Ensembles: une approche fonctionnelle INFO1 - Semaine 37

Guillaume CONNAN

IUT de Nantes - Dpt d'informatique

Dernière mise à jour : 2 septembre 2012

- 1 Définition
- 2 Propriétés et notations
 - Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardinal

- 1 Définition
- 2 Propriétés et notation
 - 8 Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésier
- 10 Notion de cardina

Un ensemble d'éléments est :

Un ensemble d'éléments est :

- soit l'ensemble vide, noté {} (ou bien Ø);
- soit construit en « ajoutant » un élément x à un ensemble E. On notera alors cette opération $x \oplus E$.

Un ensemble d'éléments est :

- soit l'ensemble vide, noté {} (ou bien Ø);
- soit construit en « ajoutant » un élément x à un ensemble E. On notera alors cette opération $x \oplus E$.


```
type 'a ens =
| Vide
| Ens of ('a * 'a ens);;
```



```
# Ens(1,Vide);;
- : int ens = Ens (1, Vide)
# Ens(3,Ens(2,Ens(1,Vide)));;
- : int ens = Ens (3, Ens (2, Ens (1, Vide)))
# let e = Ens(3,Ens(2,Ens(1,Vide)));;
val e : int ens = Ens (3, Ens (2, Ens (1, Vide)))
# Ens(4,e);;
- : int ens = Ens (4, Ens (3, Ens (2, Ens (1, Vide))))
```


- 1 Définition
- 2 Propriétés et notations
 - Extension compréhension
- 4 Inclusion
 - Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

Définition 2 (Axiome d'extensionnalité)

Deux ensembles A et B sont égaux si, et seulement si, ils contiennent les mêmes éléments. On écrit alors A = B.

$$x\oplus \left(y\oplus \left\{\right\}\right)=x\oplus \left\{y\right\}=\left\{x,y\right\}$$

Exercice 1

On considère les ensembles :

$$E_1 = \{a,b,c\}, \ E_2 = \{b,c,a\}, \ E_3 = \{b,a,a,c,b\}, \ E_4 = \{c,c,c,a,b,a,c,b,b\},$$

$$E_5 = c \oplus E_2$$
.

Quels sont, parmi ces ensembles, ceux qui sont égaux?

- 1 Définition
- Propriétés et notations
- 3 Extension compréhension
- 4 Inclusion
 - Parties d'un ensemble

- 6 Opérations
- Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

$$A = \{1, 3, 5, 7, 9\}$$

$$\mathcal{B}_2 = \{VRAI, FAUX\}$$

$$P(x) = (x^2 = 2)$$

$$\mathcal{B}_2 = \{VRAI, FAUX\}$$

$$P(x) = (x^2 = 2)$$

$$R(x) = (x^2 = 4)$$

$$\mathcal{B}_2 = \{VRAI, FAUX\}$$

$$P(x) = (x^2 = 2)$$

 \forall

$$R(x) = (x^2 = 4)$$

$$\mathcal{B}_2 = \left\{ VRAI, FAUX \right\}$$

$$P(x) = (x^2 = 2)$$

A

$$R(x) = (x^2 = 4)$$

$$\mathcal{B}_2 = \left\{ VRAI, FAUX \right\}$$

$$P(x) = (x^2 = 2)$$

A

$$R(x) = (x^2 = 4)$$

$$\mathcal{B}_2 = \left\{ VRAI, FAUX \right\}$$

$$P(x) = (x^2 = 2)$$

A

$$R(x) = (x^2 = 4)$$

 \exists

Entiers impairs?

Exercice 2

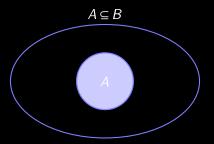
On note $E = \{x \mid x \in \mathbb{Z} \ ET \ x^2 = 1\}$ et $F = \{x \mid x \in \mathbb{R} \ ET \ |x| = 1\}$. Que pouvez-vous dire de E par rapport à F?

Entiers impairs?

Définition récursive

- 1 Définition
- 2 Propriétés et notations
 - Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésier
- 10 Notion de cardina



- Définition
- 2 Propriétés et notations
 - Extension compréhension
- 4 Inclusion
- Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

$$X \in \mathcal{P}(E)$$
 si, et seulement si, $X \subseteq E$

Il suffit de remarquer que si $E = \{\}$, alors $\mathcal{P}(E) = \{\{\}\}$.

Il suffit de remarquer que si $E = \{\}$, alors $\mathcal{P}(E) = \{\{\}\}$. Sinon, on peut écrire E sous la forme $x \oplus F$ avec x un élément quelconque de E

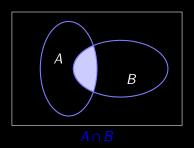
 \mathbb{I} suffit de remarquer que si $E = \{\}$, alors $\mathcal{P}(E) = \{\{\}\}$.

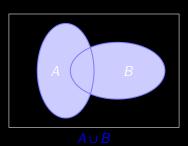
Sinon, on peut écrire E sous la forme $x \oplus F$ avec x un élément quelconque de E.

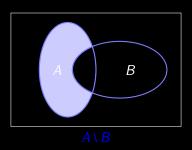
 $\mathcal{P}(E)$ est alors l'union de $\mathcal{P}(F)$ et des éléments de $\mathcal{P}(F)$ auxquels on a ajouté x...

