

have A c = p, and the equation of the parabola will become

y^ =p X.

173. Having the equation of a parabola, we can easily describe

the curve by points ; we have only to give to x different values,

successively, and to calculate the corresponding values of y.

11A. We can moreover describe the curve by points, in this

manner ; having selected the point A, to be taken as the vertex,

and the indefinite TVl, as the direction of the axis, we take the

parts AV, AF, equal each to | p, the point F will be the focus
;

we then raise upon each point of the axis the indefinite perpen-

diculars MM', and describe from the point F, as a centre, and

with the distance VP, as a radius, two small arcs cutting each

perpendicular in two points M and .M^ ; these points will form

the parabola ; since FM, thus made equal to VP, will be equal

to MH, the straight line VH being supposed perpendicular to

the axis. This straight line XVH is called the directrix.

175. Lastly, we can describe the parabola by a continued

motion with a square VHf We attach to some point/ of one

of the branches of this square the extremity of a thread equal in

length to/if; and, having fixed the other extremity to the point

F, we apply, by means of a style M, a part of the thread against

fH, and keeping the thread always stretched, we slide the other

side of the square along ZX ; the style M will thus trace the

parabola MA.
176. From the equation y^ == p x, we learn that, for each

point M, the square of (he ordinate MP is equal to the rectangle

of the corresponding abscissa and the parameter.
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It is evident also from the same equation, that the squares of
the ordinates are to each other as the abscissas, that is,

FM:pm : :AP:Ap;

for PM=^px^P,
2

and p m =p X ^p,
2 2

therefore PM : p m : :p X ^P
: p X '^p,

..AP.Ap.
If, in the equation of the elhpse

3/'=
:^,

{ax—x^) (104),

we suppose the transverse axis a to be infinite, x^ may be sup-

pressed, as too small to affect a x, the same may be said of 4 c^

with respect to o c ; the equation then reduces itself to

y A a c X ax 4t n^ c x
y = —

o

= rj— ==4 C X,^ a^ a^
'

which is the equation of the parabola ; therefore, the parabola is

simply an ellipse of which the transverse axis is infinite.

Fig. 72. 1'7'7. If, having joined the points F, H (fig. 72), we draw to

the line FH from the point M the perpendicular J^ZOT, this line

will be a tangent to the parabola, that is, it will meet it in only

one point M. From any other point JV of this line, JVF, JVH,

being drawn, and the line JVZ perpendicular to XZ, if the point

JV* belonged to the curve, we should have JVF = JVZ-, but JVZ"

is less than JVH, which, by construction is equal to JVF.

178. The angle FMO being, by construction, equal to OMH,
which is equal to its opposite /^iA*, it follows that FJVIO is equal

tofMJV; rays of light, therefore, proceeding from the point F,

and filling upon the curve Al'AM, would be reflected in lines

parallel to the axis ; and reciprocally, rays of light coming in

lines parallel to the axis would, upon being reflected, be concen-

trated in the focus jP.

179. The line .MH being parallel to VP, the triangles HOM,
TOF, are similar; they are moreover equal, since HO is equal

to OF; accordingly

FT=MH = PV ==x + c;

consequently

PT=FT + FP= x-^c-\-x—c = 2x;
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therefore, the subtangent PT of the parabola is double of the

abscissa AP.

180. If at the point M we draw to the tangent TM, the per-

pendicular MI, the similar triangles TPM, PMI, give

TP :PM:: PM : PI,

that is,

2x:y::y:Pl',
whence

PI=
2x'

or, since y^ = p x,

PJ=?^=i P-

Therefore, in the parabola, the subnormal is the same for each

point, and equal to half the parameter.

181. Every line MX {fig. 73), drawn from a point M, of the Fig. 73.

parabola, parallel to the axis AQ^, is called a diameter; and each

diameter has a parameter, which is quadruple the distance MF
of the origin of this diameter from the focus. Every straight

line m O drawn from a point m of the parabola, parallel to the

tangent TM that passes through the origin M of this diameter, is

called an ordinate to this diameter. We shall now show that the

ordinates to any diameter whatever have the same properties, as

the ordinates to the axis.

We draw the ordinate MP to the axis, and from the points m,

O, the lines mp, OQ^, parallel to MP, also m S parallel to the axis.

