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Iterations of the R5 Dragon Curve

Kevin Ryde

Draft 11, November 2021

Abstract

Various results on the R5 dragon curve, including coordinates, area,
boundary, enclosure sequence, convex hull, centroid, moment of inertia,
area trees, and some fractionals. Also some results on the quartet curve
and tree which are a similar base.
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Notation

Some formulas have terms going in a repeating pattern of say 4 values according
as an index k ≡ 0 to 3 mod 4. It's convenient to write them like

[5, 8, −5, 9] values according as k mod 4

meaning 5 when k ≡ 0 mod 4, or 8 when k ≡ 1 mod 4, etc. Likewise periodic
patterns of other lengths.

Periodic patterns like this can also be expressed by powers of −1 or i (being
roots of unity), but except in simple cases that tends to be less clear than the
values.

1 R5 Dragon Curve

The R5 dragon curve (as named by Jörg Arndt [1,2]) is de�ned recursively as a
repeated replacement of each line segment by 5 segments in an �S� shape

0 1 0

1

2

3

4

5=⇒

Knuth [8] gives this as (DDUU)∗ in terms of Dekking's folding products.
Those products fold by reverse and �ip in odd sub-parts. A reverse and �ip of
DDUU is no change and so the same as a plain segment replacement.

The curve touches at vertices. The following samples have vertices chamfered
o� to better see the turns and joins.

k=0 k=1

start

k=2

start

k=3

start

k=4

start n=0
at 0, 0

end

n = 54 = 625
at −7−24i

1.1 Plane Filling

Theorem 1 (Special case of Dekking). The R5 dragon curve touches at vertices
but does not cross itself.

Proof. Consider an in�nite square grid with unit line segments connecting the
points. Each line segment expands to an R5 �S� shape as follows. The corners of
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the new line segments are chamfered o� to show how they meet the expansions
from other lines.

=⇒ segment
expansions

The expanded grid is the same grid pattern rotated by arctan 2
1 .

Any subset of the full grid expands to a new bigger set with the same number
of crossings. The R5 dragon curve begins with a single line segment which is
such a subset with no crossings.

R5 self-avoidance is a special case of the result by Dekking[6] that a folding
sequence is self-avoiding if and only if its �θ-loop� is a simple curve (non-over-
lapping, non-crossing, possibly touching at vertices). The R5 base pattern is
the same forward and reverse so its folding expansion is the same as its plain
expansion.

R5 dragon θ-loop
of base patterns

The base pattern is like a 2×1 brick. The grid expansion above puts a brick
on each line segment, with an empty square in the middle. This is a classical
tiling pattern [11].

tiling of the plane

by 2×1 bricks

and unit squares

Theorem 2 (Special case of Dekking). Four copies of the R5 dragon curve
arranged at right angles �ll the plane.

Proof. The initial cross expands

Take the central 2×2 block. With two expansions it grows
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The dashed square is a 6×6 block at the origin. So each 2×2 (possibly overlap-
ping) grows to at least 6×6. By repeated expansion they grow to an arbitrarily
large square at the origin.

Four-arm plane �lling follows from the carousel theorem of Dekking [6]. A
self-avoiding folding sequence is plane-�lling if and only if its θ-loop is maximally
simple (every grid point touched twice). Four arms of a plane-�lling self-avoiding
folding sequence perfectly �ll if and only if the base pattern does not traverse
the segment to the left of (1+i)z− i, where z is the endpoint of the base �gure.
For the R5 dragon, z = b and the segment is to the left of −1+2i.

0

b = 1 + 2i

(1+i)b− i = −1+2i

segment to the left
of −1+2i not traversed

1.2 Turn

Number each point starting n=0 at the origin. Per Arndt [2], the replications
give a turn sequence which is 90◦ turns of

turn(n) =

{
+1 (left) if LowestNon0 (n) = 1 or 2

−1 (right) if LowestNon0 (n) = 3 or 4
n≥ 1 (1)

= ++−−+++−−+++−−−++−−−++−− . . . A337004

LowestNon0 (n) = base 5 lowest non-0 digit of n

= 1, 2, 3, 4, 1, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 1, 2, . . . n≥ 1 A277543

Or the next turn after point n,

turn(n+1) =

{
+1 if LowestNon4 (n) = 0 or 1

−1 if LowestNon4 (n) = 2 or 3
n≥ 0

LowestNon4 (n) = base 5 lowest non-4 digit of n

= LowestNon0 (n+1)− 1

= 0, 1, 2, 3, 0, 0, 1, 2, 3, 1, 0, 1, 2, 3, 2, 0, 1, . . . n≥ 0

turn(n) and turn(n+1) are related simply by n+1 changing low 4s into low
0s and carry to increment the digit above.
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n+1 · · · t+1 0 · · · 0

n · · · t 4 · · · 4 base-5 digits,

t = 0 to 3

Figure 1:

turn

Predicates for left and right turns are

TurnLpred(n) =

{
1 if n≥1 and LowestNon0 (n) = 1 or 2

0 otherwise

= 1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,1,1,... n≥ 1

TurnRpred(n) =

{
1 if n≥1 and LowestNon0 (n) = 3 or 4

0 otherwise

= 0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,... n≥ 1 A175337

Generating functions for these sequences follow by considering the base-5
digits of those n which are left or right turn. A left turn is k many low zeros
then digit 1 or 2 so n = (1 or 2).5k + m.5k+1 for integer m. In a generating

function 1/(1 − x5k+1

) is 1 at multiples of 5k+1 then multiply x5
k

or x2.5
k

to
add (1 or 2).5k. Similarly a right turn is k low zeros then digit 3 or 4 so n =

(3 or 4).5k +m.5k+1 so multiply x3.5
k

or x4.5
k

.

gTurnLpred(x) =

∞∑
k=0

x5
k

+ x2.5
k

1− x5
k+1 =

∞∑
k=0

x5
k

(1 + x5
k

)

1− x5
k+1

gTurnRpred(x) =

∞∑
k=0

x3.5
k

+ x4.5
k

1− x5
k+1 =

∞∑
k=0

x3.5
k

(1 + x5
k

)

1− x5
k+1

A generating function for turn follows similarly, and is also di�erence

turn(n) = TurnLpred(n)− TurnRpred(n)

At (2), factor 1−x5k cancels from numerator and denominator, though it's
then less clear that the denominator is a replication.

gturn(x) =

∞∑
k=0

x5
k

+ x2.5
k

− x3.5
k

− x4.5
k

1− x5
k+1

=

∞∑
k=0

x5
k

(1 + x5
k

)2

1 + x5
k

+ x2.5
k

+ x3.5
k

+ x4.5
k (2)

If a generating function for just an initial part of the sequence is required
then stopping the sum at k su�ces for n < 5k+1 where the next term would
begin (a left turn with k+1 low zeros and digit 1 above).

For computer calculation of the turn sequence on a binary machine, Arndt
[1] gives code in C with base 5 digits in 3 bits each 000 through 100 and a loop
to increment in that form. This has the attraction of not requiring divisions or
moduli to locate the lowest non-0.

A variation can be made using bit values 011 through 111. Doing so allows
an increment with the CPU adder then some bit twiddling.
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for u = n with base-5 digits as bits 011 through 111,

turn(u) =

{
1 if LowOctal4Middle(u) = 0

−1 if LowOctal4Middle(u) = 1

LowOctal4Middle(u) = BITAND
(
u, (MaskToLowOctal4 (u) + 1)/4

)
MaskToLowOctal4 (u) = MaskToLowBit1

(
BITAND(u, 100100 . . . 100)

)
MaskToLowBit1 (u) = BITXOR(u, u−1) A038712

increment(u) = u+1 + LowThrees(u+1) (3)

LowThrees(u) = BITAND
(
bMaskToLowOctal4 (u)/8c, 011011 . . . 011

)
MaskToLowBit1 is a bit mask of the lowest 1-bit and all bits below it.

MaskToOctal4 is a bit mask of the lowest octal digit ≥ 4 and all bits below.
LowOctal4Middle is the middle bit of the lowest octal digit ≥ 4. This determines
the turn since base-5 digits 1,2 are 100, 101 whereas digits 3,4 are 110, 111.

LowThrees locates low octal 0-digits with a ≥ 4 above them and gives those
0s as 3s. In increment , the +1 propagates carry through low 111 bits but leaves
them as 000 which is not the desired representation. Adding LowThrees (or
BITOR if preferred) changes them to 011.

The �rst turn at n=1 is u = ...33334 octal. increment requires all high 0
digits to be represented by 3s.

On expanding the curve, 4 turns are inserted in each segment. A segment is
between each existing turn, and at start and end of the curve.

L

LLRR LLRR

L

LLRR

L

LLRR

R

LLRR

R

LLRR new turns

existing turns

Figure 2

Arndt [1, �gure 1.31-R] gives this in a morphism 0, 1 for TurnRpred , and
similar in OEIS A175337 with �F� for each segment. Each term gets a new
0,0,1,1 before it.

TurnRpred = 0 → 0, 0, 1, 1, 0 1 → 0, 0, 1, 1, 1 starting from 0

The pairs RR and LL each side of an existing turn become runs either RRR
or LLL according as the existing turn is R or L. So run lengths in the turn
sequence are an initial 2 then pairs either 2,3 or 3,2 according as turn = +1 or
−1 respectively. Counting the �rst run as m=0, run lengths are

TurnRun(m) =


2 if m=0 (lefts)
5
2 + 1

2 turn(m2 ) if m even ≥2 (lefts)
5
2 −

1
2 turn(m+1

2 ) if m odd (rights)

=

{
2 if m=0
5
2 + 1

2 (−1)m turn(dm2 e) if m ≥ 1

= 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, . . .

turn = +1, +1, −1, −1, +1, +1, +1,

gTurnRun(x) = − 1
2 + 5

2

1

1−x
+ 1

2

(
1− 1

x

)
gturn(x2)
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For a curve of �nite k, the run lengths end with a �nal 2. This is like the
initial 2. By symmetry, the run length sequence for a �nite k is equal to its own
reversal.

The n which is the start of a run follows from the new and existing turns
too. In each LLRR, the left n ≡ 1 mod 5 is the start of a run unless preceded by
an existing L. The right n ≡ 3 mod 5 is always the start of a run. Expressing
this with an index m≥ 0,

TurnRunStart(m) = 1 +

m−1∑
j=0

TurnRun(j)

= 5
2m+

{
1− TurnLpred( 5

2m) if m even
1
2 if m odd

(4)

= 1, 3, 5, 8, 10, 13, 16, 18, 21, 23, 25, 28, 30, . . .

(4) can use 1−TurnLpred = TurnRpred for m≥ 1, and 5 is not required
since that is simply a low 0 which does not change the result.

TurnRunStart(m) =
⌊
5
2m
⌋

+

{
TurnRpred( 1

2m) if m even ≥ 2

1 otherwise

Theorem 3. The m'th left or right turn point n is given by the following re-
currences, for turns indexed by m starting �rst turn as m=0,

TurnLeft(m) (5)

=



1 if m=0

5k + TurnLeft
(
m− 1

2 (5k+1)
)

if m ≤ 5k, m6=0

2.5k + TurnLeft
(
m− (5k + 1)

)
if 5k < m < 1

2 (3.5k+1)

3.5k + TurnLeft
(
m− 1

2 (3.5k+1)
)

if 1
2 (3.5k+1) ≤ m < 2.5k

4.5k + TurnLeft
(
m− 2.5k

)
if m ≥ 2.5k

where, for m≥1, have k biggest with 1
2 (5k + 1) ≤ m

= 1, 2, 5, 6, 7, 10, 11, 12, 16, 17, 21, 22, . . .

TurnRight(m)

=



5k + TurnRight
(
m− 1

2 (5k−1)
)

if m < 5k−1

2.5k + TurnRight
(
m− (5k−1)

)
if 5k−1 ≤ m < 1

2 (3.5k−3)

3.5k if m = 1
2 (3.5k−3)

3.5k + TurnRight
(
m− 1

2 (3.5k−1)
)

if 1
2 (3.5k−1) ≤ m < 2.5k−1

4.5k if m = 2.5k−1

4.5k + TurnRight
(
m− 2.5k

)
if m ≥ 2.5k

where k biggest with 1
2 (5k − 1) ≤ m

= 3, 4, 8, 9, 13, 14, 15, 18, 19, 20, 23, 24, . . .

Proof. In an expansion level k, there are 5k segments and 5k − 1 turns between
them. Since the curve is symmetric in 180◦ rotation, there are half lefts and
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half rights 1
2 (5k − 1) each.

The recurrences follow from how many turns of each direction in each sub-
part and between sub-parts. Expansion level k+1 comprises the following sub-
parts for level k≥ 1 (so that there is at least one turn within each such k).

O L

LR

R L

part 0

part 1

part 2

part 3

part 4

m = 1
2
(5k−1)

m = 1
2
(5k+1)

m = 5k

m = 5k+1
m = 1

2
(3.5k+1)

m = 2.5k

m = 1
2
(5k+1−1), n = 5k+1

m
sub-range

TurnLeft parts

k+1, sub-parts k≥ 1

Part 0 has 1
2 (5k−1) left turns so that the L after it is m = 1

2 (5k−1) and the
�rstm within part 1 ism = 1

2 (5k+1). Taking k as the biggest with 1
2 (5k+1) ≤ m

is then m ranging from the �rst turn in part 1 to the L at m = 1
2 (5k+1+1)

inclusive.
The turns within part 1, and the L after it, are the m sub-range shown

dashed. Each of those is an n with a high 1-digit. So the recurrence is 5k and
reduce to part 0 and the L following it by subtracting 1

2 (5k−1).
The recurrence is each of the other parts similarly. There is no L after parts

3 or 4 and when they reduce to part 0 the new m is small enough not to reach
the L following part 0.

k=0 occurs only for m = 1, 2 (the two left turns in a k+1 = 1 curve) and
the cases reduce to m=0 which is the special case in (5).

Similarly TurnRight ,

O L

LR

R L

part 0

part 1

part 2

part 3

part 4

m = 1
2
(5k−1)

m = 5k−2

m = 5k−1

m = 1
2

(3.5k − 3)

m = 1
2
(3.5k+1)

m = 2.5k − 1

m = 2.5k

m
sub-rangeFigure 3: TurnRight parts

k+1, sub-parts k≥ 1

For R, the sub-ranges sought, and reduced to part 0, do not include the
following turn, since parts 2 and 3 would want an R after, but part 0 has an
L after. Hence the special cases for those m which are the R after parts 2 and
3.
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Theorem 4. n = TurnLeft(m) can be calculated by the following digit procedure

n ← 2m

for each base-5 digit position high to low in n

if digit = 1 or 3 then n ← n− 1

else if digit = 2 then

n ← n− 2

if now digit 6= 2 then result n+ 2

result n+ 1

And n = TurnRight(m) can be calculated by the following digit procedure

n ← 2m+ 2

for each ternary digit position high to low in n

if digit = 1 or 3 then n ← n+ 1

else if digit = 2 then

n ← n+ 2

if now digit 6= 2 then result n− 1

result n

The digit tested at each digit position is in the successively modi�ed n, not
just the original 2m or 2m+2.

Proof. The e�ect of the TurnLeft procedure is to hold the TurnLeft result so
far in the high base-5 digits of n, and 2m in the low digits.

result 2mn = base-5

khigh low

The e�ect of 2m is to have the cases in (5) distinguished by the base-5 digit
at position k. The digit there is the new desired digit of n (the 4.5k + ... etc)
in the recurrences, with the exception of m = 5k.

n← n−1 or n← n−2 in the procedure are adjustments for the reduced m
of the recurrences. These are where the Ls between sub-parts are extra Ls over
Rs. In parts 0 or 4 there are no net extra Ls,

Case m=5k is 2m=200...00 in base-5, so its digit seen is 2 but its recurrence
case is only 1.5k. The procedure notices this when subtraction n← n−2 borrows
up through all the low 0s so the digit changes from 2 (to 0 if it's the least
signi�cant, or to 1 otherwise).

Other 2m with a digit 2 do not change by borrow this way since they are at
least 2 bigger, so at least 2 to subtract from.

As a remark, the n← n−1 subtractions for digits 1 or 3 never borrow from
digit k. Since base 5 is odd, the even 2m must have an even number of odd
digits. When the high digit is odd 1 or 3, there must be another odd below
it and any borrow from decrementing will stop there. This allows a computer
calculation to have a subtraction of either −1 or −2 in the same loop, and watch
for borrow reducing digit k to indicate the n+2 early exit.
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Corresponding considerations give the TurnRight procedure. It has 2m+2
in the low digits of n so that a range low like m= 5k−1 becomes 2m+2 = 2.5k.

Its carry test is for m= 1
2 (3.5k−3) which is the R between parts 1 and 2 in

�gure 3. This is 2m+2 = 244...44 so digit 2, but digit 3 is desired. n← n+2
carries through the 4s to change that 2 (to 4 when least signi�cant, or to 3
otherwise) and indicate the exception.

Other 2m+2 with digit 2 are at least 2 smaller so do not carry this far. And
similar to the remark above, digit 1 or 3 increment cases have at least one more
odd digit so their carry never reaches digit k either.

If integers are represented in base-5 then testing for the respective digits is
simple. On a binary computer, it may be desirable to convert to a vector of
base-5 digits and apply increments or decrements there, either by an explicit
loop or by bit twiddling. The increment bit twiddling at (3) suits the TurnRight
procedure. A similar decrement and bit twiddling could suit the TurnLeft pro-
cedure.

1.3 Direction

The total turn is found from base 5 digits of n. Reckoning the �rst segment as
n=0, each part 1 and 3 are rotation +90◦. Each part 2 is a rotation 180◦.

0

1

2

3

4

dir(n) =

n−1∑
i=0

turn(i) direction of segment n

= count(1-digits) + 2× count(2-digits) + count(3-digits)

= 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, . . .

gdir(x) =
1

1− x
gturn(x)

=

∞∑
k=0

x5
k

(1 + x5
k

)2

(1− x) (1 + x5
k

+ x2.5
k

+ x3.5
k

+ x4.5
k

)
(6)

The generating function is a usual factor 1/(1−x) for cumulative turns. The
direct interpretation of each term is to put 1 where the digit at position k in n
is 1 or 3, and to put 2 where digit 2. The numerator at (7) factorizes to (6).

x5
k

+ · · ·+x2.5
k−1 + 2x2.5

k

+ · · ·+2x3.5
k−1 + x3.5

k

+ · · ·+x4.5
k−1

1− x5
k+1

=
x5

k

−x4.5
k

+ x2.5
k

−x3.5
k

(1− x) (1− x5
k+1

)
(7)
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Some of the structure of dir can be illustrated in a plot.

0 1 5 25 125

1

2

3

4

5

6

7

8

n

dir(n)

Blocks of n= 5k to 5k+1−1 are scaled to the same width, and linear within
those blocks. In successive blocks, the overall shape is preserved, just some
additional excursions up added. They are where new low digit 1, 2, 3 adds 1, 2, 1
respectively.

Successive new highs are at n=0 and then in n digit 2s add 2 each, and single
1 adds 1,

new high dir(n) at n =

{
1
2 (3.5k − 1) = 1222...
1
2 (5.5k − 1) = 2222...

A238366

All 2s is the maximum dir in curve k, and is the middle segment.

5k−1
max
n=0

dir(n) = 2k, at n = 1
2 (5k−1) = 222...22 base-5 (8)

= 0, 2, 12, 62, 312, 1562, . . . A125831

Each return to dir = 0 is where n comprises only base-5 digits 0, 4.

dir(n)=0 at n = index j in binary, change to digits 0,4 in base-5

= 0, 4, 20, 24, 100, 104, 120, 124, . . . A097251

v�existing
The number of left and right turns from 1 to n inclusive are

TurnsL(n) =

n∑
j=1

TurnLpred(n)

= 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 8, 8, 8, . . .

TurnsR(n) =

n∑
j=1

TurnRpred(n)

= 0, 0, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, . . .

gTurnsL(x) =
1

1−x
gTurnLpred(x) =

∞∑
k=0

x5
k

+ x2.5
k

(1− x) (1− x5
k+1

)

gTurnsR(x) =
1

1−x
gTurnRpred(x) =

∞∑
k=0

x3.5
k

+ x4.5
k

(1− x) (1− x5
k+1

)
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Each turn is left or right so the sum lefts plus rights is simply n. The
di�erence lefts minus rights is net dir . In the generating functions, this di�erence
is gdir form (7).

TurnsL(n) + TurnsR(n) = n (9)

TurnsL(n)− TurnsR(n) = dir(n) (10)

Sum and di�erence of (9),(10) give

TurnsL(n) = 1
2

(
n+ dir(n)

)
TurnsR(n) = 1

2

(
n− dir(n)

)
dir(n) mod 4 is a net segment direction East, North, West, or South.

0

1

2

3

dir mod 4

= 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 0, 3, 2, 1, . . .

dir(n) ≡ 0 at n = 0, 4, 12, 20, 24, 32, 36, 38, 42, . . .

≡ 1 at n = 1, 3, 5, 9, 15, 19, 21, 23, 25, . . .

≡ 2 at n = 2, 6, 8, 10, 14, 16, 18, 22, 26, . . .

≡ 3 at n = 7, 11, 13, 17, 27, 31, 33, 35, 39, . . .

A state machine for dir mod 4 steps forward 0, 1 or 2 according to the digit
of n. This is the same for digits taken high to low or low to high. (Similar would
apply for dir and some other modulus.)

0

1

2

3

0,4

1,3

2

0,4

1,3

2

0,4

1,3

2

0,4

1,3

2 start

dir(n) mod 4

by digits of n

morphism 0→ 01210 1→ 12321 2→ 23032 3→ 30103 starting 0

1.4 Coordinates

The location of a vertex n is given by the sub-part expansions. It's convenient
to write this is complex numbers for the o�sets and rotations. The locations in
the base �gure are

digit(a) = 0, 1, 1+i, i, 2i according as a = 0 to 4 (11)

b = 1+2i end of base �gure

For a new digit a at the high end of n, the location is the sub-part shifted
and rotated. This corresponds to expansion by unfolding.

point(a.5k + n) = digit(a).bk + point(n).idir(a) n < 5k (12)
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For a new digit a at the low end of n, the location is scaled up by b and the
base �gure position suitably rotated. This corresponds to expansion by segment
replacement (with rotation to keep the initial segment �xed East).

point(5n+ a) = b.point(n) + digit(a).idir(n) (13)

Both (12) and (13) are a sum of b powers for base-5 digits.

n = ak−1...a1a0 base-5 digits

point(n) = bk−1 digit(ak−1) high digit (14)

+ bk−2 digit(ak−2) i dir(ak−1)

+ bk−3 digit(ak−3) i dir(ak−1ak−2)

+ · · ·
+ b1 digit(a1) i dir(ak−1ak−2 ···a2)

+ b0 digit(a0) i dir(ak−1ak−2 ···a2a1) low digit

= 0, 1, 1+i, i, 2i, 1+2i, 1+3i, 3i, . . .

Each direction dir(ak−1...aj+1) is of the digits above aj , not including aj
itself.

