FONCTIONS

Table des matières

I	Fon	ctions usuelles	2
	I.1	Fonctions en escalier	2
	I.2	Fonctions affines	2
	I.3	Fonction logarithme	3
	I.4	Fonction exponentielle	4
	I.5	Fonctions puissance	6
II	limi	ites .	7
	II.1	Interprétation graphique	7
	II.2	Limites des fonctions usuelles	8
	II.3	Opérations sur les limites	9
		II.3.1 Limite d'une somme	9
		II.3.2 Limite d'un produit	9
		II.3.3 Limite d'un quotient	10
		II.3.4 Compositions	10
	II.4	Calcul de limites dans les cas de formes indéterminées	11
	II.5	Croissance comparée de l'exponentielle, du logarithme et des fonctions puissance	12
II		ivation	12
	III.1	Nombre dérivé en un point	12
		Fonction dérivée	
	III.3	Dérivées successives	14
	III.4	Opérations	15
	III.5	Équation de la tangente	16
IV	Étuc	de des variations d'une fonction	16
	IV.1	Lien entre dérivation et sens de variation d'une fonction	16
	IV.2	Extremum d'une fonction	17
	WЗ	Résolution de l'équation $f(r) = \lambda$	18

I Fonctions usuelles

I.1 Fonctions en escalier

Définition 1

Une fonction en escalier est une fonction

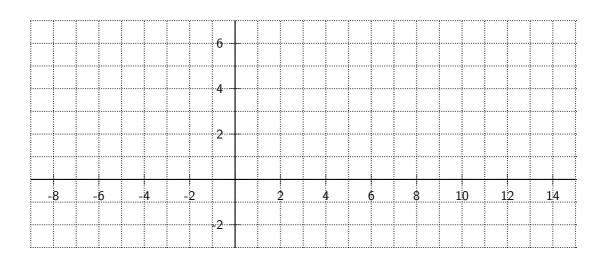
Exemple 1
La fonction définie sur $[-8;+\infty]$ par $f(x) = \begin{cases} 6 & \text{si } -2 \le x \le 0 \\ 3 & \text{si } 0 < x < 4 \\ 1 & \text{si } 4 \le x \end{cases}$

$$-2 \quad \text{si} \quad -8 \le x < -2$$

3 si
$$0 < x < 4$$

1 si
$$4 < r$$

est une fonction en escalier.



I.2 Fonctions affines

Définition 2

a et b sont deux réels donnés. La fonction définie sur \mathbb{R} par f(x) = ax + b est appelée

- ➤ Le réel a est
- ➤ Le réel b est

Une fonction affine est dérivable sur $\mathbb R$ de dérivée $f'(x)=\dots$ D'où les tableaux de variation suivants :

a > 0

signe de $f'(x)$	
variations	
$\operatorname{de} f$	
signe de <i>f</i>	

a < 0					
x					
signe de $f'(x)$					
variations					
$\operatorname{de} f$					
signe de f					

Exemple 2

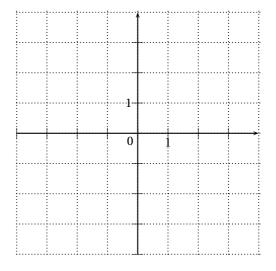
Le graphique ci-contre représente les droites d'équation : $d_1: y = x + 1$

$$d_2: y = 2$$

$$d_3: y = -3x - 2$$

$$d_4: x = -1$$

$$d_5: y = \frac{3}{4}x - 3$$



I.3 Fonction logarithme

Définition 3

La fonction <u>logarithme népérien</u>, notée ln, est l'unique primitive de la fonction $x \to \dots$ définie sur qui s'annule en

Conséquences directes:

- ln(1) =
- la fonction logarithme népérien est dérivable sur] 0 ; $+\infty$ [et pour tout x > 0, $\ln(x) = \dots$

Propriété 1

Soient a et b deux réels strictement positifs et n est un entier naturel, alors :

- ♦ ln(*ab*) =
- $ightharpoonup \ln\left(\frac{1}{a}\right) = \dots$
- $ightharpoonup \ln\left(\frac{a}{b}\right) = \dots$
- $ightharpoonup \ln(a^n) = \dots$
- $ightharpoonup \ln\left(\sqrt{a}\right) = \dots$

