Fabriquons nos outils

Création d'une matrice

Dans cette section, nous créerons nos matrices à l'aide de la commande array(1..n,1..m) vue lors du TD précédent ou directement comme une liste de listes représentant les lignes.

3 4 sera rentré avec : Par exemple,

```
> M:=[[1,2],[3,4],[5,6]];
```

Comment faire calculer le nombre de lignes et le nombre de colonnes de M à MAPLE?

Somme de matrices

Créez une procédure qui prend comme arguments deux matrices et renvoie leur somme. Elle commencera par :

```
somm:=proc(A,B)
local C,i,j,k;
C:=[[0$nops(A[1])]$nops(A)];
           ?...?
RETURN(C);
end:
```

Produit de matrices

Soit
$$A = (a_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant i \leqslant m}}$$
 et $B = (b_{ij})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant i \leqslant p}}$
Alors $A \times B = C$ avec $C = (c_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant i \leqslant p}}$

$$\forall (i,j) \in \mathbb{N}_n^* \times \mathbb{N}_p^*, \quad c_{ij} = \sum_{k=1}^m a_{ik} \cdot b_{kj}$$

Créez alors une procédure qui prend comme arguments deux matrices et renvoie leur produit. Elle commencera par :

```
prodm:=proc(A,B)
local C,i,j,k;
C:=[[0$nops(B[1])]$nops(A)];
           ?...?
RETURN(C);
```

Vous n'utiliserez que des boucles (pas de fonctions de calcul formel!).

Matrice identité A4

Créer une procédure Id:=proc(n) qui crée la matrice identité d'ordre n.

A5 Puissances d'une matrice

Tout est dans le titre...

```
> puim:=proc(A,n)
?...?
end:
```

A6 Trace d'une matrice

Tout est dans le titre...

A7 Transposée d'une matrice, matrices orthogonales

Tout est dans le titre...

```
> Transm:=proc(A)
?...?
end:
```

On appelle matrice orthogonale une matrice carrée dont les vecteurs colonne sont de norme 1 et orthogonaux deux à deux. Construisez une procédure testant si une matrice est orthogonale.

Calculez le produit d'une telle matrice par sa transposée.

B Avec les outils MAPLE

Pour utiliser toute la puissance de calcul de MAPLE, on définit en fait une matrice par

```
Matrix(nb lignes, nb colonnes, [a11,a12,a13,...,a1n,a21,a22,a23,...a2n,...,ap1,ap2,ap3,...,apn])
```

Par exemple

```
> A:=Matrix(2,2,[1,2,3,4]);
```

On peut additionner, multiplier, élever à une puissance, appliquer une fonction à une matrice selon la syntaxe habituelle, sauf pour le produit où il faudra taper · (le point). Il existe une centaine de fonctions dans la bibliothèque LinearAlgebra plus celles déjà présentes sur Maple : nous ne les explorerons pas toutes! Nous allons les découvrir à travers des petits exercices.

C Quelques exercices

C1 Noyau, image

Qu'est-ce que l'endomorphisme de \mathbb{R}^2 d'expression analytique canonique

$$\begin{cases} x' = -\frac{1}{5}x - \frac{2}{5}y \\ y' = \frac{3}{5}x + \frac{6}{5}y \end{cases}$$

Vous aurez besoin de déterminer la matrice A associée, le noyau de A grâce à NullSpace(A) qui en renvoie une base, l'image avec ColumnSpace(A). Ensuite, à vous d'essayer des petits calculs sur A pour deviner sa nature.

Puissances de matrices

1. Soit A =
$$\frac{1}{3} \begin{pmatrix} 0 & -2 & -2 \\ 2 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$
.

- a) Calculer A^2 , A^3 et A^4 .
- b) Montrez que $\{A, A^2, A^3, A^4\}$ est un groupe pour le produit matriciel de $\mathfrak{M}_3(\mathbb{R})$.
- **2.** Pour chacune des matrices A suivantes, calculer A^n pour tout $n \in \mathbb{N}$.

a)
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 avec $a \in \mathbb{R}$.

b) La matrice J_p de $\mathfrak{M}_p(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

Mini-chaînes de Markov...