Per (27), the real and imaginary parts of each bk can be calculated by Lucas
sequences if x and y are wanted separately. The i direction factor selects ±
either real or imaginary in each term.

The direction arg bk is at a multiple of

arg b = arctan 2 = 63.434948◦

= 1.107148 . . . radians A105199

This is never a multiple of a full circle, meaning bk is never on the x axis,
since its imaginary part is never 0,

Im bk mod 5 ≡ [1, 2, 4, 3] k≥1 A070402 (15)

The pattern of Re and Im mod 5 is

1 2 3 4

1

2

3

4

Re, Im bk mod 5

The reverse coordinate calculation is to take a segment at z and direction
o�set d and �nd its n. This can be done following point formula (14) from low
to high.

unpoint(z, d) z = Gaussian integer, d =

{
±1 if z even

±i if z odd

loop until (z=0) or (z=±i and d=−z)
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a =


0 if z/d ≡ 0 mod b
1 if z/d ≡ 1+i mod b
2 if z/d ≡ i mod b
3 if z/d ≡ 1 mod b
4 if z/d ≡ 2i mod b

base-5 digit a

d← d/idir(a) undo low dir
z ← z − d.digit(a) step to multiple of b
z ← z/b divide out b

end loop

if z=0 and d=1 then n in arm 0
if z=i and d=−i then 5k−n in arm 1
if z=0 and d=−1 then n in arm 2
if z=−i and d=i then 5k−n in arm 3

where k is the number of digits of n generated

Terms in (14) are multiples of b except for the lowest, so the low z mod b
determines the low digit a. At the start of the loop

d = idir(ak−1. . .a1a)

so that dividing it out (rotation) leaves

z/d ≡ digit(a)/idir(a)

which uniquely determines a from z and d. The e�ect of /idir(a) is to swap the
odd digits 1 and 3 of what would otherwise be the digit points (11).

For computer calculation, everything can be done in Cartesian x, y rather
than full complex arithmetic. The mod b cases are

x+2y mod 5 ≡ 0, 3, 2, 1, 4 is digit a = 0 to 4 respectively (16)

For arm 0, the d parameter is the segment direction as a complex number
direction so

unpoint(point(n), idir(n)) = n in arm 0

Similarly for arm 2 with −point(n) and −idir(n). But arms 1 and 3 are
e�ectively calculated in reverse. Their original d is the direction from point n
backwards

unpoint(i.point(n), −i . i−dir(n−1)) = n in arm 1 (17)

In both cases there are two d values giving the two visits to each Gaussian
integer point z. They could be expressed by a sign s = ±1 if preferred. Such
an s can be used through the calculation, but then the parity of z must be
accounted for at each step (it is included in d). So digit a is then determined
mod 2b, or Cartesians at (16) mod 10.

Geometrically, subtracting digit(a) and dividing out b has the e�ect of un-
doing the lowest level of segment expansion. The segment direction d ensures
the subtraction goes back to the start of the higher segment.
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even

odd

even

In arms 1 and 3, the reversal noted in (17) means this returning to segment
start ends at z=±i and d = −z. The loop gives repeated high digit 4s there,
being reversals back from a 5k.

From theorem 2, every point except the origin is visited exactly twice by arms
of the curve. The other(n) point number of the other visit can be calculated
from n without the location z as such.

Theorem 5. For a given n≥ 1 the other(n) at the same location is given by
the base-5 digits of n put though the following state machine low to high.

m0

lm0lm1

unchunch

rm0rm1

unchunch

0
1

2

3

4

0
2,3

1,40,1

2

3,4

3,4

0,1
2

0,3

1,2

4

start

output 0, 2,1, 4,3

output 2,1,3,4,0

output 4,1,0,2,3

output 1,2,4,3,0

output 4,0,1,3,2

Figure 4:

digits

low to high

for other(n)

other(n) = 0, 3, 14, 1, 8, 15, 18, 69, 4, 13, 70, 73, 16, 9, 2, . . .

arm = 0,−1,−1, 1, 0,−1,−1,−1, 0, 0,−1,−1, 0, 0, 1, . . .

In a given state, a digit of n gives the respective output digit and is a tran-
sition to a new state. If �unch� is reached then all further digits are unchanged
for the output.

If n ends in rm0 then a high 0 digit is reckoned on n and goes to �unch�.
This is when other(n) has more digits than n.

If n ends in lm0 then a high 0 digit is reckoned on n which goes to lm1. If
n ends in lm1 then n is on the right boundary and other(n) is in arm −1, at
5k − output from the origin.

If n ends in rm1 then n is on the left boundary and other(n) is in arm 1, at
5k − output from the origin.

Proof. Suppose that m is at the same location as n but direction +δ, and a
certain dz o�set away from n.
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dir(m) ≡ dir(n) + δ mod 4 (18)

point(m) = point(n) + idir(n).dz

Factor idir(n) on dz makes it like a low term of (14). This allows step (21)
to require only the low digit of n.

Let a be the low digit of n and c the low digit of m so that

n = 5n′ + a m = 5m′ + c

From the low digit point formula (13), a and c are related by

idir(m
′). digit(c) ≡ idir(n

′). digit(a) + idir(n). dz mod b (19)

and dividing through idir(m) is, with (18) and dir as sum digit directions,

i−dir(c). digit(c) ≡ i−dir(a)−δ. digit(a) + i−δ. dz mod b (20)

c = 0 to 4 gives all complex integers mod b on the left side, so c is determined
by δ, dz and a.

i−dir(c). digit(c) ≡ 0, 1+i, i, 1, 2i for c = 0 to 4

New direction di�erence δ′ is low digits dropped from (18)

δ′ = δ − dir(c) + dir(a) mod 4

New location o�set dz ′ is the low digits taken o� (13). The whole m′ is not
known yet, but dir(m′) = dir(n′) + δ′ mod 4 is enough for the i power.

dz ′.idir(n
′) = point(m′)− point(n′)

=
(
point(m)− idir(m

′).digit(c)
)
/b

−
(
point(n)− idir(n

′).digit(a)
)
/b

=
(
dz .idir(n) − idir(n

′)+δ′ .digit(c) + idir(n
′).digit(a)

)
/b

dz ′ =
(
dz .idir(a) − iδ

′
.digit(c) + digit(a)

)
/b (21)

From (19), the bracketed part is a multiple of b.
These steps begin from dz = 0 so that m and n are the same location, and

δ= 2 for leaving there in the opposite direction. On reaching δ=0, dz=0, all
further c=a unchanged. Each possible digit a from n then gives the following
transitions between combinations of δ, dz . These are per �gure 4 and outputs
there are c at (20).
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δ = 2
dz = 0

start

δ = 3
dz = 1

δ = 1
dz = −i

δ=0, dz=0δ=0, dz=0

δ = 1
dz = 1

δ = 3
dz = i

δ=0, dz=0δ=0, dz=0

0
1

2

3

4

0
2,3

1,40,1

2

3,4

3,4

0,1
2

0,3

1,2

4

High 0 digits on n loop in states lm1 or rm1. To see the rule for these as
adjacent arms, �rst for lm1 suppose n has an extra high digit 3, so it goes to
�unch� with high output c=2 on m.

0 1

23

4

m
n

So the other visit to point(n) is at m along a curve directed from 2. Taking
3 as the origin means it is 5k −m along a curve directed away from that origin
in an arm at −90◦.

For rm1, suppose n has an extra high digit 1, so it goes to �unch� with high
0 on m. Taking 1 as the origin means it is 5k −m along a curve directed away
from that origin in an arm at +90◦.

States lm0 and lm1 are reached by lowest non-0 digit 1 or 2 which is turn(n)
= 1 left from (1). The low digit is �ipped 1↔2. Thereafter in lm0 and lm1, any
digit 1s are unchanged. In lm0, the non-1 digits rotate +1 forwards, skipping 1.
In lm1, the non-1 digits rotate −1 backwards, skipping 1. On reaching �unch�
any further digits of n are unchanged in other(n).

States rm0 and rm1 are reached when turn(n) = −1 right. The low digit is
�ipped and further digits rotated similar to lm but skipping digit 3.

Within a given expansion level, n is written in k many digits (with high 0s
as necessary). If these end in state rm0 then a further 0 digit would go to state
�unch�. This means other(n) is in the next level k+1 (across the join ahead in
section 3.1).
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The lm0 etc state δ, dz segments are located

z z+1

z + i

z − i

z + 1+i

z + 1−i

n
δ=1, dz=1 rm0rm1 δ=3, dz=i

δ=3, dz=1 lm0lm1 δ=1, dz=−i

Figure 5

Starting from these states gives, from n, the segment numbers of those oth-
ers. If such a segment is in an adjacent arm then the reversal is 5k−1− output
for segment rather than point.

Similar initial δ, dz can be used for other segments or points at locations
relative to n. Bigger dz may extend further than just an adjacent arm, possibly
reaching the 180◦ arm.

In �gure 5, the bottom side shown dotted could be found by an lm0 start
done twice (�nd the lm0 segment clockwise from n, then a second time �nds the
bottom segment). Starting directly δ=2, dz=1−i goes to lm0 or lm1 according
as lowest non-1 digit. Similarly the top side δ=2, dz=1+i.

δ = 2
dz = 1−ilm1 lm0

unch

0

1

2,4

3 δ = 2
dz = 1+i

rm1 rm0

unch 0,2

1

3

4

low to high

Adjacent segment numbers can also be calculated by base-5 digits high to
low. Suppose a segment n has segments s, t, e on its right. Expansion is a new
low digit on n and the other segments

n

s

t

e =⇒

s

s s
s

t

e

e

0

1

2

3 4

right

side
segments

The new adjacent s′, t′, u′ follow from the new low digit of n,

n digit s′ t′ u′

0 s4 s3 s2
1 s1 t1 e1
2 e0 n4 n3
3 n2 e0 n4
4 n3 n2 e0

(22)
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Initial s=4, t=3, e=2 are segments in arm −1, on the right, directed towards
the origin. Or start s=0 and an extra high 0 on n to step in (22) to 4, 3, 2 (with
initial t, e being unused by this).

n=0
start

s=4

t=3

e=2

arm −1 start

initial

s=4, t=3, e=2

A segment in arm −1 directed away from the origin is reversal 5k−1−output .
After all digits of n are processed, an adjacent arm is identi�ed by having high
initial 2, 3, 4, above the digits of n.

These right side segments give other of a left-turn n by one further expansion.
A further low 1 digit or 100...00 sequence on n touches a corresponding low 2
or 200...00 of s. A further low 2 digit or 200...00 sequence on n touches a
corresponding low 1 or 100...00 of e. (These 1↔2 �ips are per m0 low to high.)

Similar high to low holds for left side segments. Initial s=4, t=2, e=1 are the
continuation of the curve and the arm to the right for s. The adjacent arm 1
is reversal 5k−1− output and is identi�ed by high 4. One further expansion of
these left segments give other of right turn n points at the starts of segments 3
and 4.

s

s

t

e

e
e

e

0

1

2

3 4

left

side
segments

n digit s′ t′ u′

0 s4 n2 n1
1 n0 s4 n2
2 n1 n0 s4
3 s3 t3 e3
4 e2 e1 e0

(23)

In tables (22),(23), some entries copy n for the new s′, t′, e′. This is where
the output digits are to be n unchanged. It corresponds to somewhere at or
above where the low to high of theorem 5 would be in �unch�.

Theorem 6. Di�erences ∆ =
∣∣n− other(n)

∣∣ which occur in R5 curve k are

∆ = 4.
(
5k0 ± 5k1 ± 5k1 ± · · · ± 5kt

)
(24)

distinct powers k−2≥ k0 > k1 > · · ·> kt ≥ 0

= 4, 16, 20, 24, 76, 80, 84, 96, 100, 104, 116, 120, . . .

Proof. The theorem is true trivially of k = 0, 1 where there are no other(n) in
the same curve arm. Suppose it is true in k. The segments at each double-visited
point expand
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n

m

A

B
C

D

m = other(n) is the other visit to point n. On expansion they become 5n
and 5m an di�erence 5∆, all powers one bigger for one bigger k.

Point A is 5n−3 and 5n+1 for di�erence 4. Similarly point C before and
after 5m.

Point B is 5m−1 and 5n+3 so di�erence 5∆± 4, with the sign according as
m or n bigger. Point D similarly, but 5m+3 and 5n−1 so opposite ∓4.

The diagram shows a right turn n. The same new di�erences occur at a left
turn. A single visited point (n alone) becomes new di�erence 4, which gives
�rst di�erence 4 in k=2.

Second Proof of Theorem 6. Di�erences can also be calculated from the other
digit transformation of theorem 5. This is not as simple as the expansions, but
shows where the di�erence powers fall in the other digit transformation.

In states lm0 and lm1, digit 1 loops and its output is 1 unchanged. Similarly
digit 3 in rm0,rm1. Runs of other digits and their outputs are

. . . 200...00 044...44 20...0n

high lowlm1 lm0

or 3,4 go
to unch

or 2,3 go
to unch

. . . 100...00 200...00 10...0other(n)

Figure 6

+4 −4 +4

all 1 digits unchanged

. . . 400...00 244...44 40...0

high lowrm1 rm0

or 1,2 go
to unch

or 0,1 go
to unch

. . . 244...44 400...00 30...0

+4 −4 +4

all 3 digits unchanged

m0 to lm0 is 2→1 which is di�erence −1 but take that as +4 and borrow
−1 above. This is the low +4 shown in �gure 6.

At lm0, 2→3 or 3→4 going to unch are +1 which cancels the borrow for a
high 0 in ∆. So digit position k−1 must not have a power, making the highest
power k−2.

lm0 1→1 staying in lm0 and borrow is di�erence −1 but again take that as
+4 and borrow above. 4→0 staying in lm0 and borrow is −5 which is 0 for ∆
and continue borrow above.

lm0 0→2 going to lm1 and borrow is di�erence +1. Or m0 to lm1 is 1→2
is likewise +1. But in both cases take that as −4 for ∆ and carry +1 above in
lm1. The middle −4 shown in �gure 6 is lm0 to lm1.

At lm1, digits go similar to lm0 but carry +1 instead of borrow −1. lm1
2→3 or 3→4 to unch are −1 which cancels the carry for 0 in ∆. 1→1 staying
in lm1 and carry is +1 but again take that as −4 and carry +1 above. 0→4
staying in lm1 and carry is +5 which is 0 for ∆ and continue carry above. 2→0
going to lm0 and carry is −1 and like m0 to lm0 take that as +4 for ∆ and
borrow −1 above.
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Similar considerations on rm0 and rm1 gives the same ±4, 0 for ∆.

Nega-base-5 is base 5 using digits 0,±1,±2 (instead of 0...4). (24) is equiv-
alent to ∆ ≡ 0 mod 4, and ∆/4 written in nega base-5 having digits 0,±1 only
(no digits ±2).

In plain base-5, the ∆ powers are digits 0, 4 with alternating pairs 3, 1.

· · · 0 or 4 · · · 3 · · · 0 or 4 · · · 1 · · · 0 or 4 · · · · · ·∆ =

high low

≥0 digits ≥0 digits ≥0 digits

3,1 alternating and in pairs

Figure 7

base-5 = 4, 31, 40, 44, 301, 310, 314, 341, 400, 404, 431, 440, . . .

5ks − 5kt = 044...444 in base-5 and multiplying 4 is 344...441. Taking just
the positive ∆, any run of −4 powers has a +4 above it. Take kt as the lowest
of the −4s and ks as the lowest +4 above it so digit pattern 34441. Other −4
in the runs of −4s cancel some of the 4s to 0s. Other +4 powers anywhere are
4 digits.

The number of distinct di�erences which occurs follows from the powers (24).
Each k position is any of the three 0,±4, but not all 0s, and half to take only
the positive ∆. Per the proof, the digit going to �unch� is a 0 in ∆ so there are
to be k−1 positions in curve k.

count distinct
n,other(n)≤ 5k

∣∣n− other(n)
∣∣ =

{
0 if k=0
1
2 (3k−1 − 1) if k ≥ 1

Geometrically this corresponds to the join area Jk ahead at theorem 17.

Theorem 7. The sum of distinct di�erences
∣∣n− other(n)

∣∣ in R5 curve k is

Odistinctk =

{
0 if k=0

2
7 (15k−1 − 1) if k ≥ 1

= 0, 0, 4, 64, 964, 14464, . . . k≥2 4×A135518

= 444...44 base 15, for k−1 digits

Proof. Di�erences in k are those of k−1 with an additional low power, so 5
times each di�erence and 3 copies of each. The new low power can be 0,±4.
Each +4 cancels with its corresponding −4, except ∆ = 4 that power alone.

So starting Odistinct1 = 4 each successive k is a further base-15 digit 4.

Odistinctk = 3.5.Odistinctk−1 + 4 k ≥ 2

Similar holds for a new high power. If 0 then Odistinctk−1 total di�erences.
If +4 then add all of Odistinctk−1 but also subtract for the highest to be negative
too, which cancels to just 4.5k−2 for two of each di�erence 1

2 (3k−2−1), and also
of all 0s below. The result 4.15k−2 is a new base-15 digit 4.

Odistinctk = Odistinctk−1 + 4.5k−2.(2 1
2 (3k−2 − 1) + 1) k ≥ 2 (25)

The mean distinct di�erence as a fraction of the curve length 5k is
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Odistinctk

5k. 12 (3k−1 − 1)
→ 4

35
= 0.114285 . . . A021879

1.5 Segments in Direction

Theorem 8. The number of segments in directions d ≡ 0, 1, 2, 3 mod 4 of R5
dragon curve k are

S(k, d) =
5k−1

count
j=0

(
dir(j) ≡ d mod 4

)
= 1

4

(
5k + (−i)dbk + (−i)dbk + (−1)d

)
(26)

= 1
4

∣∣bk + id
∣∣2 − [0, 12 ]d

S(k, 0) = 1, 2, 5, 26, 153, 802, 3965, 19546, . . .

S(k, 1) = 0, 2, 8, 30, 144, 762, 3928, 19670, . . .

S(k, 2) = 0, 1, 8, 37, 160, 761, 3848, 19517, . . .

S(k, 3) = 0, 0, 4, 32, 168, 800, 3884, 19392, . . .

Proof. When the curve expands, sub-parts 0 and 4 are in the same direction.
Sub-parts 1 and 3 rotate +90◦ which means two copies of the segments in
direction d=3 move to direction d=0. Sub-part 2 rotates 180◦ which means the
segments in direction d=2 move to direction d=0. So mutual recurrences

S(k+1, 0) = 2S(k, 0) + S(k, 2) + 2S(k, 3)

S(k+1, 1) = 2S(k, 0) + 2S(k, 1) + S(k, 3)

S(k+1, 2) = S(k, 0) + 2S(k, 1) + 2S(k, 2)

S(k+1, 3) = S(k, 1) + 2S(k, 2) + 2S(k, 3)

which is

S(k+1, d) = 2S(k, d) + 2S(k, d−1) + S(k, d−2)

Substitutions or a little linear algebra gives a recurrence in a single d,

S(k+4, d) = 8S(k+3, d)− 22S(k+2, d) + 40S(k+1, d)− 25S(k, d)

which has characteristic polynomial

x4 − 8x3 + 22x2 − 40x+ 25 = (x− 5)(x− 1)(x− b)(x− b)

So S(k, d) has a power form W.5k + X.bk + Y.bk + Z. Starting S(0,0) = 1
and others S(0,1) = S(0,2) = S(0,3) = 0 gives W= 1

4 , X = 1
4 (−i)d, Y = 1

4 i
d, Z =

1
4 (−1)d.

In (26), the imaginary parts of the conjugate powers cancel out. The id

factors select

(−i)dbk + (−i)dbk =


2 Re bk if d = 0

2 Im bk if d = 1

−2 Re bk if d = 2

−2 Im bk if d = 3
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The real and imaginary parts of bk can be calculated by a Lucas sequence
recurrence

vk+2 = 2vk+1 − 5vk (27)

starting v0 = 1, v1 = 1 for Re bk = 1, 1, −3, −11, −7, 41, . . . A006495

starting v0 = 0, v1 = 2 for Im bk = 0, 2, 4, −2, −24, −38, . . . A006496

Curve level k has 5k segments in total. The b and constant parts cancel out
in the total across d = 0 to 3 so

S(k, 0) + S(k, 1) + S(k, 2) + S(k, 3) = 5k

|b| =
√

5 so the bk part in S grows roughly as a half power of 5 and so the
segment counts in each direction are approximately 1

45k each, di�ering only by
some fraction of the half power.

The half power is not periodic since, as from (15), the base arg b = arctan 2
angle is never a multiple of 2π.

A variation can be made by counting segments relative to the middle segment
n = 1

2 (5k−1) which is direction 2k as from (8). The e�ect is to swap directions
0↔ 2 and 1↔ 3 at odd k. In the powers this becomes −b.

SM (k, d) = S(k, 2k+d) =

{
S(k, d) if k even

S(k, d+2) if k odd

= 1
4

(
5k + (−i)d(−b)k + (−i)d(−b)k + (−1)d

)
= 1

4

∣∣bk + id+2k
∣∣2 − [0, 12 ]

SM (k, 0) = 1, 1, 5, 37, 153, 761, 3965, 19517, . . .

SM (k, 1) = 0, 0, 8, 32, 144, 800, 3928, 19392, . . .

SM (k, 2) = 0, 2, 8, 26, 160, 802, 3848, 19546, . . .

SM (k, 3) = 0, 2, 4, 30, 168, 762, 3884, 19670, . . .

Theorem 9. Among the �rst n segments of the R5 dragon curve, the number
of segments in direction d mod 4 is

SN (n, d) =
n−1

count
j=0

(
dir(j) ≡ d mod 4

)
= 1

4

(
n + 2 Re(−i)dpoint(n) +

(
(−1)d if n odd

))
(28)

SN (n, 0) = 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, . . .

SN (n, 1) = 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, . . .

SN (n, 2) = 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, . . .

SN (n, 3) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, . . .

Proof. These counts are cumulative sum of a direction predicate
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DirPred(n, d) =

{
0 if dir(n) ≡ d mod 4

1 if not

DirPred(n, 0) = 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .

DirPred(n, 1) = 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .

DirPred(n, 2) = 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, . . .

DirPred(n, 3) = 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, . . .

A segment step z = 1, i,−1,−i can be expressed as such a predicate by

1
4

(
2 + 2 Re(−i)dz − 2

∣∣Im(−i)dz
∣∣) =

{
1 if z in direction d

0 if not

Then applying that to steps dpoint(n) = point(n+1)− point(n) = i dir(n)

SN (n, d) =

n−1∑
j=0

DirPred(n, d)

= 1
4

((n−1∑
j=0

2
)

+
(

2 Re(−i)d
n−1∑
j=0

dpoint(j)
)

(29)

−
(

2

n−1∑
j=0

∣∣Im(−i)ddpoint(j)
∣∣)) (30)

The Re part (29) sum of dpoint is point(n). The |Im| part (30) is sum of
terms 0 or 1 according as dpoint is horizontal or vertical, after rotation by d.
The curve always turns left or right so segments are alternately horizontal and
vertical so half each giving

2

n−1∑
j=0

∣∣Im(−i)ddpoint(j)
∣∣ = n−

(
(−1)d if n odd

)
which subtracted from

∑
2 = 2n is per (28).