En résumé, le logarithme népérien a la particularité de transformer les produits en, les quotients enet les puissances en

Exemple 3

Transformations d'expressions numériques et algébriques (sur les intervalles où elles sont définies) :

Propriété 2

On a les limites importantes suivantes :

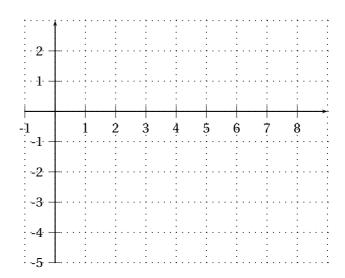
$$\blacklozenge \lim_{x \to 0^+} \ln x = \dots$$

$$\oint \lim_{x \to +\infty} \ln x = \dots$$

Conséquence : La droite x = 0 est doncà la courbe représentative de la fonction ln.

D'où le tableau de variations et la courbe :

x	
f'(x)	
f	
signe	



I.4 Fonction exponentielle

Définition 4

La fonction <u>exponentielle</u>, est la fonction définie $\sup \mathbb{R} \operatorname{par} \exp(x) = e^x$, e^x étant l'unique nombre réel positif dont le logarithme vaut x.

Remarque 1

Conséquences directes :

- \bullet exp(x)
- exp(1)
- $\ln(e^x)$
- e^{ln x}

Propriété 3

Soient a et b deux réels et n est un entier relatif, alors :

- $\blacklozenge e^{a+b}$
- $\blacklozenge \frac{e^a}{e^b}$
- \blacklozenge $(e^a)^n$

En résumé, l'exponentielle à la particularité de transformer les sommes en, les différences en et les multiplications en (inversement au logarithme!).

Exemple 4

Transformations d'expressions numériques et algébriques :

- $ightharpoonup e^{x+3} imes e^{2x+1}$
- $ightharpoonup (e^{x-2})^2$

Propriété 4

On a les limites importantes suivantes :

$$\oint \lim_{x \to -\infty} e^x = \dots$$

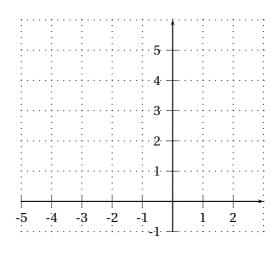
$$\blacklozenge \lim_{x \to +\infty} e^x = \dots$$

Propriété 5

La fonction exponentielle est dérivable sur $\mathbb R$ de dérivée $(e^x)'=\dots$

D'où le tableau de variations et la courbe :

х	
f'(x)	
f	
signe	



I.5 Fonctions puissance

Définition 5

Soit α un nombre réel, la fonction puissance (d'exposant) α , notée f_{α} est la fonction qui, à tout nombre $x \in \mathbb{R}_+^*$ associe

$$f_{\alpha}(x) = \dots$$

Exemple 5

Dans le cas où $\alpha = \frac{1}{2}$, on a

Propriété 6

Pour tout α , la fonction f_{α} est dérivable sur \mathbb{R}_+^* de dérivée $f_{\alpha}'(x) = \dots$

Sens de variation:

Dans le cas où $\alpha = 0$,

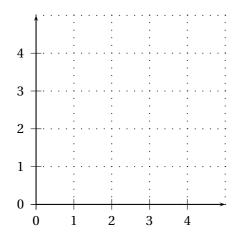
Dans le cas où $\alpha \neq 0$,

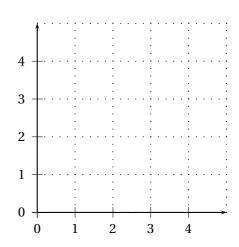
D'où les tableaux de variation suivants :

α < 0					
x					
signe de $f'_{\alpha}(x)$					
variations					
$\mathrm{de}f_{lpha}$					
signe de f_{lpha}					