- 1 Définition
- 2 Propriétés et notations
 - Extension compréhension
- 4 Inclusion
 - 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésier
- 10 Notion de cardina







La différence symétrique des ensembles A et B est l'ensemble :

$$A \triangle B = \left\{ x \in E \mid x \in A \setminus B \text{ ou } x \in B \setminus A \right\} = (A \setminus B) \cup (B \setminus A)$$

$$A \triangle B = \left\{ x \in E \mid x \in A \cup B \text{ et } x \notin A \cap B \right\} = \left(A \cup B \right) \setminus \left(A \cap B \right)$$

La différence symétrique des ensembles A et B est l'ensemble :

$$A \triangle B = \left\{ x \in E \mid x \in A \setminus B \text{ ou } x \in B \setminus A \right\} = (A \setminus B) \cup (B \setminus A)$$

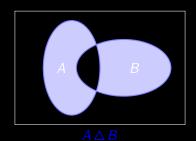
$$A \triangle B = \left\{ x \in E \mid x \in A \cup B \text{ et } x \notin A \cap B \right\} = \left(A \cup B \right) \setminus \left(A \cap B \right)$$

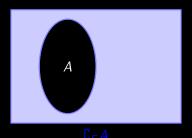
Définition 3

La différence symétrique des ensembles A et B est l'ensemble :

$$A \triangle B = \left\{ x \in E \mid x \in A \setminus B \text{ ou } x \in B \setminus A \right\} = (A \setminus B) \cup (B \setminus A)$$

$$A \triangle B = \left\{ x \in E \mid x \in A \cup B \text{ et } x \notin A \cap B \right\} = \left(A \cup B \right) \setminus \left(A \cap B \right)$$





Théorème 4 (Lois de De Morgan)

$$\overline{\left(\bigcup_{i=1}^{n} A_{i}\right)} = \bigcap_{i=1}^{n} \overline{A_{i}}$$

et

$$\overline{\left(\bigcap_{i=1}^{n}A_{i}\right)}=\bigcup_{i=1}^{n}\overline{A_{i}}$$

Idempotence	$A \cup A = A$	$A \cap A = A$
Associativité	(A∪B)∪C = A∪(B∪C)	(A∩B)∩C = A∪(B∩C)
Commutativité	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Distributivité	A∪(B∩C)= (A∪B)∩(A∪C)	A∩(B∪C)= (A∩B)∪(A∩C)
ldentité	$A \cup \{\} = A$	$A \cap E = A$
Involution	$\overline{\overline{A}} = A$	
Complémentaire	$A \cup \overline{A} = E$	$A \cap \overline{A} = \{\}$
	$\overline{E} = \{\}$	$\overline{\{\}} = E$
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

- 1 Définition
- 2 Propriétés et notations
- 3 Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

Recopie les mots.
Entoure en rouge l'ensemble C des mots où tu entends le son in.
Entoure en vert l'ensemble D des mots où tu entends le son on.
Entoure en bleu l'ensemble E des mots où tu entends le son a

Que peux-tu dire de l'ensemble E ? (fais une phrase où tu utiliseras E, C, D).

matin sapin
x
lapin x
savon

gazon

marron

Exercice 3

Ce qui va nous intéresser informatiquement, c'est une fonction qui crée une partition d'un ensemble selon une propriété, par exemple pour regrouper les entiers pairs parmi les entiers de 0 à 10 dans un ensemble et les autres entiers dans un deuxième ensemble.

À vous de l'imaginer, récursivement bien sûr!

- 1 Définition
- 2 Propriétés et notations
- 3 Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

Définition 5

Soit E un ensemble. Pour toute partie A de E on définit la fonction caractéristique $\mathbb{1}_A$ de A dans E par :

$$\begin{array}{ccc}
E & \to & \{0;1\} \\
\mathbb{1}_A : & & \\
x & \mapsto & \begin{cases}
1 & \text{si } x \in A \\
0 & \text{si } x \not\in A
\end{cases}$$

- 1 Définition
- 2 Propriétés et notations
- 3 Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristique
- 9 Produit cartésien
- 10 Notion de cardina

l'ensemble des entrées :

 $E = \{\text{Cuisses de sauterelles panées, œuf mou, huîtres de l'Erdre}\}$

l'ensemble des plats de résistance

 $P = \{\text{Turbot à l'huile de ricin, Chien à l'andalouse, Soupe d'orties}\}$

l'ensemble des desserts

$$D = \{Pomme, Banane, Noix\}$$

l'ensemble des entrées :

 $E = \{\text{Cuisses de sauterelles panées, œuf mou, huîtres de l'Erdre}\}$

l'ensemble des plats de résistance :

 $P = \{\text{Turbot à l'huile de ricin, Chien à l'andalouse, Soupe d'orties}\}$

l'ensemble des desserts :

 $D = \{Pomme, Banane, Noix\}$

l'ensemble des entrées :

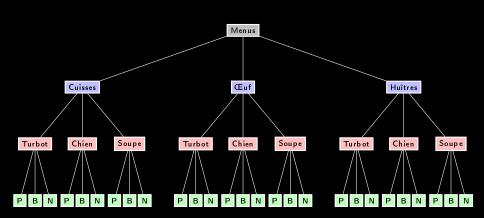
 $E = \{\text{Cuisses de sauterelles panées, œuf mou, huîtres de l'Erdre}\}$

• l'ensemble des plats de résistance :

 $P = \{\text{Turbot à l'huile de ricin, Chien à l'andalouse, Soupe d'orties}\}\$

l'ensemble des desserts :

$$D = \{Pomme, Banane, Noix\}$$



Exercice 4

Comment définir récursivement le produit cartésien de deux ensembles E_1 et E_2 ? Cela nous sera utile pour programmer en Caml...

- 1 Définition
- 2 Propriétés et notations
- 3 Extension compréhension
- 4 Inclusion
- 5 Parties d'un ensemble

- 6 Opérations
- 7 Partition d'un ensemble
- 8 Fonction caractéristiqu
- 9 Produit cartésien
- 10 Notion de cardinal

Exercice 5

Comment calculer récursivement le cardinal d'un ensemble?