Second Proof of Theorem 9. Segments alternate horizontal and vertical so to-
tal horizontals are dn/2e which is SN directions 0 plus 2. The di�erence of
directions 0 and 2 is the net horizontal position Re point ,

SN (n, 0) + SN (n, 2) = dn/2e (31)

SN (n, 0)− SN (n, 2) = Re point(n) (32)

(31)+(32) and (31)−(32) give

SN (n, 0) = 1
2

(
dn/2e+ Re point(n)

)
SN (n, 2) = 1

2

(
dn/2e − Re point(n)

)
Similarly for the verticals

SN (n, 1) + SN (n, 3) = bn/2c
SN (n, 1)− SN (n, 3) = Im point(n)
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SN (n, 1) = 1
2

(
bn/2c+ Im point(n)

)
SN (n, 3) = 1

2

(
bn/2c − Im point(n)

)
The ±Re, Im parts are selected in (28) by Re(−i)dpoint , and the �oor or

ceil n/2 by the (−1)d o�set part.

A complete level k is 5k segments SN (5k, d) = S(k, d). Its end point(5k) =
bk is the conjugate bk parts of (26).

The point form of SN shows the mean number of segments by direction
converges to 1

4 each. A simple upper bound for point(n) is to assume each of

its digits is distance |bk| =
√

5
k
, and such a total grows slower than n.

base5len(n) = dlog5 n+1e
= 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, . . . A110592

Re point(n) ≤
base5len(n)−1∑

k=0

√
5
k

=

√
5base5len(n) − 1√

5− 1
<
√

5base5len(n)

1

4
− 2
√

5base5len(n) + 1

n
<

SN (n, d)

n
<

1

4
+

2
√

5base5len(n) + 1

n

SN (n, d)

n
→ 1

4

2 Boundary

Theorem 10. The boundary length of R5 dragon curve k is

Bk = 4.3k − 2 boundary (33)

= 2, 10, 34, 106, 322, 970, 2914, . . . k≥1 A079004

The curve is symmetric on each side so one side is

Rk = 1
2Bk = 2.3k − 1 one-side boundary (34)

= 1, 5, 17, 53, 161, 485, 1457, . . . A048473

The length in a �U� part is

Uk = 2.3k + 1 �U� part boundary

= 3, 7, 19, 55, 163, 487, 1459, 4375, . . . A052919, A100702

Proof. The curve consists of two R and one U. Points 1 and 2 are on the
boundary since the two missing directions must be able to have curves added
the to make the plane �lling of theorem 2.
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0 1

23

4 5

Rk−1

Rk−1

Uk−1

Rk

Figure 8: R expansion

Rk = 2Rk−1 + Uk−1

R0 = 1

U0 = 3

(35)

The U part expands as follows. The two points marked with dots are on the
boundary since the two missing directions must be able to have curves added
the to make the plane �lling of theorem 2.

23

4 5

R
U

U
Figure 9: U expansion

Uk = Rk−1 + 2Uk−1 (36)

Using (35) for Uk and substituting into (36) gives recurrences

Rk = 4Rk−1 − 3Rk−2

Uk = 4Uk−1 − 3Uk−2

The characteristic polynomial is x2−4x+3 = (x−3)(x−1) so R and U have
a power form X.3k + Y . From initial R0 = 1, U0 = 3 and then R1 = 5, U1 = 7
by (35)(36) the powers are seen to be 2.3k−1 and 2.3k+1 respectively.

2.1 Boundary Squares

k = 2
boundary squares

right RQ2 = 32 = 9

left same

total BQ2 = 2.32 = 18

Theorem 11. The number of unit squares on the boundary of R5 dragon curve
k is

BQk = 2.3k boundary squares (37)

= 2, 6, 18, 54, 162, 486, 1458, 4374, . . . A008776
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The curve is symmetric on each side so one side is

RQk = 1
2BQk = 3k one-side boundary squares

= 1, 3, 9, 27, 81, 243, 729, 2187, . . . A000244

The �U� part is the same

UQk = RQk = 3k �U� boundary squares

Proof. Make the same breakdown into R and U parts as above. R and U meet
at right angles so they do not have any boundary squares in common. The
same recurrences (35) and (36) apply but U starts from a single initial square
UQ0 = 1.

RQk = 2RQk−1 + UQk−1 (38)

UQk = RQk−1 + 2UQk−1 (39)

starting RQ0 = 1, UQ0 = 1

RQ0 = UQ0 and thereafter (38),(39) maintain RQk = UQk so that RQk =
3RQk−1 = 3k.

Second Proof of Theorem 11. The missing side of a U shape is an R

U R

Figure 10:

U,R boundary squares
are opposites

Within the square all sides of all unit squares are traversed so the boundary
squares of U overlap with the boundary squares of R, so that UQk = RQk.
Then with the R expansion �gure 8,

RQk = 3RQk−1 starting RQ0 = 1

The boundary squares have either 1 or 3 sides on the curve. There are no
2-side boundary squares since there are none in k=0 or k=1 and the breakdowns
of �gure 8 and �gure 9 makes subsequent levels a multiple of the �rst two levels.

Theorem 12. The number of 1-side and 3-side boundary squares of R5 dragon
curve level k are

BQ1 k = 3k + 1 A034472

BQ3 k = 3k − 1 A024023

RQ1 k = 1
2 (3k + 1)

= 1, 2, 5, 14, 41, 122, 365, 1094, . . . A007051

UQ1 k = 1
2 (3k − 1)

= 0, 1, 4, 13, 40, 121, 364, 1093, . . . A003462

RQ3 k = UQ1 k opposites

UQ3 k = RQ1 k
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Proof. In �gure 10 the U and R boundary squares are opposed and every line
segment is traversed so a 3-side of U is a 1-side of R so opposite UQ3 k =RQ1 k.
Similarly a 1-side of U is a 3-side of R so UQ1 k =RQ3 k

The parts in �gure 8 and �gure 9 meet as the outside of right angles so
do not change the number of sides of boundary squares in each part. The
same recurrences (38),(39) apply to 1-side squares, but starting RQ1 0 = 1, and
UQ1 0 = 0 (its single initial square is a 3-side).

It also su�ces to take just (38) applied to 1-side squares then use the UQ
opposites and total RQk = RQ1 k + RQ3 k

RQ1 k = 2RQ1 k−1 + UQ1 k−1 like (38)

= 2RQ1 k−1 + RQ3 k−1 opposites

= 2RQ1 k−1 + RQk−1 − RQ1 k−1 total RQ

= RQ1 k−1 + RQk−1

= RQ1 0 +
k−1∑
j=0

RQj = 1 +
3k − 1

3− 1

Likewise RQ3 k but with RQ3 0 = 0 so that RQ1 k = RQ3 k + 1.

The R expansion �gure 8 is shown as how a level k curve is comprised of
level k−1 sub-curves. It can also be interpreted as how a line segment with a
1-side boundary square becomes two 1-sides and a 3-side when the line segment
expands.

The U expansion �gure 9 likewise as how 3 line segments with a 3-side bound-
ary square become two 3-sides and a 1-side when the line segments expand.

The two interpretations are unfolding and segment expansion. The resulting
recurrences are the same.

The boundary expansions R→ R,R,U and U→ R,U,U mean the number of
sides of a boundary square is determined by numbering the squares in ternary,
starting from m=0,

RQsides(m) =

{
1 if TernaryLowestNon1 (m) = 0

3 if TernaryLowestNon1 (m) = 2

= TernaryLowestNon1 (m) + 1

= 1, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, . . .

TernaryLowestNon1 (m) = ternary lowest non-1 digit of m

= 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, . . . 2×A116178

This number of sides gives a straightforward way to draw the boundary or
part of the boundary. There are no straight ahead points on the boundary, since
the remaining segments could not be traversed for plane �lling without crossing
or overlap. So the boundary is successive squares of RQsides(m) with a left
turn between each.

The left boundary of level k is a reversal of the right of k. For the left of
the curve continued in�nitely, the boundary expansions are reverse U→ U,U,R
and R→ U,R,R starting from U. This is a swap R↔U of the right side above,
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LQsides∞(m) =

{
3 if TernaryLowestNon1 (m) = 0

1 if TernaryLowestNon1 (m) = 2

= 3− TernaryLowestNon1 (m)

= 4− RQsides(m)

= 3, 3, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 1, 1, 3, 3, . . .

2.2 Boundary Segment Numbers

Theorem 13. Number segments of the R5 dragon curve starting at n=0 for
the �rst. The right boundary segments are characterized by

Rpred(n) =



1 if n in base-5 with digit 1s deleted has no digit pair

22, 23, 24,

30, 32, 33, 34,

40

0 otherwise

= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, . . .

=1 at n= decimal 0,1,2,3,4, 5,6,7,8,9, 10,11, 16, 21,22,23,24, 25,...
base-5 0,1,2,3,4, 10,11,12,13,14, 20,21, 31, 41,42,43,44, 100,...

Proof. Take the boundary in four parts

R X Y Z

R has no segments on its right. This is the right side of the full curve. X
has a further curve at its end and so only some segments at its start are on the
boundary. It also has a bottom curve, though that doesn't a�ect the result. Y
has a curve at both start and end. Z has a curve at its start and below.

Let Rk, Xk, Yk, Zk be the set of segment numbers which are on the boundary
in the respective con�gurations at level k. These numbers are in the range 0
to 5k − 1 and hence can be written with k many base-5 digits. The initial sets
are a single 0 in each so R0 = X0 = Y0 = Z0 = 0 corresponding to a single line
segment. These zeros are understood as 0 many digits.

The curve expands as

0 1

23

4 5

R

R

X
Y
Z

0

1

2

3

4

5

R

R

X
Y

Z

R

R

X

Y

Z

R

X

Y

Z

X

Y

Z
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The R segment 0�1 expands to sub-parts 0.R, 1.R, 2.X, 3.Y, 4.Z. The number
0 to 4 is the high base-5 digit on top of the digits of the sub-part. Treating each
part this way gives

Rk = 0.Rk−1, 1.Rk−1, 2.Xk−1, 3.Yk−1, 4.Zk−1
Xk = 0.Rk−1, 1.Xk−1
Yk = 1.Yk−1
Zk = 1.Zk−1, 2.Xk−1, 3.Yk−1, 4.Zk−1

(40)

Taking base-5 digits from high to low this expansion is a state machine. For
example in state R any digit is permitted and switch to state R, X, Y or Z
according to the digit.

In each case, digit 1 is followed by the same type sub-part, so no change of
state. This means a run of 1 digits is permitted anywhere and does not change
the state.

For other digits, it is seen that 0, when permitted, always goes to state R. 2
always to state X. 3 always to state Y. And 4 always to state Z. This means the
state at any position is given by the preceding non-1 digit. A disallowed state
transition is therefore a disallowed digit pair. So from part X not 22, 23, 24,
from part Y not 30, 32, 33, 34, and from part Z not 40.

Part Yk has only a single sub-part 1.Yk−1. This means that once in state Y
the only possible further digit is repeated 1s. Geometrically this is because when
three curves are in a U arrangement the middle part always has just a single
segment on the resulting boundary. This is the single middle square ahead in
area theorem 16 second proof.

The parts can be shown as a state machine,

R

X

Y

Z

non

non

non
0,1

2

3

4

0

1
2,3,4

0,2,3,4
1

0

1,42

3

Figure 11:

Rpred base-5 digits

high to low

start

Going low to high is a little simpler. In the disallowed pairs, there are two
cases. Digit 0 which is state r2 has 3 or 4 disallowed above. Digits 2,3,4 which
is state r3 have digits 2,3 disallowed above. In all cases any digit 1 stays in the
same state (like in high to low too).

start

r2

r3

non

non

0 1

2,3,4

0,1

2

3,4

0

1,4

2,3

Figure 12:

Rpred base-5 digits

low to high
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In state R of �gure 11, the unit square on the right has just 1 segment.
States X,Y,Z have 3 segments. So the state gives the number of sides of the
unit square on the right of segment n,

Rsides(n) =


1 if Rpred �nal state R

3 if Rpred �nal state X,Y,Z

4 if Rpred �nal state non

(41)

= 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 3, 4, 4, 4, . . .

States R,X,Y,Z are reached by digits 0, 2, 3, 4 respectively, so lowest non-1
distinguishes 1 or 3 sides,

Rsides(n) =


1 if Rpred(n) = 1 and LowestNon1 (n) = 0

3 if Rpred(n) = 1 and LowestNon1 (n) 6= 0

4 if Rpred(n) = 0

LowestNon1 (m) = 0, 0, 2, 3, 4, 0, 0, 2, 3, 4, 0, 2, 2, 3, 4, . . .

Rsides can be expressed on digits low to high by �nding the lowest non-
1 and then the state machine of �gure 12. In that state machine the lowest
non-1 leaves start state, so Rsides would have one pair of r2,r3 for a 0 giving
Rsides = 1 or 4 and another pair for non-0 giving Rsides = 3 or 4. In all cases
�non� is 4 sides.

Theorem 14. Number segments of the R5 dragon curve starting at n=0 for
the �rst. The left boundary segments are characterized by

Lpredk(n) =



1 if n in k base-5 digits with 3s deleted has no digit pair

04,

10, 11, 12, 14,

20, 21, 22

0 otherwise

For the curve continued in�nitely add a high 0 digit above the most signi�cant
non-zero so a most signi�cant digit 4 becomes an 04 which is disallowed.

Lpred∞(n) = Lpredk+1(n) for k with 5k > n

= 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, . . .

=1 at n= decimal 0,1,2,3, 8, 13,14, 15,16,17,18, 43,...
base-5 0,1,2,3, 13, 23,24, 30,31,32,33, 133,...

Proof. The curve is symmetric on its left and right sides so the left boundary
segment numbers are the right segment numbers but numbered in reverse. This
means digits 0,1,2,3,4 become 4,3,2,1,0. The digit pairs to exclude are the digit
reversals of those in the right boundary pairs. The 1s deleted become 3s deleted.

For the left side of an in�nite curve the reversal is from the �nal segment of
an extra level of expansion. In the following diagram the 5�4 continues as 4�3
etc. This is an extra high 4 digit on the right boundary which reverses to be an
extra high 0 digit for the left boundary.
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0 1

23

4 5
← left

The left digit pair 04 which is disallowed can be illustrated by the following
diagram. Any 04 sub-part is closed o� by the following �10�, �11�, �12�.

0
1

2

3

4

Further it can be seen some of the �03� part will be closed o� by the �13�
curve blocking its end. In the theorem this follows from the �delete 3s�.

For a �nite curve digit 4 can be the high digit when n is written in k digits
since there is nothing beyond it which would close it o�.

For an in�nite curve the extra high 0 digit can also be thought of as starting
in state Z of theorem 13 rather than full R.

An Lsides follows from states similar to Rsides at (41), or by digit reversals,

Lsidesk(n) = Rsides(5k−1− n)

Lsides∞(n) = Lsidesk+1(n) for k with 5k > n

= 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 1, . . .

Segments on both the left and right boundary are those with none of either
Lpred or Rpred disallowed pairs. This leaves allowed pairs

00, 01, 02, 03, 13, 31, 41, 42, 43, 44

The only n which can be made with these pairs are �xed sets at start and
end of the curve,

k=0 n = 0 (all)

k=1 n = 0, 1, 2, 3, 4 (all)

k≥2 n = 0 . . . 00, 01, 02, 03, 13, 31 base-5

4 . . . 44, 43, 42, 41, 13, 31

= 0, 1, 2, 3, 8, 16 and 5k−1− 0, 1, 2, 3, 8, 16 (42)

For k=2 the 8,16 o�sets in (42) are the same so there are 10 segments on
both boundaries. For k ≥ 3 there are a full 12 (6 at each end of the curve).

Theorem 15. The lengths of sub-parts X, Y, Z from theorem 13 are

Xk = 3k − k
= 1, 2, 7, 24, 77, 238, 723, 2180, 6553, . . . A024024
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Yk = 1

Zk = 3k + k

= 1, 4, 11, 30, 85, 248, 735, 2194, 6569, . . . A104743

Proof. The expansions (40) are recurrences in the lengths

Rk = 2Rk−1 +Xk−1 + Yk−1 + Zk−1 (43)

Xk = Rk−1 +Xk−1 (44)

Yk = Yk−1

Zk = Xk−1 + Yk−1 + 2Zk−1 (45)

The initial lengths are a single segment each X0 = Y0 = Z0 = 1.
Yk = Yk−1 means Yk = 1 always.
Expanding X (44) repeatedly is cumulative R. So with the sum understood

as empty when k=0, and Rk from (34),

Xk = X0 +

k−1∑
j=0

Rj = 1 +

k−1∑
j=0

(
2.3j − 1

)
= 1 + 2

3k − 1

2
− k (46)

R, X and Y into (43) gives Z

Zk = Rk+1 − 2Rk −Xk − Yk = 3k + k

= (2.3k+1−1)− 2(2.3k−1)− (3k−k)− 1

X, Y and Z are the three sides of U (and so (43) is the R expansion (35)).

Xk + Yk + Zk = Uk

Noticing this on the right of (45) gives Z as cumulative U , similar to X
cumulative R at (46).

Zk = Zk−1 + Uk−1 = Z0 +

k−1∑
j=0

Uj = 1 +

k−1∑
j=0

(
2.3j + 1

)
= 1 + 2

3k − 1

3− 1
+ k

3 Area

start

end

Figure 13: area k=2

AL2 = 2

AR2 = 2

A2 = 4 total

Lemma 1. Consider line segments on a square grid where any enclosed unit
square has segments on all 4 sides. The enclosed area A and boundary B are
related to total line segments N by

4A+B = 2N (47)
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Proof. Count the sides of the line segments. There are N segments so total 2N
sides. Each side is either a boundary or is inside.

side

side

4 sides
inside

There are B outside sides on the boundary. The inside sides are all in
enclosed unit squares. Each area A square has 4 inside sides, so 4A and total
B + 4A = 2N .

Theorem 16. The area enclosed by R5 dragon curve k is

Ak = 1
2 (5k + 1) − 3k area (48)

= 0, 0, 4, 36, 232, 1320, 7084, 36876, . . .

Each side is symmetric so half area on each side

ARk = ALk = 1
2Ak area one side

= 1
4 (5k − 2.3k + 1)

= 0, 0, 2, 18, 116, 660, 3542, 18438, . . . A007798

Proof. From the area�boundary relation (47) and boundary (33)

A = 1
4 (2N −B)

Ak = 1
4 (2.5k − (4.3k − 2))

Area can also be calculated from the boundary squares in the way Daykin
and Tucker [5] use for the Heighway/Harter dragon curve. This applies to any
curve where adjacent copies mesh perfectly.

Second Proof of Theorem 16. Arrange four R5 curves in a square

AL

AL

AL

AL
√
5k

LQ LQ

LQLQ Figure 14: square 5k

4×ALk area
4× LQk boundary squares

with overlaps

The curve endpoints are (
√

5)k apart. The curves divide the plane into
identical areas so the number of unit squares inside is (

√
5k)2. These squares

are the left-side enclosed area ALk and the left-side boundary squares LQk.
Every edge in the square is traversed so the curves mesh and the boundary

squares overlap between adjacent curves. Along the diagonals the boundary
squares are doubled. LQk = 3k is always odd so there is a middle unit square
common to all four boundaries.

5k = 4ALk

+ 4 1
2 (LQk − 1) sides, un-overlapped

+ 1 middle square
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ALk = 1
4 (5k − 1) − 1

2 (3k − 1)/2

The actual joins of the square in �gure 14 twist and turn. The following
diagram shows an example. The grey boundary squares are overlapped twice.
The middle black square is overlapped four times.

k=3
square area joins
and middle square

Third Proof of Theorem 16. The segments of each 1-side, 3-side and 4-side square
expand into that square as

Figure 15:

1, 3, 4
side square

expansions

The number of unit squares enclosed by the expanded segments, on the side
of the square, are 0, 2, 5 respectively. The 3-side squares are BQ3 k. The 4-side
squares are the enclosed area A. So a recurrence for Ak giving a powered sum
of BQ3 k.

Ak = 5Ak−1 + 2BQ3 k−1 (49)

= 5kA0 + 2

k−1∑
j=0

5jBQ3 k−1−j

= 2

k−1∑
j=0

5j (3k−1−j − 1) since A0 = 0

= 2

(
5k − 3k

5− 3
− 5k − 1

5− 1

)
(50)

For the curve endpoints scaled to a unit length, the area limit is the coe�cient
of the 5k power,

Ak
5k
→ 1

2
(51)

As from TurnRun in section 1.2, the curve turns go in runs of either 2 or 3
consecutive left or right. A run of 3 consecutive turns encloses a unit square.
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L

Lturn = +1, L
three consecutive left turns,

is left-side enclosed unit square

The run lengths are pairs either 2,3 or 3,2. There is one 3 for each of the
5k−1−1 turns of the previous expansion level. So the number of runs of 3 turns
in curve k is

TurnRuns3 k =

{
0 if k=0

5k−1 − 1 if k ≥ 1
(52)

= 0, 0, 4, 24, 124, 624, 3124, . . . k≥1 A024049

The proportion of enclosed unit squares formed by 3-turns, out of the total
area, is

TurnRuns3 k
Ak

= 2
5 + 2

5

3k−3

Ak
→ 2

5

This limit is approached from above since 3k−3 > 0 for k≥2 which is where
Ak > 0. For example in k=3 the ratio is 2

3 ,

start
end

k=3

LLL squares black
RRR squares grey

total
TurnRuns3 3 = 24

A3 = 36

Some segments have these 3-turn squares on both sides. Such pairs are a
sequence of turns LLLRRR. As from the turn expansion in �gure 2, such con-
secutive 3-runs occur only as an LLRR plus L,R existing turns before and after.
An L,R is then only the middle of an LLRR of preceding segment expansion.
So there is one LLLRRR for each k−2 segment.

There are no RRRLLL pairs, since the Rs could only be an LLRR and
existing R, but then LLR follows, not LLL.

TurnRuns3pairsk =

{
0 if k = 0, 1

5k−2 if k ≥ 2

The other enclosed unit squares are of two types, one has 3 sides consecutive
and 1 separate, the other has 4 separate. This follows from the expansions of
�gure 15. The inner-most square has 4 separate, no matter what original sides.
These are each preceding level enclosed unit square so Ak−1 and located at a
grid of b steps apart.