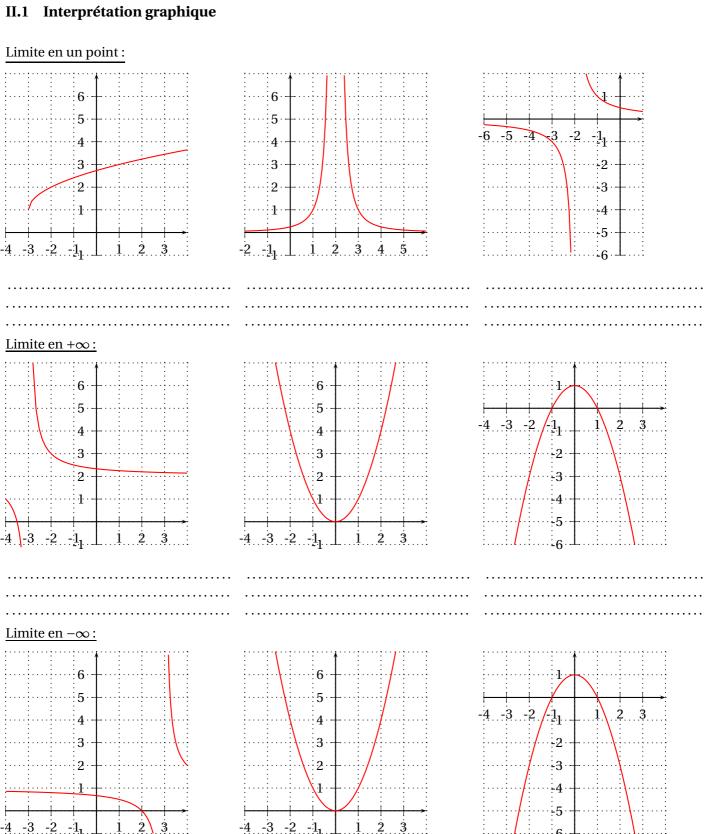
$\alpha > 0$				
x				
signe de $f'_{\alpha}(x)$				
variations				
$\mathrm{de}f_{lpha}$				
signe de f_{α}				

Allure des courbes représentatives des fonctions puissance :





II limites



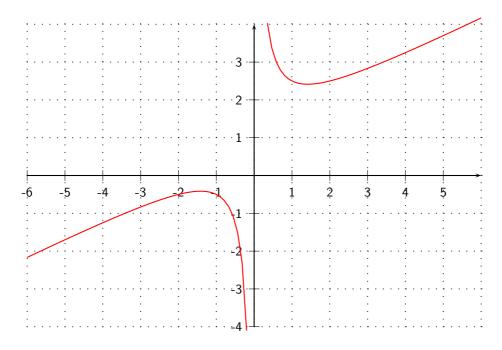
-	/0		• . •		_
8 D	èп	m	1111	on	h

Soit f une fonction et d la droite d'équation y = ax + b tel que :

on dit alors que la droite d est uneà la courbe représentative \mathscr{C}_f en $\pm\infty$.

Exemple 6

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x} + \frac{1}{2}x + 1$.



II.2 Limites des fonctions usuelles

Voici un tableau qui résume les différentes limites des fonctions de référence (la notation « * »signifie qu'il faut appliquer la « règle des signes »).

f(x)	x^n $n \in \mathbb{N}$	$\frac{1}{x^n}$ $n \in \mathbb{N}$	x^{α} $\alpha \in \mathbb{R}^+$	$\frac{1}{x^{\alpha}}$ $\alpha \in \mathbb{R}^{+}$	$\ln x$	exp x	cos x	sin x
$\lim_{x \to -\infty} f(x)$								
$\lim_{x \to 0^-} f(x)$								
$\lim_{x \to 0^+} f(x)$								
$\lim_{x \to +\infty} f(x)$								

II.3 Opérations sur les limites

Dans tout ce qui suit, la notation « FI » désigne une Forme Indéterminée, c'est à dire qu'on ne sait pas calculer par une opération élémentaire.