Designating AP by x, PM hy y, Q^p by g, A(^ by k, we have

Ap = k — g. The similar triangles TPM, m SO, give

TP :PM::mS:SO,
that is, 2 X : y : : g : SO

;

SO gJL

whence

consequently

pm= qs=qo — so = PM— so=y — ^.
Now, since the point m belongs to the curve, we have

pmiPM: :Ap:AP,
that is,
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(^-e)y — srf.) =2/': •^—.
2xy

whence, taking the product of the extremes and means, we have

which reduces itself to

'4a;
p-2

or 4^ =: Jc X.
4 X

If now we designate the abscissa, MO by a;', and the ordinate

m O hy y'^ we shall have

MO = Pq =Aq— AP= k — x, that is, a;' = ^ — a:

;

and consequently

0-2

£— = x\ or p-^ = 4 X x' ;

but the right-angled triangle m ^SO gives

that is,

Substituting, therefore, for g^ its value 4 a? x' ^ above found, and

for y^ its value p a? (1'72), we shall have

4 a? a;' -j . ^ or 4 a: a;' -{"J'
'^' or (4 a: -(- js) a'' = 3/' ^.

If we designate the parameter to the diameterMK byp', we shall

have, by hypothesis,

j9' == 4 FM,
that is, since FMh equal to a:

-f- c (172),

^?' = 4x + 4c = 4a?-f-p;
substituting p' iox \ x -\- p in the above result, we obtain

p' 0^ = f^
The equation, with regard to any diameter, therefore, is the same

as that respecting the axis. Accordingly, in the jmrabola, the

square of the ordinate m O to any diameter MX, is equal to the

rectangle of the abscissa and parameter to this diameter ; and the

squares of the ordinates to any diameter are to each other as the

corresponding abscissas.
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182. If we would describe a parabola, which has an indefiniie

line MX for a diameter, a given line p' for the parameter to this

diameter, and the angle contained by the diameter and its ordi-

nates also given ; according to what precedes, we draw through

the origin M a line JYJ)1T, making with MX the angle JVMX,

equal to the given angle. Through the same point M we draw

MF, making with MT the angle FMT equal to JVMX ; and,

having made MF equal to | p', the point F will be the focus of

the parabola (178, 181) ; consequently, if we draw through the

point F the indefinite line TFQ^ parallel to MX, and meeting TM
in T, this will be the direction of the axis; in which the vertex

A is determined by letting fall the perpendicular MP and bisect-

ing PTin A (119). The focus and vertex being known, the

parabola is easily described.

183. The three curves which have been the subject of consid-

eration are called conic sections, because they are obtained from

a cone by means of a plane cutting it. The section is an ellijjse

(plate IV. Jig. 75), as AMvi B, for example, when the cutting Fig. 75.

plane meets the two sides CH, CI, on this side the vertex C,

the single case excepted, in which this plane makes with the side

CI the same angle, as the other side CH makes with the base,

when the section is a circle.

If, on the contrary, the cutting plane meets only one of the

sides of the cone, or meets the second CH (Jig. 76), only ac- Fig. 76.

cording as it is produced, the section is a hyperbola, as AM m.

If the cutting plane be parallel to one of the sides of the cone,

the section is a parabola, as AM m (Jig. 77). Fig. 77.

Let the cone CHI (Jig. 75, 76), be supposed to be cut by a Fig. 75,

plane passing through the vertex and the centre of the base, or
'^^'

through the axis ; the section will be a triangle. Let the cone

now be cut- by three planes AM m, FMG, H m I, perpendicular

to this triangle, the last two being also parallel to the base of

the cone. The two sections FMG, Hm 1, will be circles, meet-

ing the section AM m, in M and m. The intersections FG, HI,
of the planes of these circles with the triangle through the axis,

will be the diameters of these same circles. The intersections

PM, p m, of these circles with the plane AM in, will be perpen-

dicular to the plane of the triangle, and they will at the same

time be ordinates of the circle and of the section AM m.

Trig. 21
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This being supposed, the similar triangles APG, A p 1, give

AP:Ap: : PG
:
p I

;

and the similar triangles BFP, BHp, give

PB:pB::FP:Hp;
multiplying these two proportions in order, we have

AP X PB.ApxpS ::FP xPG-HpxpI-
But., by the nature of the circle,

FPX PG = PM, and Hp X p I= pm,

consequently

AP X PB :Ap X pB :: PM.p m;

therefore the squares of the ordinates of the section AM m are

to each other, as the rectangles of the abscissas. Now these

abscissas fall on different sides of the ordinate in figure 75, and

on the same side in figure 76 ; wherefore AM m in the former is

an ellipse, and AM m in the latter is a hyperbola.