The outer squares in the expansions have 3 consecutive sides, and further
side depending on whether the original sides were consecutive. Non consecutive
original gives a non consecutive in the expansion. These can be counted by
di�erence
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A31 k = Ak − TurnRuns3 k −Ak−1 =

{
0 if k=0

2Ak−1 if k ≥ 1

start

end

k=4
4 sides all

not consecutive

start

end

k=4
3 sides consecutive
1 not consecutive

left black
right grey

3.1 Join Area

When two copies of the R5 curve meet at right angles they touch and enclose
new area. The simplest join is k=1 which encloses a single new unit square
J1 = 1 as shown in the following diagram.

k = 0

join area

J0 = 0

k = 1

join area

J1 = 1

k = 2

join area

J2 = 4

Theorem 17. The area enclosed at the join of two R5 dragon curves at right
angles is

Jk = 1
2 (3k − 1) join area (53)

= 1
2 (RQk − 1)

= 0, 1, 4, 13, 40, 121, 364, 1093, . . . A003462

= ternary 0, 1, 11, 111, 1111, . . . A002275

Proof. In �gure 14 the join area is the diagonal, so half the RQk excluding the
middle 4-overlap square.

Second Proof of Theorem 17. The join can also be calculated from the area as
the extra which Ak has over its �ve Ak−1 sub-copies.

0 1

23

4 5

J

J

J

J

joins
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The horizontal sub-curves 0�1 and 2�3 don't touch since otherwise a square
of four such sides would have its verticals touching too and so repeating some
edge. Likewise 2�3 and 4�5 don't touch. So

Ak+1 = 5Ak + 4Jk (54)

ARk+1 = 5ARk + 2Jk one side

Notice (54) is the same as area by 3-side boundary squares (49) since

Jk = 1
2BQ3 k

Third Proof of Theorem 17. The join area is also the shortfall of boundary length
Bk+1 over �ve copies of Bk. There are 4 joins and each unit square enclosed by
the joins reduces the boundary by 4 segments.

5Bk −Bk+1 = 4Jk

Similarly with the boundary squares. The shortfall of BQk+1 over 5 copies
of BQk is the 4 joins. Each join square is 2 overlapping boundary squares which
are no longer on the boundary. At the end of the join the middle square from
�gure 14 is common to 3 adjacent curves and becomes a single boundary square.
The e�ect of this middle square is to reduce by 1 for each of the four joins.

5BQk − BQk+1 = 4 (2Jk + 1)

In any non-overlapping self-similar curve the area is n copies of the previous
level plus some amount extra which is where the copies join. The R5 curve is
symmetric so there are four equal joins.

Jk is also the number of distinct di�erences
∣∣n− other(n)

∣∣ from theorem 7.
The join is the only place new double-visited points occur on unfolding, so
di�erences elsewhere are replications of di�erences in joins of previous levels.

The �rst point where a level k curve touches its unfolded copy is the smallest
in the join and is the end-most part of the join area. The vertex numbers on
each side can be calculated.

start

end

unfold at n=52 = 25

JN 2 = 19 = 52−JNDk

JNDk = 6

JNother2 = 43 = 52 + 3JNDk

k=2
�rst and last
points where
unfold touches

Theorem 18. The �rst vertex (smallest n) of a level k curve join is vertex
number

JN k = 1
4 (3.5k + 1) join n

= 1, 4, 19, 94, 469, 2344, . . . A083065

= 33...334 base-5, k digits

and the opposing point it touches is

JNotherk = other(JN k)
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= 1
4 (7.5k − 3) join n other

= 1, 8, 43, 218, 1093, 5468, . . . A117617

= 133...33 base-5, k+1 digits

Or each measured back from the unfold point 5k,

JN k = 5k − JNDk join n from unfold

JNotherk = 5k + 3 JNDk

JNDk = 1
4 (5k − 1)

= 0, 1, 6, 31, 156, 781, . . . A003463

= 11...11 base-5, k digits repunit

For k=0 there is nothing enclosed by the join and JN k = JNotherk = 5k.
For k ≥ 1 there is join area enclosed.

Proof. Join k comprises k−1 sub-curves

3.5k−1

J

Jk−1

Jk−1

Jk−1

Figure 16

Join JN k is at 3.5k−1 and further JN k−1,

JN k = 3.5k−1 + JN k−1 starting JN 0 = 1

JNDk is back from point J by 5k−1 and further JNDk−1 so

JNDk = 5k−1 + JNDk−1 starting JND0 = 0

JNotherk−1 would be relative to the 3.5k−1 point, so in k that plus the
square 4.5k−1,

JNotherk = 7.5k−1 + JNotherk−1 starting JNother0 = 1

The joins each way in �gure 16 are a geometric interpretation of the high
digit form of Odistinct at (25). The distinct di�erences in curve k are across
join k−1 (as noted above). A k−1 join expands
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M
k−2

sub-curves

T

Jk−2

Jk−2

Jk−2

join Jk−1

expansion

The join at M is the same set of di�erences as the previous level. Those at
the new touch T are directed forwards and backwards. The di�erences there
are o�sets from di�erence 4.5k−2 around the big square of sub-curves shown.
The di�erences forward and backward cancel out, leaving just 4.2k−4 for each
point. There is 1 point each way for Jk−2, plus T itself. So

Odistinctk = Odistinctk−1 + 4.5k−2.
(
2Jk−2 + 1

)
k ≥ 2

4 Points

4.1 Point Counts

The R5 dragon curve visits each point either once or twice. The number of
single and double points can be calculated.

Lemma 2. Consider a path on a square grid which does not repeat any segment
and which always traverses all four sides of any enclosed unit square.

The number of single-visited points S, double visited points D, enclosed area
A and boundary length B are related by

D = A double-visited = area

S = B/2 + 1 single-visited and boundary

The starting point of the path can be revisited. If it is then that point is
double-visited.

Proof. A path of no line segments is taken to be a single point at its start. The
relations hold with D = A = B = 0 and S = 1.

When a further line segment is added to the end of the path it either goes
to an unvisited point or it re-visits a point,

A unchanged
D unchanged

S + 1
B + 2

unvisited point

A+ 1
D + 1

S − 1
B − 2

re-visited point

On going to an unvisited point a new single is added so S+1, and D un-
changed. No new area is enclosed so A unchanged. The boundary increases
by 2 (one on each side of the new line) so B+2. These new values satisfy the
relations.
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On re-visiting, a point which was single-visited becomes a double, so S−1
and D+1. A new unit square is enclosed so A+1. The boundary changes by
−3 enclosed and +1 new outside so net B+2. These new values satisfy the
relations.

startend

k=3
single-visited points

S3 = 54

Theorem 19. The number of single-visited points in the R5 dragon level k is

Sk = 1
2Bk + 1 = 2.3k

= 2, 6, 18, 54, 162, 486, 1458, 4374, . . . A008776

Proof. The R5 dragon curve does not repeat any segment and always traverses
all four sides of any unit square so lemma 2 applies.

Second Proof of Theorem 19. When each line segment expands, its existing sin-
gle and double visited points are unchanged. New points are made by the new
vertices.

The expansions of �gure 15 show the new vertices created within 1, 3 and
4-sided squares. 1-sided and 3-sided squares have 2 new single-visited points
within the square. The 4-sided square has no new single-visited points (all are
doubles).

The 1-side and 3-side squares together are the boundary squares BQk from
(37).

Sk = Sk−1 + 2BQk−1 = S0 +

k−1∑
j=0

2BQj

Sk is even since S + 2D = total points means it has the same parity as the
total vertices 5k + 1. Any double point is made by taking away 2 singles from
the total vertices.

If the curve did not touch itself then at the next level the single points would
be 5Sk − 4, for �ve copies with the endpoint meetings counted once each. This
happens when k=0 as S1 = 5S0−4 but thereafter Sk+1 is reduced by 2 for each
point which touches. There is one such point for every join square (53) so

Sk+1 = 5Sk − 4 − 8Jk

startend

k=3
double-visited points

D3 = 36
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The double-visited points are the same as the area per lemma 2.

Dk = Ak

They can also be counted from the join area. Each join area square is formed
by points on each side touching to make a double, so

Dk = 5Dk−1 + 4Jk−1

This is the same recurrence as (54) for A. Starting from the same D0 = A0

= 0 they maintain Dk = Ak.
Double-visited points can also be counted by the new vertices of the segment

expansions in �gure 15, as per the singles proof above. 1-side squares have no
new doubles. 3-side squares have 2 new doubles. 4-side squares (ie. enclosed
area) have 4 new doubles.

Dk = Dk−1 + 2BQ3 k−1 + 4Ak−1

When Dk−1 = Ak−1 this is the same recurrence as area by 3-side boundary
squares (49). They start D0 = A0 = 0 and thereafter remain equal.

For k ≤ 3 the number of single-visited points exceeds the double-visited but
for k ≥ 4 there are more double-visited. Dk = Ak > Sk is when 5k ≥ 6.3k which
is k ≥ 4.

start

end

k=2

distinct visited points

P2 = 22

The number of distinct points visited by curve k is

Pk = Sk +Dk distinct points

= 5k + 1−Dk (55)

= 1
2 (5k + 1) + 3k

= 2, 6, 22, 90, 394, 1806, 8542, . . . 2×A146086

It can be noted Pk and doubles Dk =Ak (48) di�er only in the sign of the
3k term. That term is 1

2Sk.

Dk = 1
2 (5k + 1− Sk) from S + 2D = 5k + 1 (56)

Pk = 1
2 (5k + 1 + Sk) and (55) (57)

If there were no singles then it would be D doubles = P distinct = 1
2 (5k + 1)

half the total points. Every 2 singles reduces the doubles by 1 and increases the
distinct points by 1 (as +2 singles, −1 double).

As noted above Sk is the same parity as the total points 5k + 1 so Sk is even
and (56),(57) are integers.

Pk is always even because the R5 curve is symmetric in 180◦ rotation about
its midpoint bk/2 which is the midpoint of the middle segment. Every vertex
has a 180◦ rotated partner, making the total even.
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4.2 Lines

Some line segments in the R5 dragon curve are consecutive and they can be
considered in runs making horizontal and vertical lines.

start
end

start
end

Horizontals3 = 27 lines Verticals3 = 26 lines

k=3
total lines

Lines3 = 53

The end of each line is a single-visited point. Since the curve always turns
left or right 90◦, every single-visited point is an end of a vertical and an end
of a horizontal, except curve start and end. Curve start is only an end of a
horizontal since the �rst segment is horizontal. Curve end is also only an end
of a horizontal since the curve is identical in 180◦ rotation.

Horizontalsk = 1
2Sk = 3k A000244

Verticalsk = 1
2Sk − 1 = 3k − 1 A024023

Linesk = Horizontalsk + Verticalsk = 2.3k − 1 A048473

Join points where the curve touches on unfolding have both a horizontal and
a vertical on each side so the two are reduced the same each. There is one join
point for each join square Jk. The unfolding gives 3 copies the same direction
or 180◦, and 2 copies turned 90◦ so

Horizontalsk = 3Horizontalsk−1 + 2Verticalsk−1 − 4Jk−1

Verticalsk = 2Horizontalsk−1 + 3Verticalsk−1 − 4Jk−1

4.3 Point Numbers

Single-visited and double-visited points n can be characterized by the other(n)
state machine from theorem 5. If �unch� is reached then there is another visit
in the same arm and so a double point. This can be considered within k many
digits for level k, or with in�nite high 0 digits for the curve continued in�nitely.

Dpredk(n) = 1 if other reaches �unch� in k digits

Dpred∞(n) = 1 if other reaches �unch� with high 0s

= 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .

=1 at n= 4, 8, 9, 12, 13, 16, 17, 19, 20, 21, 23, 24, 28, 29, . . .

The opposite is single-visited points

Spredk(n) = 1−Dpredk

Spred∞(n) = 1−Dpred∞

= 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .
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=1 at n= 0, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 18, 22, 25, . . .

other is expressed by digits low to high. Usual state machine manipulations
can go high to low for Dpred instead, but that is more complicated. Separating
left turn doubles from right turn doubles simpli�es a little.

Another approach for Dpred is to consider new doubles formed by expansion
as from �gure 15. An adjacent side in the preceding level gives a new double.
In right boundary sides from theorem 13, states Y, Z and fully enclosed have
a preceding adjacent side, so those with next digit 1 give double-visited points.
Similarly states X, Y and fully enclosed with next digit 2. In both cases they
are doubles with a left turn. Left side boundary states give doubles with right
turns.

At a double-visited point the second visit is other(n) > n. In the other state
machine this is when the transition to �unch� has a bigger output digit than its
input digit. These are transitions out of lm1 and rm1.

m0

lm0lm1

DpredFirstDpredSecond

rm0rm1

DpredFirstDpredSecond

0
1

2

3

4

0
2,3

1,40,1

2

3,4

3,4

0,12

0,3
1,2

4

start

Figure 17:

�rst and second

visits to a double

DpredFirst∞(n) = 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . .

=1 at n= 4, 9, 12, 17, 19, 20, 23, 24, 29, 34, 37, 42, . . .

DpredSecond(n) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, . . .

=1 at n= 8, 13, 16, 21, 28, 33, 38, 39, 40, 41, 43, 46, . . .

The number of visits to a location is 1 for a single-visited or 2 for double-
visited,

Visitsk(n) = Dpredk(n) + 1 (58)

Visits∞(n) = Dpred∞(n) + 1

= 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, . . .

Or which visit each n is, 1 for the �rst visit or 2 for the second,

VisitNum(n) = DpredSecond(n) + 1

= 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, . . .

4.4 Enclosure Sequence

As each segment is successively appended to the R5 dragon curve it may enclose
a new unit square on the right or left of the curve, or not.
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start

Right enclosures

EpredR(n)

start

Left enclosures

EpredL(n)

A segment encloses a new unit square when its end is the second visit to
that point.

Epred(n) = DpredSecond(n+1)

=1 at n = 7, 12, 15, 20, 27, 32, 37, 38, 39, 40, . . .

The unit square may be on the left or right of the segment. The turn at n+1
must be away from the square, or the next segment would overlap the square.

right
enclose

n n+1 must turn left
or would overlap segment
of square just enclosed

EpredR(n) = DpredSecond(n+1) and turn(n+1) = 1 (left)

=1 at n = 15, 20, 40, 45, 65, 70, 75, 76, 79, 80, . . .

EpredL(n) = DpredSecond(n+1) and turn(n+1) = −1 (right)

=1 at n = 7, 12, 27, 32, 37, 38, 39, 42, 52, 57, . . .

Testing n+1 with the Dpred state diagram at �gure 17 means the low digit
is reduced, similar to next turn from �gure 1. For Epred low digit 0 or 1 of
n is 1 or 2 of n+1 and goes to lm. Similarly rm. A run of low 4 digits in n
increments to low 0 digits in n+1 so digit 4 loops in state m0. The other states
are unchanged.

e0

lm0lm1

nonEpredR

rm0rm1

nonEpredL

0

1

2

3

4

0
2,3

1,40,1

2

3,4

3,4

0,12

0,3
1,2

4

start

Figure 18:

Epred

low to high

EpredR(n) = 1 i� reach EpredR

EpredL(n) = 1 i� reach EpredL
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Instead of going from Dpred , the states can be found directly by considering
segments beside. This is similar to the boundary segment numbers but for the
enclosure sequence any later segment is not considered, just those preceding.

a

b

c
rs0 rs1 rs2 rs3

rs0 has no side segments. This is initial segment n=0. rs3 has 3 segments
on its right and encloses a new unit square. The line segments expand

a

a a
a
b

c

c

0
1

2

3 4

This expansion gives the following transitions between con�gurations when
a new low digit is added to n. For example rs1 has the a side segment and with
it the expanded segment 0 is an rs3 . So rs1 with a new 0 digit goes to rs3 .

rs0

rs1

rs2

rs3

0,1,2

3

4

0

1,3

2
4

0

1,4

2

3

0,1,4
2

3

EpredR,

base-5 digits high to low

start right
enclose

rs0 ,rs1 ,rs2 rs3 are the only combinations of side segments which occur in
the expansions. c cannot occur without b since it would require the curve to
curl around on the left to reach c, and that would overlap 4-arm plane �lling.
Likewise b cannot occur without a.

Usual DFA state machine manipulations can reverse to match digit strings
low to high, and that is the pair of states lm0 and lm1 in �gure 18. For EpredL
similar con�gurations and transitions are made.

In low to high �gure 18, for EpredR any 1 digit stays in lm0 or in lm1. n
with 1 digits ignored can be treated as starting in lm0 since transitions are the
same as from m0, with low 2, 3 being not Epred . So digit runs (similar to the
second proof of theorem 6)
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44...44000...00244...44000...00

lm0lm1lm0lm1

2, 3
to not-enc

3, 4
to enc

2, 3
to not-enc

3, 4
to enc

EpredR

DeleteOnes(n)

Likewise EpredL digit 3 does not change the rm state. So with all 3s ignored

44...44200...00444...44200...00

rm0rm1rm0rm1

0, 1
not-enc

1, 2
enc

0, 1
not-enc

1, 2
enc

EpredL

DeleteThrees(n)

Theorem 20. n which is an enclosure is given in terms of digits by

EpredR(n) =


take n in base-5, delete all 1-digits

1 if pair 30 or 40 with no 3 below

and any 2s below are in pairs 20

0 otherwise

(59)

EpredL(n) =


take n in base-5, delete all 3-digits

1 if pair 10, 12, 20, 22 with no 1 below

and any 0s at and below are in runs 00...02

0 otherwise

As an example, n= 2009 is base-5 �31014�. For EpredR delete 1s to 304. It
has 30 and no 2, 3 below it to consider, so EpredR(2009) = 1.

For EpredL, a 0 in the pairs is included in the 00...02 requirement. For
example, n= 2144 is base-5 �32034� and delete 3s to 204. It has a 20 pair, but
its 0 is 04 which is not an 0...02 run, so EpredL(2144) = 0.

Proof. For EpredR, enclosing is reached only by 3, 4 from lm1. That state is
distinguished by having a 0 below for pairs 30, 40. The 0 is either from the run
in lm1 or the transition to lm1.

Consider the lowest 30, 40 pair. Any 3 below it is in lm0 so is not enclosing.
Any 2 below it is either in lm0 not enclosing or is the transition from lm1 to
lm0. The latter is distinguished by having a 0 of lm1 or transition below it (lm1
being all 0s below the lowest 30, 40 pair).

For EpredL, enclosing is reached only by 1, 2 from rm1. That state is distin-
guished by having a 0 below from the rm1 run, or 2 below from the transition
to it.

Consider the lowest 10, 12, 20, 22 pair. Any 1 below it is in rm0 so is not
enclosing. Any 0 below it could be rm1 or rm0. The former is distinguished by
being an rm1 run 00...02 (any rm1 below the lowest pair is all 0s).

EpredR requirement 30, 40 can be compared to Rpred from theorem 13.
Epred must have 30, 40 and Rpred must not, because an n which encloses on its
right is certainly not right boundary.

Segments which are not EpredR and also not Rpred are going to be in an
enclosed square, but one completed later. This will be before the next boundary
segment since after a right boundary segment the curve cannot reach back to the
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right side of anything earlier. (If it did so on the right then the right boundary
segment would not be on the boundary. If it did so by the left then it would
overlap the four-arm plane �lling.)

In EpredR, �ipping n pairs 20 ↔ 40 allows the digit conditions to be ex-
pressed in terms of lowest 2 or 3.

EpredR(n) =

{
1 Tperm(DeleteOnes(n)) lowest 2 or 3 is 20 or 30

0 otherwise
(60)

Tperm(n) = �ip base-5 pairs 20↔ 40

= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 11, . . .

Conditions (59) are already lowest 3 must be 30. After �ipping, the lowest
2 is either 20 from a �ipped 40, or is an unchanged 2 because it didn't have a 0
below. The latter is non-enclose.

Total enclosures n=0 to 5k−1 inclusive is the area ARk on each side of the
curve from theorem 16.

5k−1∑
n=0

EpredR(n) =

5k−1∑
n=0

EpredL(n) = ARk = ALk

This EpredR sum can be calculated from the digit conditions. Doing so is
more complicated than theorem 16 but is a combinatorial interpretation for the
area. It's convenient to use Tperm form (60). An EpredR is digit 2 or 3, possible
1s, then 0 and no other 2 or 3 below.

. . . 0,1,4 . . .01 . . . 12,3. . . any . . .k ≥ 2 digits

k = h+ 1 + s+ 1 + t

5h 2 1s 3tcombinations

2

k−2∑
h=0

5h
k−2−h∑
t=0

3t = 2

k−2∑
h=0

5h
3k−1−h − 1

3− 1

= 3
5k−1−3k−1

5− 3
− 5k−1 − 1

5− 1
= ARk (61)

The powers in (61) are similar to area form (50). Adding 5k−1 to both terms
(positive and negative) in (61) raises them to 5k.

EpredR can enclose up to 3 unit squares consecutively. There cannot be 4
or more consecutive EpredR or that would be 4 left turns and segments would
overlap. Similarly EpredL.

Some state machine manipulations can test whether n+1 is also the respec-
tive enclosure, then intersection n, n+1, n+2 for a triple. Taking that low to
high shows they are the original digit forms with extra low.

EpredR3 = EpredR 0 or 4 4 EpredL3 = EpredL 2

high low high low

EpredR3 (n) = EpredR(n) and EpredR(n+1) and EpredR(n+2)
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=1 at n = 379, 399, 504, 524, 1004, 1024, 1129, 1149, . . .

EpredL3 (n) = EpredL(n) and EpredL(n+1) and EpredL(n+2)

=1 at n = 37, 62, 137, 162, 187, 192, 197, 212, . . .

When 3 consecutive EpredR occur, the next segment is always a left en-
closure, since there were 3 left turns. Likewise 3 consecutive EpredL is always
followed by a right enclosure. These are the 3 turns per TurnRuns3 from (52).

left
encright

enc

right
enc

right
enc

3 right enclosures
are 3 left turns
so next segment
is a left enclosure

Runs of right and left enclosures can occur. For example at n=197 there is
a run of 6 consecutive enclosures LLL,RRL.

start

n=197

L

L

L
R

R
L

n=197

n=202

There are no runs longer than 6. This can be seen by some state machine
manipulations on Epred to test whether n+1, n+2 etc are enclosing. The inter-
section of Epred on 7 terms n through n+6 inclusive is empty.

State machine manipulations on the 6 intersection shows it is EpredL with
extra low digits,

EpredSix = EpredL 4 2

high low

The last point of a level is single-visited so the last segment is non-enclosing
and a run of enclosures does not extend across levels. From the digits, the
number of runs of 6 in level k is simply ALk−2, for k ≥ 2.
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5 Width and Length

Hwp4 = −16−5i

widest

−3+5i = Hep4

start

end

width

ext

right

left

k=4

width-wise right Hwp

length-wise back Hep

Theorem 21. The widest point on the right side of R5 dragon k, meaning
furthest on the right side perpendicular to a line start to end, is located at

Hwpk = bk−1 + ibk−2 + i2bk−4 + i3bk−5 + i4bk−7 + · · ·+ isomeb0

=

k−badc≥0∑
d=1

id−1 bk−badc and always b0 term when k > 0 (62)

= 0, 1, 1+3i, −6+5i, −16−5i, −6−38i, 71−50i, . . .

where a =
π

2 arctan 2
=

π/2

arg b
= 1.418776 . . .

b exponents 1,2, 4,5, 7,8,9, 11,12, 14,15, 17,18,19, . . .