II.3.1 Limite d'une somme

lim f	l	l	+∞	$-\infty$	$-\infty$
lim g	l'	±∞	+∞	$-\infty$	+∞
$\lim (f+g)$					

Exemple 7

Calcul de « sommes » de limites :

$$\} \lim_{x \to 0} \left(e^x + x^3 \right) \dots$$

$$\geqslant \lim_{x \to +\infty} (\ln x + x^2) \dots$$

II.3.2 Limite d'un produit

lim f	l	$l \neq 0$	±∞	0
lim g	l'	±∞	±∞	±∞
$\lim (f \times g)$				

Exemple 8

Calcul de « produit » de limites :

$$\begin{array}{ccc}
\bullet & & & \\
& & \\
& & \\
& & \\
\end{array} \left\{ \lim_{x \to -\infty} \left[(x^2 + 1) \times \frac{1}{x} \right] \right.$$

II.3.3 Limite d'un quotient

lim f	l	l	l	±∞	±∞	0
lim g	$l' \neq 0$	±∞	0	l'	±∞	0
$\lim \left(\frac{f}{g}\right)$						

Exemple 9

Calcul de « quotients » de limites :

 $\left. \begin{array}{c} \\ \\ \\ \end{array} \right\} \lim_{x \to 0} \left(\frac{e^x + 3}{e^x - 2} \right).$

 $\geqslant \lim_{x \to 0^+} \left(\frac{x-4}{x} \right).$

 $\ge \lim_{x \to -\infty} \left(\frac{x-1}{x^3} \right) \dots$

 $\} \lim_{x \to 0} \left(\frac{x^2}{\sqrt{x}} \right).$

II.3.4 Compositions

Propriété 7

Soient deux fonctions : f définie de I dans J et g de J dans \mathbb{R} .

Si
$$\lim_{x \to a} f(x) = b$$
 $\lim_{x \to a} g(x) = c$ alors

Exemple 10

Calcul de "composition" de limites :

 $\} \lim_{x \to -\infty} e^{x+3} \dots$

II.4 Calcul de limites dans les cas de formes indéterminées

Dans ce cas, toutes les situations sont *a priori* possibles : existence d'une limite finie, nulle ou non ; existence d'une limite infinie ; absence de limite.

Seule une étude particulière permet de lever l'indétermination.

Rappelons pour commencer les cas d'indétermination des limites :

$\lim f(x)$	$\lim g(x)$	type d'indétermination

Exemple 11

Indétermination du type « $\infty - \infty$ » :

Remarque 2

De manière générale, le comportement d'une fonction polynomiale en $\pm \infty$ est dictée par le comportement de son terme de plus haut degré en $\pm \infty$.

Exemple 12

Indétermination du type « $\frac{\infty}{\infty}$ » :

- \rightarrow Pour $x \neq 0$, on factorise par la puissance de x maximale et on simplifie :

.....

Remarque 3

De manière générale, le comportement d'une fraction rationnelle en $\pm \infty$ est dicté par le comportement du quotient des deux termes de plus haut degré.

Exemple 13

Indétermination du type « $0 \times \infty$ » :

Exemple 14

Indétermination du type « $\frac{0}{0}$ » :

- $\} \lim_{x \to 1} \left(\frac{x^2 1}{x 1} \right) \dots$
- **→**

II.5 Croissance comparée de l'exponentielle, du logarithme et des fonctions puissance

Propriété 8

Pour tout nombre réel α strictement positif :

$$\oint \lim_{x \to +\infty} \left(\frac{\ln x}{x^{\alpha}} \right) = \dots$$

$$\oint \lim_{x \to +\infty} \left(\frac{e^x}{x^{\alpha}} \right) = \dots$$

L'ide retenir : Au voisinage de $+\infty$, les fonctions $x \to \ln x$, $x \to x^{\alpha}$ et $x \to e^x$ prennent des valeurs qui se classent dans cet ordre de la plus petite à la plus grande.

III Dérivation

Dans cette partie, f est une fonction numérique définie sur un intervalle I, C sa courbe représentative dans un repère. a et x sont deux réels distincts de I

III.1 Nombre dérivé en un point

On souhaite trouver une fonction affine (droite) qui réalise une bonne approximation de la fonction f au voisinage d'un point d'une courbe.