As to figure 77, tlie same things being supposed as above, we
2

have, by the nature of the circle, PM= FP X PG;
2

and p m = H p X pi,

or, on account of the parallels P p, FH, and FP, Hp, which

give FP = Hp,

pm= FP X p 1;

consequently

PM : pm: : FP X PG : FP X p I,

::PG:pI;
or, on account of the similar triangles APG, A p 1,

PM:pm: : AP : A p,

that is, the squares of the ordinates are to each other as the ab-

scissas ; therefore the curve is a parabola.
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ANALYTICAL GEOMETRY.

The formula, sin a^ — sin 6^ = &;c., 5th line from the bottom

of page 24th, is found thus
;

•Multiply the two first formulas of art. 11, member by member,

and we shall have

• , , T_\ • , 7\ sin a cos 6 4- sin 6 cos a sinacos5— sinJcosa
sm(a+6)sin(a—6)= J X ^

sin a^ cos W— sin }fi cos a?

_ sin g^ {B?-— sin W)— sin ^ {m— sin g2)

= sin a^— sin }fi.

Also by substituting, in the second of the above equations,

R^ — cos a^ for sin a^, and W — cos h^ for sin 6^, we shall

have, in like manner,

sin (o -f 6) sin (a — 5) = cos h^ — cos a^.

The formula of the 4th line from the bottom is found in the
same way.

In order to obtain the formula of the top line of page 25th, we
have

tBnga=:^iiB^(S),,a„g6 = «i!^.
cos a ^ ^' & cos b '

whence, by adding,

tang a + tang 6 = ^ ^'" "
-f
^ ^^" ^

° cos a ' cos 6

R sin a cos 6 -{- R sin b cos a

cos a cos b

__ R (sin g cos 6 -f- sin b cos a)

cos a cos 6

cos a cos 6

JR2 sin (a-\-b) ,= -A\ -^ (11).
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The three following formulas are found in a similar manner.

For the 5lh we take the product of the two first, thus

;

(tang a -\- tang h) (tang a — tang h)

or

n ,„ i?'* sin (a -f- 6) sin (a— 6)
tang cr — tang tr = ^^—^-^! r^ -'

^ ° cos a^ cos 0^

For the 7th we have

2.1 1

\^ ^ \ I t; sin - (fi + &) cos - (a — h)sm a -|- sin 6 R 2 ^ ^ ^ 2 ^ ^

sin a — sin 6 2 1 , , , s . 1 / in

^ cos -(a + 6) sin ^{a — b)

(27)

= tang
2 (« + ^) cot ^ («— b)

= ^^"4(" + ^) tangH^-fe)

tang 4 (« + ^)

tang J^ (a — 6)*

The first formula of the 8th line is obtained in a similar man-

ner, and the 2d formula of the 8th line is derived from the 1st,

by supposing b = 0.

The second formula of the 12th line is found by means of the

formula near the bottom of 24th page, namely,

R^ R^
sec a = , or cos a = :

cos a sec a

thus

R~ ^. R~ sec a -\- sec b

cos a -j- cos b sec a ' sec b sec a sec b

cos a — cos b R^ R^ sec a— sec 6

sec a sec b sec a sec b

sec a -\- sec b sec a -f- sec b

sec 6 — sec a sec a — sec 6*

The first formula of the 13th line is deduced from the formula

JR sin a ...
tang a = , which jrives° cos a °

tang a cos a

R
R2

or, since by art. 8, cos a = ,

tang' a R^
sin a = -Y^R sec a
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jR tang a

sec a

R tang a ^ /• o t= ^ [see fiff. 3.1
^R^ _[_ tang a2 ^ ^ ""

Moreover, the above formula for the tang, gives

J? sin a
cos a= ,

tang a

and, by substituting for sin a the vahje just found, we have

R X R tang a
cos a = ^

tang a a/R^ -j- tang a^

_ R^
~ a/R^ -\- tang a2*

In the 1 5th line ;—since the formula sec a= , when a= ^ n
cos a ^ i'

gives

'^^ ^ ^ = c-^Tf^
=

I^R
= ^ ^' ^^ ^^^^ I sec H = /?.
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