The furthest point length-wise back in direction parallel to start to end is

Hepk = bk−2 + ibk−4 + i2bk−5 + i3bk−7 + · · ·+ isomeb0

=

k−badc≥0∑
d=2

id−2 bk−badc and always b0 term when k > 0 (63)

= 0, 0, 1, 1+3i, −3+5i, −14−i, −12−30i, . . .

In (62),(63) the sums are some powers of b, with successive powers of i. The b
powers range from k−1 to 0 inclusive. The powers are spread and some skipped
by badc. There is at most 1 skip between included powers. The lowest term b0

is always included, even when not among the k−badc. The terms in Hwp and
Hep are the same but Hep starts d=2 so omits the �rst.

Proof. Curve k comprises 5 sub-curves k−1.

R
S

start bk end

bk−1
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For Hwp, sub-curve R is the furthest on the right among the sub-curves
parallel to R. Similarly S is furthest to the right among sub-curves parallel to
S. The point furthest to the right must be in either R or S.

R and S in turn comprise sub-curves k−2.

R

S

T U

start

bk−1

+ibk−2

Figure 19:

k−2

Among the sub-curves of the two orientations, T and U are the furthest to
the right. T is the �rst sub-curve of S so its direction is +90◦ as compared to
the �rst segment of R, so an extra factor i for +ibk−2.

Similarly in the next expansion +i2bk−3 the sub-curves of U. The segments
turn by + arctan 1

2 each time. At k−4 they turn enough that the furthest on
the right is instead in the �rst sub-curve V,

V

W

X

Y

z2

z3

−2i3 bk−4

Figure 20: k−4

angle enough that

sub-curves of �rst

are furthest right

O�set −2i3 bk−4 is back from z3 to the end of X. The o�set has extra factor
i since its direction is parallel to the �rst sub-curve of W, which is +90◦ as
compared to V.

X and Y are in sub-curve V so their directions do not gain a factor of i. On
expansion the next term is then +i3bk−5, the same power of i as the −2 o�set
here.

This procedure repeats. Each time there are two sub-curves at right angles
and on expansion whichever new two sub-curves are furthest right are taken.
Sometimes the angle is enough to make it the �rst original, like �gure 20.

For computer calculation this can be followed as an algorithm (the powers
of b calculated exactly). Formula (62) is written by noting that a step and a
following −2 step back can be combined

+i2 bk−3 − 2i3 bk−4 = +i2 bk−4

In �gure 20, this means don't go to z3 for V�W but instead straight from z2
to the end of X by +i2 bk−4. Done this way, each term always has a new factor
i, which is index d in (62).

The skipped powers bk−j are where j.γ precedes a multiple of π2 , where

γ = π
2 − arg b = arctan 1

2 = 26.565051◦ . . .

= 0.463647 . . . radians A073000
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π
2

2π
2

3π
2

0 1 2 3 4 5 6 7 8 9 10 11 12j =

1d = 2 3 4 5 6 7 8 9

skip skip skip

Multiplying through by 1/γ becomes skip integers j preceding a multiple of

h = π
2 /γ =

π

2 arctan 1
2

= 3.387909 . . .

skip j = bmhc for integer m
= 0, 3, 6, 10, 13, 16, 20, 23, 27, 30, 33, 37, . . .

bmhc is a Beatty sequence. Its complement is the b powers to include. Per
Rayleigh [10] and Beatty [3], this is badc for integer d and factor a from h by

1

a
+

1

h
= 1

A skip is to be done only when the next step back will cancel it out. At b0

there is no lower term which will step back. So b0 should not be skipped, but
included, with its next i power. Hence the rule to always include term b0 in
sums (62),(63).

For Hep extending back from the start, a similar argument is made. The
�rst point extending back past the curve start is bk−2,

R

S

T′

U′

start

. . . bk end

bk−2

bk−1

T′ and U′ are the same angles relative to the vertical as T and U are to their
horizontal in �gure 19. So further terms of Hep follow in the same pattern as
in Hwp. The e�ect in (63) is to start at d=2.

The sub-curves show point Hwpk is unique for k≥ 1. For k=0, the curve is 1
segment and its two points z = 0, 1 are both width 0 away. Hwp0 = 0 is chosen
so that the b powers summed range from 0 to k−1 in all cases, and that range
understood as empty when k=0.

For the curve scaled to endpoints a unit length, the limits are

Hwpk
bk

→ Hwpf =

∞∑
d=1

id−1

b
badc = 0.385314 . . .− 0.576988 . . . i (64)

Hepk
bk
→ Hepf =

∞∑
d=2

id−2

b
badc = −0.176988 . . .− 0.185314 . . . i
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= −i
(
Hwpf−1

b

)
The special handing of the low b0 does not apply since its o�set becomes

ever smaller with k.
The width part of Hwpf can be written with factor i put through (64) to

give a Re sum. The extension part of Hepf similarly with i2 for the same sum
but starting d=2.

ImHwpf = −Re

∞∑
d=1

id

bbadc
= −0.576988 . . . width (down)

ReHepf = −Re

∞∑
d=2

id

bbadc
= −0.176988 . . . extension (back)

The terms in these sums are all positive since they are steps to successive
widest points. If just magnitudes are taken and skipped powers included then
a simple upper bound is

|Hwpf | <
∞∑
d=1

1√
5d

=
1 +
√

5

4
= 0.809016 . . . A019863

This is also a bound on omitted terms if stopping at some 1/b power.
Width and extension give the area of the bounding rectangle around the

curve and aligned to the curve endpoints,

Hwpf

Hepf

1−Hwpf

1−Hepfstart

0

1

end

width and

extension

bounding

rectangle

HewAk = 5k
(
−2 Im

Hwpk
bk

)(
1− 2 Re

Hepk
bk

)
= 0, 4, 806

25 ,
21306
125 , 574454625 , . . .

HewAk
5k

→ HewAf =
(
−2 ImHwpf

)(
1− 2 ReHepf

)
= 1.562458 . . .

Point numbers n of locations Hwp and Hep follow from the segment steps.
Each step taken is digit 1 and each skip is digit 0.

Hdigit(j) =

{
1 if (j mod h) < h−1

0 otherwise
(65)

=
⌊
(j+1) 1

a

⌋
−
⌊
j 1
a

⌋
(66)
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At (65), j mod h means remainder r from division by h, so j = qh+ r with
integer q and 0≤ r <h. j immediately preceding a multiple of h is a skip, which
is r > h−1. Conversely steps taken are r < h−1. Since b is never a multiple of
a full circle, per (15), h is irrational and never have remainder exactly r = h−1.

This is the �characteristic word� of 1/a per �oors at (66), or Sturmian word
(homogeneous since no o�set to the multiples), or Christo�el word (which for
irrational slope is a Sturmian word).

1

a
=

arctan 2

π/2
= 0.704832 . . .

The geometric interpretation is 1 when power bj+1 crosses into a new quad-
rant from where bj was. The �oors at (66) are the usual interpretation of a
Sturmian word as when a straight line of slope 1/a crosses up to a new integer
part.

In Hwp, the lowest b0 is never skipped, so always a 1 digit, when k > 0.

HwN k = base-5

{
no digits if k=0

Hdigit(1 . . . k−1), 1 if k ≥ 1

= 0, 1, 11, 111, 1101, 11011, 110111, 1101101, . . . base-5

= 0, 1, 6, 31, 151, 756, 3781, 18901, . . .

For Hep, the same but the high j=1 digit is 0.

HeN k =

{
0 if k ≤ 1

HwN k − 5k−1 if k ≥ 2

= 0, 0, 1, 11, 101, 1011, 10111, 101101, . . . base-5

= 0, 0, 1, 6, 26, 131, 656, 3276, . . .

For the curve scaled to endpoints a unit length, the limit fractional location
along the curve is all of Hdigits. The low digit k exception does not apply. So
HwNf is the characteristic word as base-5 fractional digits.

HwN k

5k
→ HwNf =

∞∑
j=1

Hdigit(j)

5j
= 0.110110111 . . . base-5

= 0.241935 . . . decimal

HeN k

5k
→ HeNf =

∞∑
j=2

Hdigit(j)

5j
= 0.010110111 . . . base-5

= 0.041935 . . . decimal

= HwNf − 1
5
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6 Convex Hull

start

end

3

−2ib2

2b

3i

(4−i)b2

2ib
−3

2ib2

−2b

−3i

−(4−i)b2

−2ib

k = 4

convex hull,

12 sides

Theorem 22. The sides of the convex hull around R5 dragon curve k are a set
of complex number o�sets (to be taken anti-clockwise in arg order),

Hsides0 = ±1 k = 0

Hsides1 = ±1, ±2i k = 1

Hsides2 = ±1, ±3i, ±(4−i) k = 2

Hsidesk =


3id d = 0 to 3 k ≥ 3

2idbj d = 0 to 3 and j = 1 to k−3

±2ibk−2, ±(4−i)bk−2
(67)

so number of sides

HnumSidesk =

{
2, 4, 6 if k = 0, 1, 2

4k − 4 if k ≥ 3

= 2, 4, 6, 8, 12, 16, 20, . . . 2×A004278

Proof. Hull sides for k≤ 3 can be calculated explicitly.

start

end

1

−1

k=0

start

end

1

2i

−1

−2i

k=1
start

end

1

3i

−(4−i)−1

−3i

4−i

k=2

start

end

3

(4−i)b

3i

2ib
−3

−(4−i)b

−3i

−2ib k=3

For k≥ 4, suppose the theorem is true of k−1, and further that the hull
vertices are all at corners of two segments (not curve start or end), which is so
of k−1 = 3.

The 3id sides of k−1 expand as follows
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c

A

d

B

k−1
side 3

k side 2b

The k−1 segments are shown thick. They are the segments of furthest extent
perpendicular to their hull side. So in the manner of theorem 21, the expanded
A and B points are then furthest extent in k and thus a hull side of k. Those
points are o�sets from points c, d which are 2 apart in k−1 so expansion factor
b gives sides 2idb in k. These are j=1 at (67).

The segments of k−1 are a square grid so those four 3id sides are the only
sides aligned to the segments. The other sides have segments at some angle to
the side. Their corner segments expand as follows

A B

k−1

k A B

k−1

k

E

or

These corners are the maximum extent in k−1 perpendicular to the hull side.
Again in the manner of theorem 21, points A and B are then new maximum
extents so they are a side of the k hull. These points are at o�set −2 in the
left form, or +1 in the right form (according as the angle between the corner
segments and the k−1 side). A and B are the same o�set, so a further factor b
on the k−1 side. This is sides (4−i)bk−2 and 2bj for j≥ 2.

At a vertex of k−1, it's possible to have a further new side in k. This happens
when an o�set −2 is followed by o�set +1. This gives a new side 3id.

A B

k−1

k

k−1

k

The k segments are a square grid so there are 4 orientations this might
happen. If A�B is co-linear with an adjacent side of k then it is not a new
further side (only a continuation of another). But the sides 2bj in k are not
co-linear with A�B since from (15) the b powers never fall on the axes.

The sides (4−i)bk−2 are not co-linear with A�B either, since (4−i)bk−2 al-
ways has non-zero real and imaginary parts (in fact the same sequence as b
powers).

Re (4−i)bk−2 ≡ Re bk−2 6≡ 0 mod 5 k ≥ 3

Im (4−i)bk−2 ≡ Im bk−2 6≡ 0 mod 5

The general case at (67) could combine the four-way 3 and 2bj cases by
reckoning coe�cient 3 when j=0 and coe�cient 2 when j≥ 1. The high k−2
case could be combined too by reckoning coe�cient 4−i when j= k−2 and d
even.

The hull boundary length follows from the sides. The powers of b are
√

5
lengths. 4−i is length

√
17.
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HBk =
∑

z ∈Hsidesk

|z|

=

{
2, 6 k = 0, 1(
6 + 2

√
5 + 2

√
17
)√

5k−2 + 2− 2
√

5 k≥2

= 2, 6, 8+2
√

17, 12+4
√

5+2
√

85, 32+8
√

5+10
√

17, . . .

For curve endpoints scaled to a unit length, the limit set of sides is countably
in�nite

Hsidesf = Hsidesk/b
k as k→∞

=

{
2id/bj for d= 0 to 3 and j ≥ 3

±2i/b2, ±(4−i)/b2

and the hull boundary length limit is

HBk√
5k
→ HBf =

6 + 2
√

5 + 2
√

17

5
=

6

5
+

2√
5

+
2

5

√
17 = 3.743669 . . .

Theorem 23. The area of the convex hull around R5 dragon curve k is

HAk =


0, 2 k = 0,1

17.5k−2 − 1 +

k−2∑
j=1

(
3.5k−2−j − 1

)
HAgrow

(
2bj
)

+ 2.5k−2−j HAgrow
(
(4−i)bj

) k ≥ 2
(68)

= 0, 2, 16, 106, 578, 2954, 15064, . . .

HAgrow(z) = abs1or2
(

Im z . i
−quadrant((2+i)z)

)
(69)

abs1or2 (x) = |x| .

{
1 if x ≥ 0

2 if x < 0

quadrant(z) =

⌊
arg z

π/2

⌋
quadrant ≡ 0 to 3 mod 4 containing z

The e�ect of HAgrow is to take either Re or Im of z and a factor 1 or 2
according to where z falls in the following sectors.

b slope 2:1

−b

ib

−ib

Im

2
∣∣Im∣∣

∣∣Re
∣∣ 2 Re

∣∣Im∣∣
2 Im

Re2
∣∣Re

∣∣

p

Figure 21:

HAgrow sectors

Re or Im

and factor 1 or 2

For example point p shown is in the |Re| sector so HAgrow(p) = |Re p |.
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All measures are ≥ 0. The b line in the �rst quadrant is slope 2:1 so the
adjacent sectors Im below or 2 Re above are the same result. Similarly the
other b lines.

(69) is written with quadrant �nding the quarter between b lines which con-
tains z. Factor 2+i = −ib rotates −ib up to the x axis so quarter 0 starts at −ib.
The resulting power of i rotates z to between −ib (inclusive) and b (exclusive),
and there Im or 2 |Im|. As noted, the result on the b lines is the same from
either adjacent quarter, so quadrant can take the x, y axes as part of either of
their adjacent quadrants.

Proof of Theorem 23. Areas of hulls k≤ 2 can be calculated explicitly.
For k≥ 3, take the curve with its �rst segment directed East, per Hsides.

The approach is to consider what extra area the k hull has over the k−1 hull
expanded by factor b.

There is a bottom-most horizontal side in k. This is side +3 in Hsidesk. If
it is followed by a side of slope ≤ b then the expansions from k−1 are

T

E
V

k side

1

Im side

k−1
vertex

k−1
vertex

side expansion

slope ≤ b

The k−1 segments are shown thick, then their resulting expansions for k.
The +3 bottom side of k is the bottom left.

The k−1 hull points have factor b in the expansion, which is ×|b| =
√

5
lengths so 5× area of the k−1 hull.

The k side is, from the segment expansions, 1 segment right of the hull side
of k−1. The additional area over k−1 is thus a vertical rectangle width 1 which
has been sheared to the right. Its height gives area Im sidek = HAgrow(sidek).

Further sides of slope < b (if any) in k are sheared 1 segment rectangles too.

When the k side is slope b, the k−1 segments were co-linear

T

V E

k−1 side

k side

1

Im side

side expansion

slope b

Draft 11 page 58 of 124



In this case, the k−1 hull vertex is at T rather than V. The rectangle wanted
is up to V. Basing the sheared rectangle on E in the k side accomplishes this.

The next side is slope > b as follows,

V E

T

F

S

Re sidek

2

side expansion

slope > b

Area T�E upwards to S�F is a horizontal rectangle height 2 which has been
sheared upwards. Its width gives area 2 Re sidek = HAgrow(sidek).

When this side immediately follows a slope ≤ b, the area taken by the
previous side extends only to V�E so triangle V�E�T is additional area 1 in
that case.

These slopes > b (if any) continue until a vertical side in hull k. There the
pattern of side slopes and expansion repeats starting from the horizontal etc
above, all turned +90◦. Then likewise turned +180◦ and +270 around the hull.
So area increase is HAgrow of each Hsidesk, plus 4 triangles area 1 each.

HAk = 5HAk−1 + 4 +
∑

z ∈Hsidesk

HAgrow(z) k ≥ 3 (70)

Expanding (70) down to k−1 = 2 gives HAgrow on all Hsidesk down to
Hsides3, with successive powers of 5. The set of 2bj sides in each are

id2b id2b2 id2b2 · · · id2bk−3 id2bk−2 ±2bk−2

5× id2b id2b2 id2b2 · · · id2bk−3 ±2bk−2

52× id2b id2b2 id2b2 · · · ±2bk−3

· · ·
5k−5× id2b id2b2 ±2b3

5k−4× id2b ±2b2

5k−3× ±2b

The columns are j=1 through to j= k−2. Terms in a column are 4 directions
id except the bottom-most only ±. Since HAgrow(z) = HAgrow(i.z), these
directions do not change HAgrow .

So a column is HAgrow(2bj) with power of 5 factors and multiplicity 4 or 2.
The total is per (68),

4.1 + 4.5 + 4.52 + · · ·+ 4.5k−j−3 + 2.5k−j−2 = 3.5k−j−2 − 1

Each Hsides has 2 sides (4−i)bj . Its power of 5 is 2.5k−2−j which is again
per (68). The four sides 3id have HAgrow = 0. Constant 4 in (70) is powers
4.50 + · · · + 4.5k−3 = 5k−2 − 1. The starting k−1 = 2 is further 5k−2.HA2 =
16.5k−2, for total 17.5k−2 − 1 in (68).
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Scaled to curve endpoints a unit length, the hull area has limit

HAk
5k
→ HAf =

17

25
+

1

25

∞∑
j=1

(
6HAgrow

((
b
5

)j)
+ 2HAgrow

(
(4−i)

(
b
5

)j))
=

17

25
+

1

25

∞∑
j=1

(
6HAgrowf

( 1

bj

)
+ 2HAgrowf

(4+i

bj

))
(71)

= 0.976164 . . .

HAgrowf (z) = HAgrow(z) = abs2or1
(

Im z . i
−quadrant(b.z)

)
abs2or1 (x) = |x| .

{
2 if x ≥ 0

1 if x < 0

At (71), b/5 = 1/b, and HAgrowf accounts for the conjugate by taking the
pattern of �gure 21 in vertical mirror image.

Theorem 24. A simple bound on terms of the HAf sum (71) is
∞∑
j=k

HAtermf j <
1√
5k

(72)

where HAtermfZ (z) = 1
25

(
6HAgrowf (z) + 2HAgrowf ((4+i)z))

)
and HAtermf j

= HAtermfZ (1/bj) so that HAf = 17
25 +

∑∞
j=1 HAtermf j.

Proof. HAtermf has z and (4+i)z and working through the sectors they fall in,
and consequent |Re z| or 2 |Im z| in HAgrowf , shows bound

HAtermfZ (z) ≤ 1

25

26√
5
|z|

with equality when z is in direction 2+i. Magnitudes |1/bj | = 1/
√

5j are a
geometric sum with total 1

4 (5+
√

5)
√

5k so that together

∞∑
j=k

HAtermf j ≤
1

25

26√
5

(5+
√

5)

4

1√
5k

and the factor is 13
50 (1+

√
5) = 0.841377 . . . < 1.

Using HAtermf with its related z and (4+i)z means the �nal factor is < 1
so is convenient to round up so the simple (72). Taking z and (4+i)z separately
in HAgrowf would be a factor bigger than 1. A slightly tighter bound could be
made by using related directions of for instance consecutive 1/bj and 1/bj+1.

HAf can be compared to the area limit 1
2 of the curve it surrounds. Just

under half is empty.
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start
0 end

1

R5 hull limit

area 0.976 . . .

boundary 3.743 . . .

countably in�nite

vertices

Another approach for HAgrow is to take the factor 2 in abs1or2 as a factor
on the real part in the �rst and third quadrants, and the imaginary part in the
second and fourth, as a kind of quadrant-dependent shear.

HAgrow(z) = min
(
|Re z′|, |Im z′|

)
where sheared z′ =

{
2(Re z) + (Im z)i if Re, Im same signs

(Re z) + 2(Im z)i if Re, Im di�erent signs

45◦135◦

shear 2×

shear 2×

Im

∣∣Im∣∣

∣∣Re
∣∣ Re

∣∣Im∣∣
Im

Re
∣∣Re

∣∣

shear horizontally for z

in �rst and third quadrants

shear vertically for z

in second and fourth quadrants

The e�ect of the shear is to move the slope 2:1 line b or ib etc in �gure 21
to become 45◦ here. The shear applies the desired factor 2, and also allows
min(Re, Im) to select between the horizontal or vertical measure.

7 Centroid

The R5 dragon is symmetric in 180◦ rotation so the centroid of the segments,
points or area are all the curve midpoint 1

2b
k. Some measures can be made on

just one side of the curve.

Theorem 25. The centroid of the right boundary squares of R5 dragon curve
k is

GRQk =
(
2
5 −

1
5 i
)
bk +

(
1
10 −

3
10 i
) (

1
3

)
k

= 1
2−

1
2 i,

5
6+ 1

2 i, −
7
18+ 13

6 i, −
259
54 + 25

18 i, −
1231
162 −

443
54 i, . . .
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b = 1 + 2i

Proof. For k=0 the curve is a single line segment with a single boundary square.

0 1

k=0 GRQ0 =
1

2
− 1

2
i

As in �gure 10, the boundary squares in a U part are a reversal of the R
part, so the centroid is the mean of the three copies of R in the previous level.

R

R

RU

0

bk

GRQk = 1
3

(
GRQk−1 + bk−1 + iGRQk−1 + bk − iGRQk−1

)
= 1

3GRQk−1 + 1
3 (2+2i) bk−1

= GRQ0.
(
1
3

)k
+ 1

3 (2+2i)

k−1∑
j=0

(
1
3

)j
bk−1−j

=
(
1
2 + 1

2 i
) (

1
3

)k
+ 1

3 (2+2i)

(
1
3

)
k − bk

1
3 − b

Scaling the endpoint bk to a unit length, the limit GRQk/b
k as k → ∞ is

the coe�cient of the bk term. Notice this is not the middle horizontally, but a
little towards the start at 2

5 .

0start

1
end

1
2

right boundary
centroid limit

2

5
− 1

5
i

This limit is the same as the whole Heighway/Harter dragon curve centroid
(its whole curve, not just the boundary squares).

Draft 11 page 62 of 124



7.1 Centroid of Join

k=2 join,

centroid of 4 squares

0

GJ 2 = −4+3i centroid

GJN 2 = 22 = base-5 �42� segment

join start

Figure 22: Join area centroid sample

Theorem 26. For k ≥ 1 the join between two level k R5 dragon curves encloses
some unit squares. The centroid of those squares is

GJ k = ( 9
10+ 3

10 i)b
k + ( 2

5−
1
5 i)

bk − 1

3k − 1
k ≥ 1 (73)

= 1+5i
2 , −32+24i

8 , −247−131i26 , 64−1904i80 , 11697−5323i242 , . . .

