Devoir surveillé de mathématiques n°3 - TaleS4 - Mercredi 18 novembre 2009 - 2 heures

Exercice 1 (exercice 4 du poly corrigé en cours)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3 - 4}{x^2 + 1}$ et on note \mathcal{C} sa courbe représentative dans un repère orthonormé d'unité 1cm.

- 1. On pose $g(x) = x^3 + 3x + 8$.
 - a) Étudiez le sens de variation de g et montrez que l'équation g(x) = 0 admet sur \mathbb{R} une unique solution α dont vous donnerez un encadrement d'amplitude 10^{-2} .
 - b) Précisez le signe de g(x) suivant les valeurs de x.
- 2. a) Étudiez les limites de f en $-\infty$ et $+\infty$.
 - b) Calculez f'(x) et dressez le tableau de variation de f.
- 3. a) Montrez qu'il existe quatre réels a, b, c, et d tels que

$$f(x) = ax + b + \frac{cx + d}{x^2 + 1}$$

b) Déduisez en que ($\mathcal C$) admet une asymptote oblique Δ et étudiez la position de ($\mathcal C$) par rapport à Δ .

Vérifiez en particulier que (C) rencontre Δ en un unique point Δ .

- 4. Déterminez les abscisses des point B et B' de (C) admettant une tangente parallèle à Δ .
- 5. Vérifiez que $f(\alpha) = 3\alpha/2$. Déduisez en une valeur approchée de $f(\alpha)$.

Exercice 2 (exercice 5 du poly)

On désigne par g la fonction définie sur]-1; 1[par g(0)=0 et $g'(x)=\frac{1}{\sqrt{1-x^2}}$ où g' désigne la dérivée de la fonction g sur]-1; 1[; on ne cherchera pas à expliciter g(x).

On considère alors la fonction composée h définie sur $]-\pi$; 0[par $h(x) = g(\cos x)$.

- 1. On rappelle que $\cos^2 x + \sin^2 x = 1$ pour tout réel x. Exprimez alors $1 \cos^2 x$ en fonction de $\sin^2 x$.
- 2. Démontrer que pour tout x de $]-\pi$; 0[on a h'(x)=1, où h' désigne la dérivée de h.

3. Calculer $h\left(-\frac{\pi}{2}\right)$ puis donner l'expression de h(x).

Exercice 3 (extrait de l'exercice 16 du poly dont un corrigé a été distribué)

On munit le plan d'un repère orthonormé. Soit f la fonction définie sur [0,1] par

$$f(x) = x - 2\sqrt{x} + 1$$

et (C) sa courbe représentative dans le repère orthonormé.

- **1.** Étudiez les variations de *f* .
- 2. Factorisez f(x).
- 3. Démontrez que pour tout $x \in [0,1]$ $(f \circ f)(x) = x$
- 4. Construisez la courbe (C).
- **5.** Est-ce que (*C*) est un arc de cercle. Comme on dit au Bac, dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Exercice 4

Soit f la fonction définie pour tout t de l'intervalle [-7;5] par

$$f(t) = 1 - 3t^2$$

1. Déterminez les valeurs exactes sous la forme la plus simple possible des images des nombres suivants :

$$-12$$
; $\frac{3}{\sqrt{2}}$; $\sqrt{7}$; $\sqrt{(-7)^2}$; 7×10^{-15}

- 2. Factorisez f(t).
- 3. Déterminez les éventuels antécédents de 7, -7, 0 et 1.
- 4. Résolvez sur [-7;5] l'équation f(z) = 0.
- 5. Résolvez sur [-7;5] l'inéquation f(T) > 1.