Aidons la mafia

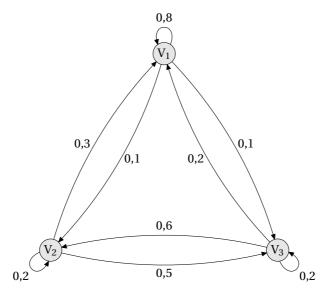
Les chaînes de Markov sont issues de la théorie des probabilités et utilisent des outils d'algèbre linéaire qui nous intéressent aujourd'hui. Elles permettent de simuler des phénomènes aléatoires qui évoluent au cours du temps. Nous allons les découvrir à travers l'étude d'un exemple simple.

Zlot, Brzxxz et Morzgniouf sont trois villes situées respectivement en Syldavie, Bordurie et Bouzoukstan. Des trafiquants de photos dédicacées du groupe ABBA prennent leur marchandise le matin dans n'importe laquelle de ces villes pour l'apporter le soir dans n'importe quelle autre. On notera pour simplifier V_1 , V_2 et V_3 ces villes et p_{ij} la probabilité qu'une marchandise prise le matin dans la ville V_i soit rendue le soir dans la ville V_j . La matrice $(p_{ij})_{\substack{1 \le i \le 3 \\ 1 \le i \le 3}}$ est appelée *matrice de*

transition de la chaîne de Markov. Que s'attend-on à observer sur les colonnes d'une matrice de transition? Supposons que P soit connue et vaille

$$P = \begin{pmatrix} 0.8 & 0.3 & 0.2 \\ 0.1 & 0.2 & 0.6 \\ 0.1 & 0.5 & 0.2 \end{pmatrix}$$

Les trafiquants se promenant de ville en ville, il peut être utile de visualiser leurs déplacements par le diagramme de transition suivant



On notera $x_i^{(k)}$ la proportion de trafiquants qui se trouvent au matin du jour k dans la ville V_i . En probabilités, on appelle *vecteur d'état* tout élément (x_1, \cdots, x_n) de \mathbb{R}^{+n} tel que $x_1 + \cdots + x_n = 1$. Ainsi, $x^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}\right)$ est un vecteur d'état.

On montre que les vecteurs d'état de la chaîne sont liés par la relation

$$x^{(k)} = P \cdot x^{(k-1)}$$

et donc

$$x^{(k)} = \mathbf{P}^k \cdot x^{(0)}$$

Supposons que le chef de la mafia locale dispose de 1000 trafiquants qui partent tous le matin du jour 0 de la ville de Zlot. Quelle sera la proportion de trafiquants dans chacune des villes au bout d'une semaine? d'un mois? d'un an?

Le parrain voudrait que la proportion moyenne de trafiquants soit stable d'un jour sur l'autre. Il recherche donc les vecteurs d'état x vérifiant l'équation $P \cdot x = x$. Vous apprendrez après l'été à résoudre de manière systématique ce genre de problème. Nous allons pour l'heure nous débrouiller sans appui théorique mais avec Maple et NullSpace Comment procéder? La matrice identité s'écrit Matrix(3,3,shape=identity).

À Morzgniouf, les jours sont soit secs, soit pluvieux. On désigne par E_1 l'état sec et E_2 l'état pluvieux et par p_{ij} la probabilité qu'un jour soit dans l'état E_i sachant que le jour précédent était dans l'état E_j . Les scientifiques Bouzouks ayant observé les phénomènes météorologiques des trent-deux dernières années à Morzgniouf ont établi la matrice de transition suivante

$$P = \begin{pmatrix} 0,750 & 0,338 \\ 0,250 & 0,662 \end{pmatrix}$$

Sachant qu'il fait beau aujourd'hui, quelle est la probabilité qu'il pleuve dans dix jours?