Jk.GJ k = 1+5i
2 , −16 + 12i, −247−131i2 , 32− 952i, 11697−5323i

2 , . . .

Proof. The right boundary squares are two joins and a middle square in be-
tween, as per the square arrangement of �gure 14. So with suitable weights and
rotations the centroid of those two joins and the middle square sum to the right
boundary squares centroid GRQk.

R

0 bk

(1+i) bk

( 1
2
+ 1

2
i) bk

middle
J

J

Jk.GJ k + ( 1
2+ 1

2 i)b
k + Jk.

(
bk + iGJ k

)
= RQk.

(
(1+i)bk − iGRQk

)
GJ k =

RQk

(
(1+i)bk − i.GRQk

)
−
(
1
2+ 1

2 i
)
bk − Jkb

k

(1+i) Jk

With the curve scaled to the endpoint bk a unit length, the limit is the
coe�cient of the bk term in (73).
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1

1
2+

1
2 i

1
2 i

1
2

GJf

GJ k
bk
→ GJf =

9

10
+

3

10
i

Theorem 27. Centroid GJ k of the join area squares is located in one of those
squares. For k=2 it is at a corner where two squares touch, otherwise entirely
within.

Counting squares from 0 at the start of the join, this square is number

GJQk = 1
4

(
3k − 2 + (−1)k

)
k ≥ 1

= 0, 2, 6, 20, 60, 182, 546, 1640, 4920, . . . k ≥ 1 A081251

= ternary 202020... for k−1 digits

This is the boundary square on the left of segment number

GJN k = 1
12

(
11.5k − 9− 2(−1)k

)
k ≥ 1

= 4, 22, 114, 572, 2864, 14322, 71614, . . . k ≥ 1 2×A037490

= base-5 424242... for k digits 2×A037495

For k even this boundary square is 3-sided and GJN k is the last, the other
two sides being GJN k − 1 and GJN k − 2.

Proof. That GJN is on the boundary can be veri�ed by Lpredk(GJN k) from
section 2.2, using the base-5 digits of GJN . Digits 4242... do not have any of
the Lpred disallowed pairs.

For k even, GJN k = 42...42 so it is the 2 segment of the base �gure and
so is in the left-side U part and is a 3-side boundary square with the preceding
GJN k − 1 and GJN k − 2 also on the boundary.

GJNk = 42...42

GJNk − 1 = 42...41

GJNk − 2 = 42...40

For k=1, GJN 1 = 4 which is a 1-side boundary square. For k odd ≥ 3,
GJN k = 42...424 and its preceding GJN k−1 = 42...423 and following GJN k+1
= 42...430 are also boundary segments. turn(GJN k) = turn(GJN k−1) = −1
so it is a 1-side boundary square. Geometrically the preceding turn is the base
�gure, and the following turn is after 2 in the level above.
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GJNk = 42...42

turn(42...24) = −1
right

Lpredk(42...24) = 1

boundary

turn(42...30) = −1
right

Lpredk(42...30) = 1

boundary

Location point(GJN (k)) can be calculated from its base-5 digits per sec-
tion 1.4. Form (14) becomes a sum with coe�cients repeating in a period-4
pattern.

point(GJN (k)) = 2ibk−1 + (1+i)bk−2 − 2ibk−3 − (1+i)bk−4 + +−− · · ·
= ( 9

10+ 3
10 i)b

k + [− 9
10−

3
10 i, −

3
10−

1
10 i,

9
10+ 3

10 i,
3
10+ 1

10 i ] (74)

Total (74) can be formed by taking terms in the pattern separately (or odd
and even). But it's convenient to go by generating functions for a cumulative
sum with descending pattern of coe�cients, in this case a cumulative sum of
powers bk. The coe�cients are in the numerator of the factor.

gGJNpos(x) = x
2i+ (1+i)x− 2ix2 − (1+i)x3

1− x4
· 1

1−bx

= ( 9
10 + 3

10 i)
1

1−bx
− 1

10

(9+3i) + (3+i)x

1 + x2
(75)

Factor x shifts the indexing down since point(GJN k) starts with term bk−1.
Partial fractions (75) give a power of b and the period-4 repeating part 1+x2

per (74).
The direction of dir(GJN ) is found from its 2-digits either East or West in

another 4-period repeating E,E,W,W as k ≡ 0 to 3 mod 4. Using this with o�set
1
2 + 1

2 i goes to the middle of the unit square on the left of the segment.

GJmidk = point(GJN (k)) + ( 1
2 + 1

2 i)i
dir(GJN (k)) square middle

= ( 9
10+ 3

10 i)b
k + [− 2

5+ 1
5 i,

1
5+ 2

5 i,
2
5−

1
5 i, −

1
5−

2
5 i]

( 9
10+ 3

10 i)b
k is the same as in GJ . The periodic part of GJmid shows this

is at most 2
5 away from the centre of the square horizontally or vertically. For

k < 6 it can be veri�ed explicitly that the further term of GJ k does not push it
outside the square, only to the upper left corner for k=2. For k ≥ 6 the further
term of GJ k has smaller real or imaginary part than the 1

10 distance to the edge
of the square,

|Re| or |Im|
(

( 2
5−

1
5 i)

bk − 1

3k − 1

)
<

2

5
·
√

5k + 1

3k − 1

<
2

5
·
√

56 + 1

36 − 1
·
√

5k−6

3k−6
=

9

130

(√5

3

)k−6
<

1

10

For GJQk, the number of boundary squares after GJN k is determined by its
base-5 digits. Each 4-digit is the end of the sub-part and there are no further
boundary squares beyond it. Each 2-digit is the end of the �rst left-side U part
and there are two RQ sides after. So
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GJQk = 2RQk−2 + 2RQk−4 + · · ·
= 2.3k−2 + 2.3k−4 + · · · = ternary 2020...

For k=1, the theorem is trivial in that there is only a single join area unit
square so its centroid is its midpoint.

For k=2, the sample �gure 22 shows segment GJN 2 to the right of the
centroid GJ 2. The adjacent boundary square is below the segment. The squares
GJQ2 = 2 are the two above which are nearer the join start.

In GJmid the period-4 o�set from ( 9
10+ 3

10 i)b
k to the centre of its contained

square arises because the real and imaginary parts of bk mod 10 are period-4.
Per (27) those parts are a recurrence. Any modulo recurrence is eventually
period since there are only so many values for so many recurrence terms. In
this case they repeat from k=1 onwards.

Re(bk) mod 10 ≡ 1, 1, 7, 9, 3, 1, 7, 9, 3, . . . k≥1 A001903

Im(bk) mod 10 ≡ 0, 2, 4, 8, 6, 2, 4, 8, 6, . . . k≥1 A000689

With factor 9+3i they become purely periodic. Notice the imaginary values
are the same as the real but one k earlier.

Re
(
(9+3i)bk

)
mod10 ≡ 9, 3, 1, 7, 9, 3, 1, 7, . . . A001903

Im
(
(9+3i)bk

)
mod10 ≡ 3, 1, 7, 9, 3, 1, 7, 9, . . . same

So these determine the o�sets (as tenths) to round ( 9
10+ 3

10 i)b
k to an integer.

Or the distance to 5 goes to a 1
2 integer which is the centre of the unit square

containing ( 9
10+ 3

10 i)b
k.

k ≡ 0
k ≡ 1

k ≡ 2
k ≡ 3

In GJ term ( 2
5−

1
5 i)

bk−1
3k−1 approaches 0 since

√
5/3 < 1. Its e�ect is to spiral

anti-clockwise towards ( 9
10+ 3

10 i)b
k. The period-4 position of the latter within

the containing unit square gives spirals every 4th term towards those positions.
Notice how the k=1 o�set gives the centre of the square and k=2 gives the top
left corner.

2
5+

2
5 i

k=1

k=2

− 1
10+

1
5 i

k=1

k=2

Draft 11 page 66 of 124

http://oeis.org/A001903
http://oeis.org/A000689
http://oeis.org/A001903


8 Moment of Inertia

The mass moment of inertia I =
∑
mr2 of a rigid body rotating around a given

axis is the ratio of torque to angular acceleration, similar to the way mass is the
ratio of force to linear acceleration.

Ix

Iy

Iz Figure 23:

moment

of inertia

Theorem 28. Consider the R5 dragon curve to have unit length line segments
and a total mass 1 distributed as point masses 1/5k at the midpoint of each line
segment.

The centre of mass is the centre of the curve. With the x axis aligned to the
curve endpoints the moment of inertia tensor about the centre of gravity is Ix −Ixy 0

−Ixy Iy 0

0 0 Iz

 Ix =
∑
y2 Ixy =

∑
xy

Iy =
∑
x2 Iz =

∑
x2+y2

where

Ix(k) = 54
820 5k + 3

328 Re ( b5 )2k + 14
328 Im ( b5 )2k − 3

40

= 0, 13
50 ,

981
625 ,

254903
31250 ,

16048266
390625 , 4017923233

19531250 , . . .

Iy(k) = 69
820 5k − 3

328 Re ( b5 )2k − 14
328 Im ( b5 )2k − 3

40

= 0, 17
50 ,

1269
625 ,

326347
31250 ,

20514234
390625 , 5134420517

19531250 , . . .

Ixy(k) = 7
164 5k − 7

164 Re ( b5 )2k + 3
328 Im ( b5 )2k

= 0, 11
50 ,

667
625 ,

166721
31250 ,

10420662
390625 , 2605159031

19531250 , . . .

Iz(k) = Ix(k) + Iy(k)

= 3
20 (5k − 1)

= 0, 35 ,
18
5 ,

93
5 ,

468
5 , 23435 , 117185 , 585935 , . . . 1

5 A125833

Ix, Iy and Iz are the moments of inertia rotating about the x,y,z axes of
�gure 23. They can be combined with Ixy in the usual way for inertia about an
axis at angle α in the plane

I(k, α) = Ix(k). cos2 α − 2 Ixy(k). cosα sinα + Iy(k). sin2 α
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x

I(k, α)

α

Proof. For k=0 the curve is a single line segment and its single midpoint is
inertia all zeros Ix(0) = Ixy(0) = Iy(0) = 0 which is per the formulas.

For k ≥ 1 the inertia is calculated by rotations and the parallel axis theorem
from the 5 copies of level k−1.

x
M

G − arctan 1
2

H
+arctan 2

1
t

t

s

s

The 1st, 3rd and 5th copies have the x axis at + arctan 2
1 relative to those

copies. The 3rd is the opposite direction but the curve is identical forward and
back. The axes are turned by a matrix of rotation in the usual way

R =


1√
5
− 2√

5
0

2√
5

1√
5

0

0 0 1

 rotate axes by + arctan 2
1

The 2nd and 4th copies have the x axis at − arctan 1
2 relative to those copies.

For them take the inverse of a rotation

S =


2√
5
− 1√

5
0

1√
5

2√
5

0

0 0 1

 rotate axes by + arctan 1
2

Distance s is the k−1 curve ends so s = (
√

5)k−1. This is at + arctan 1
2 to

the axes which is rotation S−1 again to shift the centre of mass by the parallel
axis theorem. Distance t is a diagonal across half curve lengths so t = s/

√
2 at

a further 45◦ angle from s so a rotation matrix.

T =


1√
5
− 3√

5
0

3√
5

1√
5

0

0 0 1

 rotate axes by S + 45◦

I(k) = 3
5 R
−1.I(k−1).R 1st, 3rd, 5th
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+ 2
5 S.I(k−1).S−1 2nd, 4th

+ 2. 15
( √

5k−1
)
2 S.

( 0 0 0
0 1 0
0 0 1

)
.S−1 ms2, 1st, 5th

+ 2. 15
(

1√
2

√
5k−1

)
2 T.

( 0 0 0
0 1 0
0 0 1

)
.T−1 mt2, 2nd, 4th

Multiplying through gives mutual recurrences

Ix(k) = 11
25Ix(k−1) − 4

25Ixy(k−1) + 14
25Iy(k−1) + 13

50 5k−1

Iy(k) = 14
25Ix(k−1) + 4

25Ixy(k−1) + 11
25Iy(k−1) + 17

50 5k−1

Ixy(k) = 2
25Ix(k−1) − 3

25Ixy(k−1) − 2
25Iy(k−1) + 11

50 5k−1

Iz(k) = Iz(k−1) + 3
5 .5

k−1

Expanding Iz repeatedly down to Iz(0)=0 is Iz(k) =
∑k−1
j=0

3
5 .5

j per its
formula.

Iz = Ix+Iy is true of any plane �gure. Substituting Iy = Iz − Ix gives three
equations in Ix and Ixy . The �rst and last are negations leaving two in two
unknowns which are a second-order recurrence for Ix

Ix(k) = − 6
25Ix(k−1)− 1

25Ix(k−2) + 216
125 5k−2 − 12

125 k ≥ 2

starting Ix(0) = 0 and Ix(1) = 13
50

Usual recurrence or generating function manipulation then gives Ix as powers
of the roots 5, 1, ( b5 )2 = − 3

25+ 4
25 i and its conjugate. The imaginary parts cancel

out and the real parts can be expressed by real and imaginary parts of the single
power ( b5 )2k. Ix then gives Ixy and Iz.

The power ( b5 )2k is similar to that for segments in direction counts (26) and
like there it is not a multiple of 2π so the inertia components are not periodic
in k.

For the curve scaled to a unit length, and unit mass (which is twice its area),
the limit for the inertia tensor is the high coe�cients in Ix etc.

I(k)

5k
→


54
820 − 7

164 0

− 7
164

69
820 0

0 0 123
820


An inertia matrix is real and symmetric so can be diagonalized with a suit-

able matrix of rotation turning to the eigenvectors which are its principal axes.
The physical signi�cance of this is that rotation about those axes is perfectly
balanced with no torque exerted on the mounting points.

In the usual way for a 2×2 matrix, the eigenvectors are complex number
direction d and then angle α,

d2 =
(
Ix(k)− Iy(k)

)
− 2Ixy(k) i

α = 1
2 arctan

−2Ixy(k)

Ix(k)− Iy(k)
+ (0 or π2 )

= 1
2 arctan

(
14
3 + εk

)
+ (0 or π2 )
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where εk =
Im ( b5 )2k

9
2055k − 9

205 Re ( b5 )2k − 42
205 Im ( b5 )2k∣∣( b5 )2

∣∣ = 1
5 so εk→0 as k→∞ and limits for the principal axes are

αmin = 1
2 arctan 14

3 + (terms in ε) arctan �rst quadrant

→ 38.95262◦ . . .

αmax = αmin + 90◦

→ 128.95262◦ . . .

I minimum

αmin = 38.95...◦
I maximum

αmax = 128.95...◦

For the curve scaled to unit length, unit mass (which is twice its area), and
rotated to principal axes, the limit for the inertia tensor is

3
40−

√
205
328 0 0

0 3
40+

√
205
328 0

0 0 3
20



9 R5 Quad

Four R5 dragon curves can be arranged in a square �quad�. k=0 is a single unit
square.

start
k=3

R5 quad

start

Each expansion is
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=⇒
Figure 24:

R5 quad

expansion

Each unit square expands to 5 squares, so starting 1 in k=0 is total 5k inside.
The outside unit squares are four right sides 4ARk, for total area

QAk = 5k + 4ARk

= 2.5k − 2.3k + 1

= 1, 5, 33, 197, 1089, 5765, . . .

Scaled to unit length endpoints for the component curves, the area limit is
QAk/5

k → 2, which is 4× curve area limit 1
2 from (51).

The convex hull around the quad follows in a similar way to the hull around
the plain curve in theorem 22. For the quad, there are only sides 3id and 2idbj

(no 4−i) and the general case can start at k=1.

QHsides0 = id d = 0 to 3 for k=0

QHsidesk =

{
3id d = 0 to 3 for k ≥ 1

2idbj d = 0 to 3 and j = 1 to k−1

which is number of sides

QHnumSidesk =

{
4 if k = 0

4k if k ≥ 1

= 4, 4, 8, 12, 16, 20, 24, . . .

The quad hull boundary length is then

QHBk =
∑

z ∈QHsidesk

|z|

= 2
(
1+
√

5
)√

5k + 2
(
1−
√

5
)

= 2
(
5dk/2e+1

)
+ 2

(
5bk/2c−1

)√
5

= 4, 12, 12+8
√

5, 52+8
√

5, 52+48
√

5, . . .
rational dup 2×A034474, irratational dup 2

√
5×A024049

Scaled to unit length component curves, the hull boundary length limit is

QHBk√
5k
→ 2 + 2

√
5 = 6.472135 . . . 2×A134945

The area of the quad hull follows in a similar way to the curve hull in
theorem 23. The equivalent of recurrence (70) applies for k≥2 with k−1 = 1
being 4 sides 3id. The powers of 5 on each 2bj are 1 + 5 + 52 + · · ·+ 5k−1−j =
(5k−j −1)/4 so with 4 of each factor 5k−j −1. The constant 4 and initial QHA1

become 2.5k−1.

QHAk = 2.5k − 1 +

k−1∑
j=1

(
5k−j−1

)
HAgrow(2bj)
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= 1, 9, 65, 369, 1905, 9697, 48985, . . .

Scaled to unit length component curves, the hull area limit is

QHAk
5k

→ 2 +

∞∑
j=1

2HAgrowf
(

1
bj

)
= 3.153977 . . .

This can be compared to area limit 2 for the quad it surrounds, so over a
third of the hull is empty.

start

R5 quad hull limit

area 3.153. . .

boundary 6.472. . .

countably in�nite

vertices

9.1 R5 Quad Area Tree

When corners of an R5 quad are chamfered o�, the inside unit squares are
connected through the resulting gaps. Call this an area tree.

curve

start

k=3 R5 quad area tree,

vertex each unit square

inside R5 quad

An equivalent de�nition is to connect unit squares which are on the left of
consecutive curve segments.

edge between unit squares
on left sides of consecutive

curve segments

When the curve turns to the right the unit squares on the left of the segments
are distinct. A turn is always left or right (never straight ahead) so those
connections are though corners of the squares
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Per �gure 24, each unit square expands to 5 new unit squares in a star
pattern. So a bottom-up expansion rule is a repeated star replacement. Starting
from a single vertex for k=0, each vertex is replaced by a 5-star and existing
edges are between arms of the stars.

=⇒ star
replacement

Theorem 29. Vertices of the R5 quad area tree are degrees 1,2,4 after the
initial degree-0 in k=0. The number of each degree in level k are

QADegCount(k, 0) =

{
1 if k = 0

0 if k ≥ 1
A000007

QADegCount(k, 1) =

{
0 if k=0

2.5k−1 + 2 if k ≥ 1

= 0, 4, 12, 52, 252, . . . 2×A034474

QADegCount(k, 2) =

{
0 if k = 0 to 2

2.5k−1 − 2 if k ≥ 3
(76)

= 0, 0, 8, 48, 248, . . . 2×A024049

QADegCount(k, 4) =

{
0 if k=0

5k−1 if k ≥ 3
(77)

= 0, 1, 5, 25, 125, . . .

Proof. Degree-4 vertices arise from the star replacement, so each of the 5k−1

vertices in level k−1 becomes a degree-4 in level k for (77).
Degree-2 vertices arise from the star replacement as two in each previous

edge. There are 5k−1 − 1 edges in level k−1, so (76).
The star replacement leaves only degree 1,2,4 vertices so the remainder of

the total 5k in level k are degree-1. Or alternatively the star replacement gives
3 degree-1 for each previous degree-1 and 2 for each previous degree-2 so

QADegCount(k,1) = 3QADegCount(k−1, 1) + 2QADegCount(k−1, 2) k≥2

A further approach for degree-1 is that they occur when the curve makes 3
consecutive left turns. The total number of 3 consecutive turns is TurnRuns3
from (52) in section 3. The curve is the same forward and reverse so the rights
and lefts are half each. The end of the sub-curves making up the quad has a
left turn to the next and this makes a further 3 consecutive lefts when k≥1, so

QADegCount(k, 1) = 4. 12TurnRuns3 k + 4 k ≥ 1

Theorem 30. The diameter of R5 quad area tree k is

QAdiameterk = RQk − 1 (78)
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= 3k − 1 A024023

It is attained by the left boundary squares of the curve (inside the quad) and
various other paths. The total number of paths attaining the diameter is

QAdiameterCountk =

{
1 if k=0

6 . 9k−1 if k ≥ 1

= 1, 6, 54, 486, 4374, . . . A092810

The number of diameter endpoints, and total number of vertices on some diam-
eter are

QAdiameterEndsk =

{
1 if k=0

4.3k−1 if k ≥ 1

= 1, 4, 12, 36, 108, . . . A003946

QAdiameterVerticesk = 4k.3k−1 + 1

= 1, 5, 25, 109, 433, . . .

Proof. For any path in level k−1, the star replacement inserts 2 further edges
into it for level k, so 3× the length. A path between any of those new vertices
is shorter. If a path in k−1 ends at a degree-1 vertex then the star there is new
leaf vertices attached.

A diameter must be between degree-1 vertices (otherwise could be extended).
So, with diameter 0 for the single vertex of k=0,

QAdiameterk = 3QAdiameterk−1 + 2 starting QAdiameter0 = 0 (79)

There are 3 new leaves at the end of the diameter path. The single vertex
of k=0 is trivially the left boundary squares. Choosing the boundary square
of the left side on each expansion gives the diameter as left boundary squares,
hence (78). The 3 choices are then, once the diameter is not 0,

QAdiameterEndsk = 3QAdiameterEndsk−1 starting QAdiameterEnds1 = 4

and combinations of the 3 new at each end is 9 new paths for each existing one

QAdiameterCountk = 9QAdiameterCountk−1 QAdiameterCount1 = 6

For total vertices of diameters, on star replacement each existing diameter
vertex has 2 new vertices towards the middle of the tree, except at the mid-
dle vertex itself. The new QAdiameterEndsk outer vertices are immediately
adjacent to existing diameter vertices. So

QAdiameterVerticesk = 3QAdiameterVerticesk−1 − 2 + QAdiameterEndsk

starting QAdiameterVertices0 = 1

In k = 1, 2 all the degree-1 vertices are diameter endpoints, but in k≥3 some
degree-1 are not diameter endpoints. The degree-1 vertices grow as 5k whereas
the diameter endpoints grow only as 3k.

QAdiameterEndsk = QADegCount(k, 1) k = 1, 2
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QAdiameterEndsk < QADegCount(k, 1) k ≥ 3

A top-down de�nition of the tree is to take the expansion of �gure 24 as a
level k square comprising 5 level k−1 squares connected by new edges between
each.

k−1

k−1k−1

k−1k−1

Figure 25: area tree k as 5 copies

of k−1 and new edges between

The connections are at vertices which are diameter endpoints, since that is
necessary to give (79) as three diameters of level k−1 plus 2 edges between.