Exemple 15

Pour h voisin de 0, on a :

- \rightarrow $(1+h)^2 = \dots$ donc, quand h tend vers 0, $(1+h^2) \approx \dots$
- \rightarrow $(1+h)^3 = \dots$ donc, quand h tend vers $0: (1+h)^3 \approx \dots$
- $ightharpoonup rac{1}{1+h} = \ldots$ donc, quand h tend vers $0: rac{1}{1+h} pprox \ldots$

Définition	7
Deminion	•

Soit f une fonction définie en a et au voisinage de a, on dit que f ests'il existe un réel A est une fonction ε tels que, au voisinage de h=0, on a : A est appeléde f en a.

Exemple 16

On considère la fonction définie sur \mathbb{R} par $f(x) = x^2$.

- \rightarrow $f(a+h) = \dots$
- igspace Donc, f est dérivable en a de nombre dérivé

Définition 8

- \blacktriangleright f est dérivable en a et on note cette dérivée f'(a) si la limite suivante existe :

Exemple 17

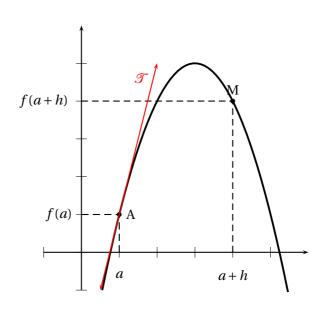
Soit f définie sur \mathbb{R} par $f(x) = x^2$.

 \rightarrow le taux de variation de f entre a et a+h est : $\frac{f(a+h)-f(a)}{a} = \dots$

- → donc, $f'(a) = \dots$
- → En particulier, $f'(3) = \dots, f'(0) = \dots$

Interprétation graphique:

Lorsque h se rapproche de 0, le point M se rapproche du point A. Ainsi, la droite (AM) se rapproche de la tangente \mathcal{T} au point A f'(a) correspond au coefficient directeur de la tangente \mathcal{T} au point d'abscisse a.



III.2 Fonction dérivée

Définition 9

Soit f une fonction dérivable en tout point x d'un intervalle I, alors la fonction qui à x associe f'(x) est appeléde *f* sur I.

On obtient le tableau de dérivation suivant :

Fonction f	Fonction f'	Ensemble de définition de f
k		
ax + b		
$\frac{1}{x}$		
\sqrt{x}		
x^{α}		
ln(x)		
e^x		
$\sin(x)$		
$\cos(x)$		

Exemple 18

Calcul de la dérivée des fonctions suivantes :

 $\rightarrow f(x) = \pi$

→ $f(x) = x^{\frac{2}{3}}$ $f(x) = x^3$

→ $f(x) = x^{2007}$

III.3 Dérivées successives

Définition 10

Soit *f* une fonction dérivable. Lorsque cela est possible, on définit les dérivées successives de *f* notées :

Exemple 19

Soit \bar{f} la fonction définie sur \mathbb{R} par $f(x) = 2x^3 - x^2 + x + 3$.

 $f'(x) = \dots$

→ $f''(x) = \dots$

→ $f^{(4)} = \dots$

 $\frac{df}{dx} = f'$ et $\frac{d^2f}{dx^2} = f''$ En physique et en mécanique, on utilise la notation différenteielle :

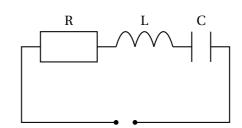
Exemple 20

Dans un circuit R, L, C en série, on a :

$$i = \frac{dq}{dt}.$$

$$ightharpoonup e = -L \frac{di}{dt}.$$

→ donc :
$$e = -L \frac{d^2 q}{dt^2}$$



III.4 Opérations

u et v sont deux fonctions définies et dérivables sur un même intervalle I.

Opération	Fonction	Dérivée
Addition		
Multiplication par un nombre		
Multiplication		
Puissance		
Division		
Inverse		
Fonction composée		
exponentielle		
logarithme		
sinus		
cosinus		

Exem	nl	P	2	1

_					
(~	اديدا	40	déri	IÓOC	
C.a	ıcuı	ue	uen	vees	

- → $f(x) = 3(x^2 + 4)$:
- → f(x) = (-2x+3)(5x-3):
- $f(x) = (2x-7)^2 :$

.....

