Exercice 1

Déterminez les dérivées de fonctions suivantes en factorisant au maximum les résultats trouvés :

1.
$$f(t) = \cos^3 \left(5t + \frac{\pi}{4}\right)^2$$

3.
$$h(\theta) = -2\theta + 3 - \frac{1}{6}$$

5.
$$k(x) = (x+1)e^{-x+1}$$

1.
$$f(t) = \cos^3\left(5t + \frac{\pi}{4}\right)$$
 3. $h(\theta) = -2\theta + 3 - \frac{1}{\theta}$ 5. $k(x) = (x+1)e^{-x+1}$
2. $g(\omega) = \frac{(\omega+1)^2}{\omega^2 + \omega + 1}$ 4. $j(x) = \frac{x^2e^x}{x+1}$ 6. $m(x) = \ln\left(\frac{x+1}{x-1}\right)$

$$i. \quad j(x) = \frac{x^2 e^x}{x+1}$$

$$6. \quad m(x) = \ln\left(\frac{x+1}{x-1}\right)$$

Exercice 2

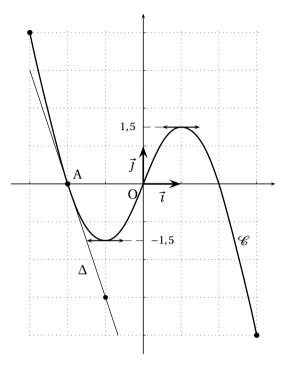
Déterminez une équation de la tangente au point d'abscisse a à la courbe représentative \mathscr{C} de la fonction f définie par

$$f: t \mapsto \frac{4t^2}{t^2 + 1} \qquad a = 2$$

Exercice 3

Dans le plan muni d'un repère orthonormé $(0; \overrightarrow{i}, \overrightarrow{j})$, on considère la courbe \mathscr{C} représentant une fonction f définie et dérivable sur [-3;3]. La droite Δ est tangente à \mathscr{C} au point A(-2;0) (voir figure ci-dessous).

- 1. Par lecture graphique, déterminer:
 - a) f(1), f(3), f'(-2), f'(1);
 - b) le signe de f'(2) puis le signe de f'(0).
- 2. Dresser le tableau de signe :
 - a) de *f*;
 - b) de *f*′.
- 3. Dresser le tableau de variations de f.



Exercice 4

La fréquence du son fondamental d'une corde vibrante est donnée par la formule

$$N = \frac{1}{2\ell} \sqrt{\frac{F}{\mu}}$$

où ℓ est la longueur de la corde, F sa tension et μ sa masse par unité de longueur. Donnez l'expression de l'erreur relative $\frac{dN}{N}$ en fonction des erreurs $d\ell$, dF et $d\mu$.