The vertices attaining the diameter are in the outer sub-trees. Not all pairs
of QAdiameterEnds endpoint vertices make a diameter, only those between
di�erent outer sub-trees. By symmetry there are 1

4 vertices in each, and there

are binomial
(
4
2

)
= 6 pairs of outer trees, so

QAdiameterCountk = 6
(
1
4QAdiameterEndsk

)2
k ≥ 1

A top-down approach to QAdiameterVertices can be made by noting the
middle k−1 has only paths going middle to outer connections, and the outers
have only path out to their middle, nothing in the quarter tree at the connection.
So 12 outer quarter trees and diameter or half diameters across. A constant
o�set is applied for middles counted twice or not by these diameters.

QAdiameterVerticesk= 12
4 QAdiameterVerticesk−1+(2+ 4

2 )QAdiameterk−1+2

The Wiener index is a measure of total distance between pairs of vertices in
a graph.

Wiener index = 1
2

∑
vertices u,v

distance(u, v)

Factor 1
2 has the e�ect of taking distance between a pair u, v in just one

direction, not also its reverse v, u.

Theorem 31. The Wiener index of R5 quad area tree k is

QAW k = 5k
(
2
7 15k − 5k−1 − 3

35

)
= 0, 16, 1480, 117400, 8962000, . . .

Proof. Per �gure 25, sub-parts connect at a degree-1 vertex C which is a di-
ameter endpoint. Let QAwC be the total path length from there to all other
vertices. Total length C in its own sub-tree is QAwC k−1. To reach the middle
tree is the diameter plus 1 edge for each of the 5k−1 destination vertices in the
middle part. To reach the far outer 3 parts is twice that distance. In each of
those parts the further distance to the vertices is QAwC k−1, for total 5 of those.

QAwC k = 5QAwC k−1 + 5k−1(1 + 3.2)
(
QAdiameterk−1+1

)
= 7

2 5k−1(3k − 1) starting QAwC 0 = 0
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= 0, 7, 140, 2275, 35000, . . .

Total paths within the sub-trees is QAW k−1 each. Then paths from each
of the 4 outer trees to the middle is QAwC k−1 for vertices to the connecting
edge, times 5k−1 destinations, and the same from the middle connection vertex
into the middle part. The connecting edge is crossed by 5k−1.5k−1 many paths
between the parts.

Similarly for the 6 combinations of paths between outer sub-trees, except
instead of a single connecting edge to cross there is the middle sub-tree diameter
plus an edge each side.

QAW k = 5QAW k−1 + 4
(

5k−1.2.QAwC k−1 + 25k−1
)

+ 6
(

5k−1.2.QAwC k−1 + 25k−1(QAdiameterk−1+2)
)

Second Proof of Theorem 31. Suppose a given edge has x many vertices on one
side and y many on the other, so that for the paths in QAW it is crossed xy
times,

QAW k =
∑

edges
xy

Star replacement means each edge becomes 3

x y =⇒ x a b y

The middle a�b has 5x vertices on one side and 5y on the other. Edges x�a
and b�y have one more and less each side. So total crossings

5x.5y + (5x+1)(5y−1) + (5x−1)(5y+1) = 75xy − 2

There are new edges in k+1 to its leaf vertices. Those edges have 1 vertex
on one side and 5k+1−1 on the other. So

QAW k+1 = 75QAW k − 2.(5k−1) + QADegCount(k+1, 1).1.(5k+1−1)

= 75QAW k + 10.25k + 6.5k

Wiener index divided by number of vertex pairs is a mean distance between
vertices. Such a mean is usually taken over vertex pairs in one direction (like the
Wiener index) and excluding a vertex to itself, so number of pairs is binomial(
5k

2

)
= 1

25k(5k − 1). The mean can be expressed as a fraction of QAdiameter .
The limit of that fraction as k→∞ follows from the high coe�cients of the
terms.

QAW k
1
25k(5k − 1) .QAdiameterk

→ 4

7
= 0.571428 . . . (80)

For interest, a similar repeated star replacement can be made for stars of
s≥3 vertices (s=5 is the quad area tree). This has the same QAdiameter , and
working through the forms above for the Wiener index gives

StarRepW (s, k) = sk−1
(

1
2

(s−1)(3s−5)

3s−1
(3s)k − 1

2 (s−3)sk − s+1

3s−1

)
s≥3
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s=3 = 0, 4, 120, 3276, 88560, 2391444, . . .

s=4 = 0, 9, 516, 25872, 1258560, 60674304, . . .

s=5 = QAW

s=6 = 0, 25, 3390, 389700, 42928920, 4666565520, . . .

Case s=3 is a middle and 2 outer vertices. Its repeated replacement is simply
a path of 3k vertices.

The limit for mean distance between distinct vertices is then

StarRepW (s, k)
1
2s
k(sk − 1) .QAdiameterk

→ (s−1)(3s−5)

s(3s−1)
= 1− 5

s
+

8

3s−1

= 1
3 ,

21
44 ,

4
7 ,

65
102 ,

24
35 ,

133
184 ,

88
117 , . . . s ≥ 3

From the formula, this approaches 1 as s→∞. Roughly speaking, as s
increases, more paths become diameters. The number of diameter paths is(
s−1
2

)
((s−2)2)k out of all paths 1

2s
k(sk−1) so ratio approaches 1.

Gutman, Furtula and Petrovi¢[7] consider a terminal Wiener index which is
distances between pairs of terminal vertices (ie. leaf nodes, degree 1).

Theorem 32. The terminal Wiener index of R5 quad area tree k is

QATW k = 8
175 75k + 38

125 25k + 69
175 5k − 1

= 0, 12, 456, 24084, 1565424, . . .

Proof. Make a calculation similar to QAW theorem 31 above. The connection
vertices in k−1 are degree-1 but on joining are no longer, so adjust to exclude
them. The recurrences can begin at k=2 so that the connection vertices in the
k−1 sub-trees are distinct.

Let QAtwC k be the total path lengths from the connecting vertex to all
others in area tree k.

QAtwC k = 5QAtwC k−1 − 4QAdiameterk−1 k ≥ 2 (81)

+ (QADegCount(k−1, 1)− 4) (QAdiameterk−1+1)

+ (QADegCount(k−1, 1)− 1) 3.2.(QAdiameterk−1+1)

starting QAtwC 0,1 = 0, 6

=

{
0 if k = 0
7
25 15k + 14

25 5k − 1 if k ≥ 1

= 0, 6, 76, 1014, 14524, . . .

QAtwC k comprises the �ve k−1 sub-trees plus the extra distance to reach
the connection at the middle and 3 far outers. The �rst QAtwC k−1 should
not include the path to its connection to the middle since that vertex is no
longer a leaf. The middle QAtwC k−1 similarly should not include the path to
its connections to the 3 outer, hence the 4 subtracted at (81).

QATW k = 5QATW k−1 − 8QAtwC k−1 + 6QAdiameterk−1 k ≥ 2 (82)
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+ 4

 (QADegCount(k−1, 1)− 4) QAtwC k−1

+(QADegCount(k−1, 1)− 1) (QAtwC k−1 − 3QAdiameterk−1)

+(QADegCount(k−1, 1)− 4) (QADegCount(k−1, 1)− 1)

 (83)

+ 6

(
2 (QADegCount(k−1, 1)− 1) QAtwC k−1

+(QADegCount(k−1, 1)− 1)2 (QAdiameterk−1+2)

)
(84)

starting QATW 0,1 = 0, 12

QATW k comprises the �ve k−1 sub-trees at (82), less paths from the 8
vertices which are connections into their respective parts. In the middle part
there are 4 such and subtractingQAtwC of all removes paths both ways between,
hence adding back

(
4
2

)
= 6 diameters.

(84) is paths between the 4 outer sub-trees. (83) is paths between the middle
sub-tree and the 4 outer, �rstly from the middle to the outers, and then from
the outers to the middle. For the latter the QAtwC has paths to the other
middle connection vertices subtracted.

Second Proof of Theorem 32. In a similar manner to the second proof of QAW
theorem 31, consider an edge with x vertices on once side and y on the other
(all vertices, not just terminals). Star replacement expands it to 3 edges. Each
vertex on expands to 3 leaf if degree-1, 2 if degree-2 or none if degree-4. New
leaves are thus 4 − deg . Total of all degrees is 2.edges in the usual way, so
4x − 2(x−1) = 2x+1 expanded leaf vertices. Crossings of the expanded edges
for QATW are then

3(2x+1)(2y+1) = 12xy + 6(x+y) + 3

Total xy is the full Wiener index QAW . Each x+y is simply all vertices 5k.
It and +3 are over all 5k−1 edges. Then with further edges at each leaf crossed
to the other k+1 leaves,

QATW k+1 = 12QAW k + (6.5k + 3)(5k − 1)

+ QADegCount(k+1, 1).1.(QADegCount(k+1, 1)− 1)

= 12QAW k + 10.25k + 3.5k − 1

The limit mean distance between distinct degree-1 vertices is the same as all
vertices from (80)

QATW k(
QADegCount(k,1)

2

)
QAdiameterk

→ 4

7
same as QAW

The star replacement turns each existing vertex into a degree-4, with 3
edges between them instead of 1. So a Wiener index among degree-4 vertices is
3QAW k−1.

Theorem 33. In the R5 quad area tree, take the root as the vertex at the quad
curve start. The width of the tree (number of vertices) at a given depth (distance
from the root, starting d=0 for the root) is

QAwidth(d) = 3CountTernaryTwos(d) (85)
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= 1, 1, 3, 1, 1, 3, 3, 3, 9, 1, 1, 3, . . .

CountTernaryTwos(n) = number of digit 2s in n written in ternary

= 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, . . . A081603

Generating functions

gQAwidth(x) =

∞∏
j=0

(
1 + x3

j

+ 3x2.3
j)

(86)

gCountTernaryTwos(x) =
1

1−x

∞∑
j=0

x2.3
j

1 + x3
j

+ x2.3
j (87)

Proof. As from the top-down above, sub-trees connect across diameters, so there
is no overlap between parts in the descent.

k−1

k−1

k−1 k−1 k−1

d=0

d = QAdiameterk−1

d = QAdiameterk−1 + 1 = 3k−1

d = 2QAdiameterk−1 + 1

d = 2QAdiameterk−1 + 2 = 2.3k−1

QAdiameterk−1 = 3k − 1 means the middle sub-tree begins at depth d =
3k−1. It is widths of tree k−1 unchanged. The three low sub-trees are a further
diameter across the middle plus one edge so they begin at depth d = 2.3k−1.
Depths from there to 3k−1 are a digit 2 of d written in ternary and are a factor
3 on the widths of tree k−1, hence the power (85).

Generating function gQAwidth at (86) follows by considering how to add a
new low ternary digit to d. Existing terms spread to 3d by substituting x3.
Terms at 3d+1 are to be the same as 3d, and terms at 3d+2 a further factor 3.
So gQAwidthk(x) good for k many digits is

gQAwidthk(x) = (1 + x+ 3x2) gQAwidthk−1(x3)

starting gQAwidth0(x) = 1

Generating function gCountTernaryTwos at (87) has each term giving coe�-
cients 1 when there is a ternary digit 2 at position j, for j=0 the least signi�cant
digit. Each term is 1s where n mod 3.3j in the range 2.3j ≤ n < 3.3j .

It's also possible to consider a new low ternary digit on gCountTernaryTwos.
This is a spread and 3 copies of the existing values, then +1 at n ≡ 2 mod 3.

gCountTernaryTwosk(x) = (1+x+x2) gCountTernaryTwosk−1(x3) +
x2

1− x3
starting gCountTernaryTwos0(x) = 0

Expanding repeatedly is

gCountTernaryTwos(x) =

∞∑
j=0

x2.3
j

1− x3j+1

j−1∏
l=0

(
1 + x3

l

+ x2.3
l)
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Each term of this sum has the product cancelling into denominator 1−x3j+1

leaving (87).

The non-overlap of k with deeper expansion means that sum of widths up
to the diameter is the total 5k vertices.

QAdiameterk∑
d=0

QAwidth(d) = 5k vertices in tree k

An independent set in a graph is a set of vertices which have no edges between
them. The empty set or one vertex set are always independent. Bigger sets are
restricted to no adjacent vertices.

Theorem 34. The number of independent sets in R5 quad area tree k is

QAindsetsk =

{
2 if k=0

hk(0) if k ≥ 1

= 2, 17, 540497, 17578416511181776606206459281, . . .

where for n = 0 to 4

hk(n) =
∑

v1,2,3,4=0,1

hk−1

( 4∑
l=1

vl

) 4∏
l=1

{
hk−1(t+1) if vl = 0

hk−1(t)− hk−1(t+1) if vl = 1
(88)

where each t=1 if l ≤ n or t=0 if l > n

starting h1(0 to 4) = 17, 9, 5, 3, 2

hk(1) = 9, 290281, 9440829864910747123331181609, . . . k ≥ 1

hk(2) = 5, 155905, 5070380968700781122208928001, . . .

hk(3) = 3, 83737, 2723146538559765117772726809, . . .

hk(4) = 2, 44977, 1462518717280970760659330417, . . .

Proof. hk(n) is the number of independent sets in area tree k which have n
many of the connection vertices absent from the sets (the rest either present
or absent). h starts at k=1 where there are 4 distinct connection vertices. For
example h1(4) = 2 is where all 4 connection vertices are absent, so just the centre
present or absent.

Recurrence (88) is area tree k comprising �ve copies of k−1 with new edges
between. Index l is the outer parts numbered 1 to 4. vl=1 when the outer part
has its connection vertex present in the set, or vl=0 when absent.

hk−1(
∑
vl) is sets in the middle part. It must have absent connection vertices

where each vl outer is present, or anything where the outer is absent.
The product terms are sets in the outer parts. One connection vertex from

each outer part becomes the connection vertices of tree k. This is t as 0 or 1 to
make total n many outer parts have a connection absent. If vl=0 then a second
connection vertex absent too so hk−1(t+1). If vl=1 then the second connection
vertex must be present. This is formed by count arbitrary less count absent.

See join area tree section 9.2 for QAindsets by quarters.
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The independence number of a graph is the maximum number of vertices in
any independent set.

Theorem 35. The independence number of R5 quad area tree k is

QAindnumk =

{
1, 4 if k = 0, 1

16.5k−2 + 1 if k ≥ 2
(89)

= 1, 4, 17, 81, 401, 2001, . . .

base-5 = 1, 4, 32, 311, 3101, 31001, . . .

The number of independent sets of this size is

QAindnumCountk =


1 if k=0

2
1
2QADegCount(k−1, 2)

if k ≥ 1

= 25k−2−1 k≥2

(90)

= 1, 1, 1, 16, 16777216, . . .

k=0 is a single vertex. k=1 is the 4 outer vertices of the star. k=2 is 4
vertices adjacent to the 4 outer degree-4s, and the centre degree-4,

c

c

c

c

Figure 26:

k=2 sole

independent set

attaining

QAindnum2 = 17

For k≥3 the sub-trees are this k=2 form but at each connection between
sub-trees omit 1 of the 2 adjacent vertices across the new edge. The choice of
which at each is the power (90).

Proof. The theorem can be veri�ed explicitly for k = 0, 1, 2. For k=2, addition-
ally if some number n of the 4 connection vertices marked c are required to be
omitted from the set then the maximum size is reduced to QAindsets2 − n.

Suppose the theorem and the additional n absent condition is true of some
k−1 ≥ 2. For k a set can be made as described above by omitting one of the
two vertices across each new connection edge, which gives (89)

QAindnumk = 5QAindnumk−1 − 4 k ≥ 3

QAindnumCountk = 24.QAindnumCount 5
k−1

If any set bigger than this QAindnumk is independent then one of its sub-
trees has an additional vertex, making it bigger than the maximum of the in-
duction hypothesis, for any choice of which sub-trees have the vertex omitted
at the connections.

Similarly when some number n of the 4 connection vertices of k are omitted.
A set bigger than QAindnumk−n in k would again be at least one sub-tree with
a set bigger than the induction hypothesis for any choice at the k−1 connections.

As a remark, induction cannot begin from k=1 since the 5-star there has
QAindnum1 = 4 but if n=4 connection vertices are omitted then there is a set
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of size 1, not QAindnum1 − 4 = 0 for the argument. In �gure 26 this is the
centre vertex included in the set there. This also means for k=2 no choice of
vertices at the connections of middle star to outer stars, only the con�guration
shown.

The connection vertices where the choice is to be made are new degree-2s in
k. All degree-2s arise like this, except those of the initial k=1 and its replications
have no choice. These non choices can be reckoned as 1 fewer star replacements,
so in k there are QADegCount(k−1, 2) connection vertices where a choice of one
or the other is to be made, hence (90).

The independence ratio of a graph is the ratio of independence number to
number of vertices. For the R5 quad area tree this is

QAindnumk

5k
=

{
1, 45 if k = 0, 1
16
25 + 1

5k
if k ≥ 2

→ 16

25
= 0.64 as k →∞

An independent edge set is a set of edges with no end vertices in common,
also called a matching since it is vertices in matched pairs with edge between.
The match number is the number of pairs in the largest matching.

Theorem 36. The match number of R5 quad area tree k is

QAmatchnumk =

{
0, 1 if k = 0, 1

9 .5k−2 − 1 if k ≥ 2
(91)

= 0, 1, 8, 44, 224, 1124, . . . k≥2 A198768

base-5 = 0, 1, 13, 134, 1344, 13444, . . .

The number of matchings of this size is

QAmatchnumCountk =

1, 4, 513 if k = 0 to 2

34.132

28.52
.
(
212.38.52.7.132

)5k−3
if k ≥ 3

(92)

= 1, 4, 513, 1699990476912, . . .

Factor 34.132/(28.52) = 13689/6400 and power 212.38.52.7.132 = 794794291200.

Proof. QAmatchnum can be veri�ed explicitly for k ≤ 2. For k=2 additionally
if all 4 connection vertices are required to be unmatched then the match number
is still QAmatchnum2 = 8.

c

c

c

c

Figure 27:

k=2 matching

QAmatchnum2 = 8,

connection vertices unmatched

Suppose the QAmatchnum formula at (91) and no reduction for connections
unmatched is true of some k−1 ≥ 2. Tree k comprises 5 copies of k−1. Their
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unmatched connection vertices form new pairs across the new edges,

QAmatchnumk = 5QAmatchnumk−1 + 4 starting QAmatchnum2 = 8

For unmatched connections in k, those connection vertices are some of the
outer k−1 tree connections which can also be unmatched without reducing the
match number.

The QAmatchnumCount number of such matchings can be veri�ed explicitly
for k≤ 1. k=0 is the empty matching.

The match number construction above means there is always a pair across
the connection vertices of k≥2, so there are k=2 sub-parts separated by �xed
pairs at those connections. Star replacement means those k=2 parts correspond
to vertices in tree k−2. The degree of those vertices is the number of connections
paired at each, and thus required to be absent for matchings within that k=2
part.

For k=2 itself, the k−2 = 0 tree is a single vertex with no connections. In
�gure 27 the outermost pairs can be in 3 orientations each, or if one of the inner
edges moves in to the middle then 4 orientations in its outer. So

QAmatchnumCount2 = 34 + 4.4.33 = 513

Let QAmatchnumCountk(n) be the number of matchings in tree k with
n = 0 to 4 of the connection vertices left unmatched. For k=2 this reduces n
many of the outer pair orientations from 3 to 2, or 4 to 3. The following formula
reckons outers as 1 to 4 with the �rst n of them having connections absent. The
sum over j is for the respective inner pair shifted towards the middle. Its 4
orientations reduce to 3 when j ≤ n for connection required to be absent.

QAmatchnumCount2(n) = 2n.34−n +

4∑
j=1

{
3.2n−1.34−n if j ≤ n
4.2n .33−n if j > n

= 513, 351, 240, 164, 112 n = 0 to 4

The total number of matchings is then product of these counts according as
number of vertices of each degree d in k−2,

QAmatchnumCountk =
∏

d=0,1,2,4

QAmatchnumCount2(d)QADegCount(k−2, d)

Each QADegCount is a power 5k−1, giving 5k−3 in (92). Factor 2 in degree
d = 1, 2 means corresponding QAmatchnumCount2 is squared so base

QAmatchnumCount2(1)2.QAmatchnumCount2(2)2.QAmatchnumCount2(4)

= 212.38.52.7.132 = 794794291200

The constant o�sets ±2 in d = 1, 2 become factor

QAmatchnumCount2(1)2

QAmatchnumCount2(2)2
=

34.132

28.52
=

13689

6400

In each case the factorizations of QAmatchnumCount2(1, 2, 4) give the fac-
torizations of the result.
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The number of matchings in k when n connection vertices required absent
follow for k≥3 by changing n many degree-1 vertices to degree-2 in the k−2,
giving extra absent outer connections.

QAmatchnumCount2(2)

QAmatchnumCount2(1)
=

80

117
so

QAmatchnumCountk(n) = QAmatchnumCountk .
(

80
117

)
n k≥3

n=1 = 1162386650880, . . . k ≥ 3

n=2 = 794794291200, . . .

n=3 = 543449088000, . . .

n=4 = 371589120000, . . .

A top-down form for the match count is k comprising a k−1 middle with 4
connections absent and outers n with 2 absent and the rest 1 absent.

QAmatchnumCountk(n) = QAmatchnumCountk−1(4) k ≥ 3

.QAmatchnumCountk−1(2)n

.QAmatchnumCountk−1(1) 4−n

A dominating set in a graph is a set of vertices for which all other vertices
of the graph are adjacent to one or more in the set. The domination number is
the number of vertices in the smallest dominating set of a graph.

Theorem 37. The domination number of R5 quad area tree k is

QAdomnumk =

{
1 if k=0

5k−1 if k ≥ 5

= 1, 1, 5, 25, 125, 625, . . . k≥1 A000351

which is uniquely attained by the middle vertex of each previous level star re-
placement.

Proof. The middles of the star replacements are degree-4. This is the maximum
degree in the tree, and they and their dominated neighbours are disjoint so this
is the minimum possible set.

Second Proof of Theorem 37. Cockayne, Goodman, and Hedetniemi[4] show the
domination number of a tree is obtained by starting at leaf vertices and domi-
nating them by requiring their neighbours present in the dominating set. Those
leaves and required vertices can then be removed. Remaining vertices they dom-
inated which become leaves or isolated can be removed too, then the procedure
repeated.

In the R5 quad area tree, leaf vertices in k occur in the star replacements
of degree 1 and 2 vertices of k−1. Their neighbours are the centres of those
stars. The centre and leaves are removed. The other vertices of the star are
then dominated leaves so removed too.

The remaining vertices are the stars from degree-4 vertices in k−1. Re-
peated star replacement means these degree-4s are not adjacent, so the 1,2 star
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removals make those stars disconnected from each other. Their centre vertices
are adjacent to leaves, so domination number is all the centres, which is all the
5k−1 vertices of tree k−1.

The domination ratio is the ratio of domination number to number of vertices
in a graph. For the R5 quad area tree this is

QAdomRatiok =
QAdomnumk

5k
=

{
1 if k=0
1
5 if k ≥ 1

A total dominating set in a graph is a set of vertices for which all graph
vertices are adjacent to one or more in the set. This di�ers from an ordinary
dominating set in that a vertex in the set does not dominate itself, it must have
some neighbour.