- → $f(x) = \ln(-2x+5)$:
-

III.5 Équation de la tangente

Propriété 9 Soit f une fonction numérique définie sur un intervalle I et dérivable en $a \in I$.
La <u>tangente</u> \mathcal{T}_a en a à la courbe C_f a pour équation :

Exemple 22

Soit $f(x) = x^2 + 2$. Les équations des tangentes en 0 et en -1 sont :

- **→**

IV Étude des variations d'une fonction

IV.1 Lien entre dérivation et sens de variation d'une fonction

L'idée est qu'il y a un lien entre le signe du coefficient directeur de la tangente de la courbe $\mathscr C$ et le sens de variation de la fonction f.

Propriété 10

On suppose que f est dérivable sur I.

- \blacklozenge f est croissante sur I \iff
- lack f est décroissante sur I \Longleftrightarrow
- lackfloar f est constante sur I \Longleftrightarrow

Il est donc possible de déterminer les variations d'une fonction à partir du signe de sa dérivée.

Exemple 23

Étude d'une fonction polynôme :

Soit $f(x) = 2x^3 - 3x^2 - 12x - 1$, définie et dérivable sur \mathbb{R} . Déterminons son sens de variation :

- ightharpoonup Pour tout réel x on a f'(x)
- \rightarrow On détermine le signe de $x^2 x 2$ en cherchant ses racines et on trouve
- → On peut déterminer le signe de la dérivée et en déduire les variations de la fonction f :

x	
signe de $f'(x)$	
variations de f	

→

Exemple 24

Ftudo	d'una	fonction	logarithme	
Etuae	a une	TOTICLION	iogaritiime	

Soit $g(x) = 2x^2 + 1 - \ln x$, définie et dérivable sur \mathbb{R}_+^* . Déterminons son sens de variation :

- ightharpoonup Pour tout réel x > 0 on a $g'(x) = \dots$
- → On peut déterminer le signe de la dérivée grâce à un tableau de signes puis en déduire les variations de la fonction g :

х	
signe de $g'(x)$	
variations de g	

Exemple 25

Etude d'une fonction exponentielle :

Soit $h(x) = (x+2) e^{-x}$, définie et dérivable sur \mathbb{R} . Déterminons son sens de variation :

- ightharpoonup Pour tout réel x on a $h'(x) = \dots$
- → On peut déterminer le signe de la dérivée grâce à un tableau de signes puis en déduire les variations de la fonction h :

х	
signe de $g'(x)$	
variations de g	

→

IV.2 Extremum d'une fonction

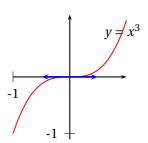
Propriété 11
f est une fonction dérivable sur l'intervalle I. Si f admet un extremum ()
en <i>a</i> distinct des extrémités de I, alors

Remarque 4

Attention, la réciproque n'est pas vraie : le fait que f'(a) = 0 n'implique pas forcément qu'il existe un extremum en a

Exemple 26

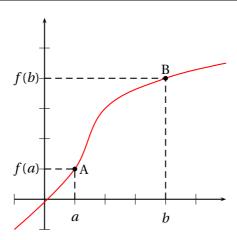
- → La fonction $f(x) = x^3$ est définie et dérivable sur \mathbb{R}
- → $f'(x) = 3x^2$ donc, f'(0) = 0 mais f n'admet ni minimum, ni maximum en 0.



Remarque 5

La tangente à la courbe en un point a où f'(a) = 0 est

IV.3 Résolution de l'équation $f(x) = \lambda$



Exemple 27

Soit $\hat{f}(x) = x^3 + x + 1 = 0$, f est définie et dérivable sur \mathbb{R} . Résolvons l'équation f(x) = 0 à 10^{-1} près.

| → | • |
 |
٠. |
 | ٠. | ٠. |
 |
 |
 |
 |
 | |
 | |
|----------|---|------|--------|------|----|----|--|
| • | • |
 |
 |
 | | |
 |
 |
 |
 |
 | |
 | |
| • | • |
 |
 |
 | | |
 | |
| → | • |
 |
 |
 | | |
 |
 |
 |
 |
 | |
 | |
| → | • |
 |
 |
 | | |
 | |
| → | • |
 |
 |
 | | |
 | |
| → | • |
 |
 |
 | | |
 | |
| → | • |
 |
 |
 | | |
 |
 |
 |
 |
 | |
 | |