Theorem 38. The number of total dominating sets in R5 quad area tree k is

QAtotdomsetsk =

{
0, 15 if k = 0, 1

8208155k−2

if k ≥ 2

= 0, 15, 820815, 372585905337900111961365759375, . . .

with 820815 = 3.5.54721

Proof. k=0 is a single isolated vertex so has no neighbour to dominate it, hence
no sets QAtotdomsets0 = 0.

The theorem can then be veri�ed explicitly for k = 1, 2. In k=2 the con-
nection vertices are at a star replacement of a degree-1, so it is one of 3 leaves
on the connection attachment. That connection attachment must be present in
the set to dominate those other leaves.

k=2
connection attachment
vertex always in set

c

c

c

c

When k=2 trees join there could be additional sets arising by an undomi-
nated c which is dominated across the join edge. But this does not give any
additional sets since the connection attachment is always present so each c is
always dominated already. So sets are simply the product of those in the pre-
ceding level.

QAtotdomsetsk = 5QAtotdomsetsk−1 k ≥ 3

As a remark, it can be noted this is not true for k=2 from copies of k=1.
The middle k=1 does not need to have its centre vertex if all its surrounding
connections are dominated by the outer sub-trees.
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k=2
connection attachment
vertex always in setc1 c2

c1 is dominated by c2 and likewise in the other arms. The centre of the
middle is dominated by having at least one of its four c1 etc neighbours in the
set. That is 24−1 = 15 combinations, and the outer leaves can each be present
or absent so

QAtotdomsets2 = QAtotdomsets51 + 15.212

The total domination number is the size of the smallest total dominating set
of a graph.

Theorem 39. The total domination number of R5 quad area tree k is

QAtotdomnumk =


none if k=0

2 if k=1

9.5k−2 if k ≥ 2

= none, 2, 9, 45, 225, 1125, . . . k≥2 A189274

and the number of sets of this size is

QAtotdomnumCountk =

{
0, 4 if k = 0, 1

45k−2

if k ≥ 2

= 0, 4, 4, 1024, 1125899906842624, . . . k≥2 4×A185981

= 0, 22, 22, 210, 250, 2250, 21250, . . . exponent k≥2 A020729

k=0 is a single isolated vertex so has no neighbour to dominate it, hence no
value for QAtotdomnum0 and count QAtotdomnumCount0 = 0.

Proof. The theorem can be veri�ed explicitly for k = 0, 1. For k=2 the leaf
attachments must be in the set, as from theorem 38. To dominate them taking
their inner neighbour (rather than a leaf) dominates 2 vertices so gives a smaller
set. The centre of the tree can be dominated by any 1 of its 4 neighbours. So
total domination number 9 in 4 ways.

middle
neighbour

c

c

c

c

k=2

total dominating set

attaining

QAtotdomnum2 = 9
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Again as from theorem 38, for k ≥ 3 there is no cross-domination between
sub-trees to reduce set size or increase how many sets. So sum total domination
numbers of the sub-parts and product of their counts,

QAtotdomnumk = 5QAtotdomnumk−1

QAtotdomnumCountk = QAtotdomnumCount 5
k−1

The total domination ratio is the ratio of total domination number to number
of vertices in a graph. For the R5 quad area tree this is

QAtotdomRatiok =
QAtotdomnumk

5k
=

{
−1, 25 if k = 0, 1
9
25 = 0.36 if k ≥ 2

9.2 R5 Join Area Tree

In the join from section 3.1, a tree can be formed by taking the enclosed unit
squares on the left of the curve from points JN k to JNotherk.

Like the quad area tree, each vertex is an enclosed unit square and edges
are between those consecutive in the curve, or equivalently joined between gaps
when the corners of the curve are chamfered o�.

curve

start

. . .

J

join

tree

start

join

tree

end

k=3 R5 join area tree,

vertex each unit square

curve

start

J

This is a quarter of the quad area tree. The unit square at J is an outermost
connection vertex in the quad area tree. The innermost end is the centre of the
quad area tree. The centre vertex of the quad area tree is not part of the join
area tree.

R5 quad area tree
as 4 join area trees

Or conversely the join area tree is descending size quad area trees,
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Figure 28:

k=3 join area tree

as descending

quad area trees

This follows from the quad area tree growing by further outer copies of itself
(�gure 25). Or alternatively, the join area growth in theorem 18 has the existing
join area expanding (so star replacement) and further unit square at the end of
each expansion

The number of vertices is the quarter of the quad area tree

JAV k = 1
4 (5k − 1)

Or vertices by degree similarly (with the quarter changing a degree-2 from
the quad tree to a degree-1 in the join tree),

JADegCount(k, 0) =

{
1 if k = 1

0 otherwise
A000007

JADegCount(k, 1) =

{
0 if k ≤ 1
1
2 (5k−1 + 3) if k ≥ 2

= 0, 0, 4, 14, 64, . . . k≥2 A132079

JADegCount(k, 2) =

{
0 if k ≤ 1
1
2 (5k−1 − 3) if k ≥ 2

= 0, 0, 1, 11, 61, . . . A137410

JADegCount(k, 4) =

{
0 if k=0
1
4 (5k−1 − 1) if k ≥ 3

= 0, 0, 1, 6, 31, . . . A003463

The centroid of a tree is the vertex or vertices for which all its attached
sub-trees are ≤ 1

2 total tree vertices. Per Jordan the centroid is either 1 vertex
or 2 adjacent vertices.

For the quad area tree the centroid is the tree middle. Its neighbours are 1
4

of the tree each. Its neighbour (or any other vertex) has sub-tree towards the
middle with ≥ 3

4 of the tree. Or by symmetry if any other vertex was a centroid
then there would be 4 or more equivalent vertices also centroids, contrary to at
most 2.

Theorem 40. The centroid of join area tree k is the middle of its biggest
component quad area tree.

Proof. The biggest quad middle has attached sub-trees of JAV k−1 and 2JAV k−1
so ≤ 1

2 the whole tree 5JAV k−1 + 1. The neighbours of the quad middle have
3JAV k−1 + 1 or 4JAV k−1 + 1 towards the middle, so > 1

2 the whole.

Or by symmetry vertices of the three sub-trees not with the descending
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further quads are equivalent so if any were centroids then there would be 3,
contrary to at most 2 centroids.

Theorem 41. The diameter of R5 join area tree k is

JAdiameterk =

k−1∑
j=1

QAdiameter j + 1 (93)

=


none if k=0
1
2 (3k − 3) if k ≥ 1

= 1
2QAdiameterk − 1

= 0, 0, 3, 12, 39, 120, . . . k≥1 A029858

ternary = 0, 0, 10, 110, 1110, 11110, . . . k≥1 A105279

The number of paths attaining the diameter (reckoning the empty graph as no
paths) is

JAdiameterCountk =

{
0 if k=0

3k−1 if k ≥ 1
A140429

The number of diameter endpoints, and total number of vertices on some diam-
eter are

JAdiameterEndsk =

{
0, 1 if k = 0, 1

3k−1 + 1 if k ≥ 2

= 0, 1, 4, 10, 28, . . . A103457

JAdiameterVerticesk =

{
0, 1 if k = 0, 1

k.3k−1 if k ≥ 2

= 0, 1, 6, 27, 108, . . . A027471

Proof. Take the join tree as descending component quad trees per �gure 28. A
path entirely within a single component quad tree is at most its diameter. A
path starting and ending in two quad trees is at most the sum of those, the
trees between, and the edge between each, since the quad trees are joined at
connection vertices, which are a diameter distant.

The sum at (93) is then all quad trees in the join tree. It has +1 for the
edge between each, and extends down only to j=1 so there is no +1 after the
�nal level 0 quad tree. Quad tree 0 is a single vertex QAdiameter0 = 0 so its
omission from the sum does not change the result.

The end quad tree k=0 is 1 vertex so is the end of all diameter paths. The
starts are vertices in the k−1 component quad tree which are a diameter away
from the connection vertex. The k=1 quad in join tree k=2 has 3 such vertices
(all its leaves). Then in the manner of theorem 30, star replacement make 3
new vertices as ends of those paths, so that

JAdiameterCountk = 3 JAdiameterCountk−1

starting JAdiameterCount2 = 3

Draft 11 page 89 of 124

http://oeis.org/A029858
http://oeis.org/A105279
http://oeis.org/A140429
http://oeis.org/A103457
http://oeis.org/A027471


The 3 parts of the end-most quad which are away from its connection give
join area tree endpoints and total vertices.

JAdiameterEnds = 3
4QAdiameterEndsk−1 + 1 k ≥ 2

JAdiameterVertices = 3
4

(
QAdiameterVerticesk−1 − 1

)
k ≥ 1

+ JAdiameterk−1 − 1
2QAdiameterk−1 + 1

Theorem 42. The number of independent sets in R5 join area tree k is

JAindsetsk = aak

= 1, 2, 26, 11050330, . . .

where

aak = aa3
k−1paak−1 + az 3k−1pazk−1 k ≥ 2 (94)

azk = aa3
k−1pazk−1 + az 3k−1pzzk−1

zak = zak−1aa
2
k−1paak−1 + zzk−1az

2
k−1pazk−1

zzk = zak−1aa
2
k−1pazk−1 + zzk−1az

2
k−1pzzk−1

paak = aa2
k − wa2

k wak = aak − zak

pzzk = az 2k − wz 2k wzk = azk − zzk

pazk = aakazk − wakwzk

starting aa1 = 2, za1 = za1 = zz 1 = 1

azk = 1, 1, 17, 7186721, . . . paak = 1, 3, 532, 95941084541604, . . .

zak = 1, 1, 14, 5934794, . . . pazk = 1, 2, 346, 62396495941658, . . .

zzk = 1, 1, 9, 3859769, . . . pzzk = 1, 1, 225, 40580349121537, . . .

Proof. The join area tree can be taken as 5 join trees k−1. The biggest compo-
nent quad tree is k−1 and it comprises 4 join trees k−1.

start end

pair p

aa, za, az , zz are counts of independent sets,

aa = start and start and end each either present or absent

za = start required to be absent

az = end required to be absent

zz = both start and end vertices required to be absent

The p forms are for the pair of join trees shown at the right. They have a
new edge between two k−1 start vertices. So paa is sets aa2 except not both
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across the edge so subtract wa2. wa is number of sets with the start vertex
present. It is the unrestricted aa less za which is those without start vertex.
Similarly the other p forms, and using wz which is start present and end absent.

The vertex at the centre of the 4 sub-trees is in addition to those trees. The
term at (94) etc are without the centre (allowing any end of the joined parts)
and with the centre (so the ends must be absent). The pair p is symmetric so
a pza for it is the same as its paz . The recurrence applies for k ≥ 2 where the
sub-trees are not empty.

These aa,az ,za,zz are recurrences in 4 quantities rather than 5 forQAindsets.
The quad area tree as 4 join area parts gives the latter as, again the centre with-
out or with,

QAindsetsk = aa4
k + az 4k

Another approach for both join and quad area trees is to work along a
diameter. The sub-trees branching o� are join area trees of appropriate level.
For computer calculation or similar this is less e�cient, but the formulas are
simpler.

Theorem 43. Consider a tree comprising the �rst n many vertices across a
diameter of the quad area tree (of level big enough to have diameter ≥ n), and
the branches o� those vertices.

Let dan be the number of independent sets in this tree, and dzn the number
which do not include vertex n. They are given by recurrences

dan = dzn + dzn−1 dz
2
TernaryLowOnes(n−1) starting da0 = 1

dzn = dan−1 da
2
TernaryLowOnes(n−1) dz 0 = 1

dan = 1, 2, 9, 17, 26, 22489, 40065, 62554, 290281, 540497, . . .

dzn = 1, 1, 8, 9, 17, 17576, 22489, 40065, 250216, 290281, . . .

TernaryLowOnes(n) = n in ternary keep only low run of 1 digits

= 1
2

(
3TernaryCountLowOnes(n) − 1

)
= 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 13, . . .

TernaryCountLowOnes(n) = 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, . . . A253786

start

n = 1 2 3 4 5 6 7 8 9 . . .

R5 quad area tree
vertices along a diameter

Proof. The recurrences are again the usual way to combine counts for sub-trees
at a given vertex. dzn is without vertex n so it is product of all combinations in
its attached sub-trees. dan adds sets which include the vertex at n. For them
the sub-trees must not have their end vertex so dzn−1 etc.
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The empty tree is a0 = 1 since the empty set is independent. z0 = 1 likewise,
reckoned as �without� vertex n. It has no vertices at all and remains independent
if the next vertex n+1 is present.

The sub-trees at n are its preceding n−1, and trees branching above and
below. The tree pattern means these are determined by the low 1 digits of n−1
in ternary.

Star replacement in the tree turns each n into new vertices n′ = 3n−2, 3n−1,
3n. For example n=1 becomes 1, 2, 3. The �rst and last of these new vertices
have empty trees above and below. They are n′−1 ≡ 0, 2 mod 3 which is no low
ternary 1-digits. In the recurrences TernaryLowOnes(n′−1) = 0 is those empty
trees.

The middle new vertex n′ = 3n−1 has the existing branches above and
below n. It is n′−1 ≡ 1 mod 3 so an additional low ternary 1-digit over what
n−1 had. Hence on repeated star replacement TernaryLowOnes(n−1) is the
sub-tree attaching above and below vertex n.

A full width diameter is

QAindsetsk = da3k

The recurrences only re-use previous values of da, dz at

n = TernaryRunOnes(m) = m many ternary 1 digits

= 1
2 (3m − 1) A003462

These re-used values are join area trees. Each n is a centre vertex and the
branches above and below are the appropriate level join tree for that centre.
(Per the star replacement construction in the proof.) So JAindsets and the az
from theorem 42 are

JAindsetsk = daTernaryRunOnes(k)

azk = dzTernaryRunOnes(k) start of JA not in set

Or the recurrences can be written with az and aa = JAindsets and count of
low 1s

dan = dzn + dzn−1 az
2
TernaryCountLowOnes(n−1)

dzn = dan−1 aa
2
TernaryCountLowOnes(n−1)

Theorem 44. The independence number of R5 join area tree k is

JAindnumk =

{
0, 1 if k = 0, 1

4 .5k−2 if k ≥ 2

The number of independent sets of this size is

JAindnumCountk =

{
1, 1, 2 if k ≤ 2

2
1
2 (JADegCount(k−1,2)+3)

if k ≥ 3
(95)

= 1, 1, 2, 4, 128, 4294967296, . . .

log2 JAindnumCountk = 0, 0, 1, 2, 7, 32, 157, 782, . . . k≥2 A047850
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Proof. k=0 is empty which has a single empty independent set.
k=1 is a single vertex so its biggest independent set is only that single vertex.
Suppose then the formula is true of some k−1 ≥ 1 and further that if the

start vertex (connection in the biggest component quad tree) is required to be
absent then the biggest set is JAindnum − 1. This is so for k−1 = 1.

Join area tree k has a quad area tree k−1 attached at the start of join area
tree k−1. Either the start vertex of the join tree or the connection vertex of
the quad tree must be omitted. As from theorem 35, omitting one vertex from
it reduces to QAindnum − 1 there too. So

JAindnumk = JAindnumk−1 + QAindnumk−1 − 1 k ≥ 2

There are 2 choices for which connecting vertex is omitted. In the manner
again of theorem 35, these choices become, for k ≥ 3, all the degree-2 vertices
except the lowest level, but with the end-most degree-1 counted too, and the
degree-2 pair between quads 1 and 2, hence (95).

2 ways

start

end,

degree-1

k=2 R5 join area tree

independence number

JAindnum2 = 4 vertices

JAindnumCount2 = 2 ways

The independence ratio of the R5 join area tree is then, for k≥1 where it is
not empty,

JAindnumk

JAV k
=

{
1 if k = 1
16
25

(
1− 1

5k−1
)

if k ≥ 2
→ 16

25
same as quad area tree

Theorem 45. The match number of R5 join area tree k is

JAmatchnumk =

{
0 if k ≤ 1
1
4

(
9 .5k−2 − 1

)
if k ≥ 2

= 0, 0, 2, 11, 56, 281, 1406, . . . k≥2 A198769

base-5 = 0, 0, 2, 21, 211, 2111, 21111, . . .

Proof. Take the join area tree as connected descending quad area trees. From
theorem 36, QAmatchnum is not reduced by requiring connection vertices ab-
sent, so a new pair between each quad, and the end-most part of the join area
tree considered explicitly gives

JAmatchnumk = 2 +

k−1∑
j=2

QAmatchnumj + 1

Theorem 46. The domination number of R5 join area tree k is

JAdomnumk =

{
1 if k=0
1
4 (5k−1 + 3) if k ≥ 5

= 0, 1, 2, 7, 32, 157, . . . k≥1 A047850
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Proof. In the same way as theorem 37, the smallest dominating set is all the
degree-4 vertices, except at the end-most degree-1 either it or its degree-2 neigh-
bour is required too.

JAdomnum = JADegCount(k, 4) + 1 k ≥ 1

The domination ratio of the R5 join area tree is then, for k≥1 where it is
not empty,

JAdomRatiok =
JAdomnumk

JAV k
=

1

5

(
1 +

14

5k−1

)
→ 1

5

same as
quad area tree

k≥1

9.3 R5 Quad Turns Graph

When the R5 dragon or quad revisits a location, the second visit is the same
turn as the �rst. This is so for any non-crossing closed curve, or curve continuing
in�nitely and not encircling its start, since an opposite turn would enclose either
the end or the start,

In an R5 quad, locations with right turns and the segments between them
form a graph which is a tree of cycles,

start

k=3 R5 quad turns graph,

vertex at each right turn,

edges segments between

This has the same structure as the area tree, but the deepest 5-stars are
instead 4-cycles.

The sub-curve expansion in �gure 24 shows that the connections between
sub-graphs are at adjacent arms of the sub-graphs. For example c to j in the
following

start
c

j

c adjacent

c opposite

adjacent c Figure 29:

R5 quad turns graph

connections
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The quad area tree above has adjacent sub-connections like this too, but for
it there is always a single centre vertex so arm order doesn't matter. Here the
centre of each sub-graph is a 4-cycle so positions around it do matter.

The expansions show the turns graph is a kind of 4-cycle replacement of
the k−1 area tree. Each vertex is replaced by a 4-cycle and existing edges go
between those cycles with an extra vertex in between. At a degree-2 vertex the
new edges are at adjacent vertices of the cycle, since they are curve starts and
ends. But at a degree-4 vertex the edge order must follow the geometry.

The number of vertices follows from 5 copies of k−1 with a new vertex
between each of the 4 connections. Similarly edges, with 2 new edges between
each of the 4 connections.

QTV k = 5QTV k + 4 starting QTV 1 = 4

= 5k − 1 number of vertices A024049

QTEk = 5QTEk−1 + 8 starting QTE 1 = 4

=

{
0 if k=0

6.5k−1 − 2 if k ≥ 1
number of edges

= 0, 4, 28, 148, 748, 3748, . . . 2× A198762

At each of the 4 connections the new vertex is degree-2, and two degree-2
vertices on each side become degree-3 so the number of each are

QTV2 k = 5QTV2 k−1 − 4 starting QTV2 1 = 4

=

{
0 if k=0

3.5k−1 + 1 if k ≥ 1
degree 2

= 0, 4, 16, 76, 376, 1876, . . . A199214

QTV3 k = 5QTV3 k−1 + 8 starting QTV3 1 = 0

=

{
0 if k=0

2.5k−1 − 2 if k ≥ 1
degree 3

= 0, 0, 8, 48, 248, 1248, . . . 2×A024049

QTV k = QTV2 k + QTV3 k total

Theorem 47. The diameter of R5 quad turns graph k is

QTdiameterk =

{
0 if k = 0

3k + 2k − 3 if k ≥ 1
(96)

= 0, 2, 10, 30, 86, 250, . . .

This is attained by 2 paths, between opposite corners of the quad.

Proof. Connections between sub-trees are at the start and ends of the compo-
nent curves. Let QTside be the distance through the graph from one connection
vertex to another along a side, and QTopp to the opposite.
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start

QTside QTopp

There are two side connections, one on the left and one on the right. By
symmetry their distance is the same. From �gure 29 the sub-graph side or
opposite parts are, plus 2 edges at each of 2 connections,

QTsidek = 3QTsidek−1 + 4 starting QTside1 = 1

=

{
0 if k = 0

3k − 2 if k ≥ 1

= 0, 1, 7, 25, 79, 241, . . . A058481

QToppk = 2QTsidek−1 + QToppk−1 + 4 starting QTopp1 = 2

= 3k − 1 A024023

Expanding repeatedly shows QTopp di�ers from QTside by 1

QToppk = QTsidek + 1 k ≥ 1

In the graph the adjacent and opposite arms are the same by symmetry, but to
reach the opposite one is 1 extra edge at the middle cycle.

Let QTecc be the eccentricity of a connection vertex. Going QTside to the
middle k−1 sub-graph, then QTopp across it, and QTecc there, plus 2 edges at
each of the 2 connections is

QTecck = QTsidek−1 + QToppk−1 + QTecck−1 + 4 k ≥ 2

=

{
0 if k = 0

3k + k − 2 if k ≥ 1
connection eccentricity

= 0, 2, 9, 28, 83, 246, 733, 2192, . . .

This is greater than going into one of the side graphs across the middle (by
1 edge, being QTside instead of QTopp). From the formulas it is greater than
staying in the originating k−1 sub-graph (QTecck−1 unchanged), or staying in
the middle (QTsidek−1 + 2 + QTecck−1).

Eccentricity 2 in k=1 is uniquely attained across to the opposite side of the
4-cycle, so all subsequent k are unique too.

A path going opposite connections of the middle and eccentricity into the
outer sub-graphs is the diameter (96),

QTdiameterk = 2QTecck−1 + QToppk−1 + 4 k ≥ 2

This is greater than going adjacent connections across the middle, again by
1 edge. From the formulas it is greater than staying in one k−1 sub-graph
(QAdiameterk−1 unchanged), or between just two sub-graphs (2QTecck−1 + 2).

There are 2 cross pairs of outer sub-graphs, and since the eccentricity into
them is then uniquely attained there are just 2 paths attaining the diameter.
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Theorem 48. The Wiener index of the R5 quad turns graph is

QTW k =

{
0 if k=0

5k
(

2
7 15k + ( 1

5 k −
17
20 )5k + 79

140

)
if k ≥ 1

= 0, 8, 1340, 116700, 9021000, . . .

Proof. Let QTwC k be the total path lengths in graph k from a connection
vertex to all other vertices. The k−1 sub-graphs give

QTwC k = 5QTwC k−1

+ QTV k−1

QTsidek−1 + 2

2
(
2QTsidek−1 + 4

)
QTsidek−1 + QToppk−1 + 4

 (97)

+ QTsidek−1 + 1 (98)

+ 2
(
2QTsidek−1 + 3

)
+ QTsidek−1 + QToppk−1 + 3

starting QTwC 1 = 4

= 1
10 5k

(
7.3k + 2k − 17

)
+ 1 if k ≥ 1

= 0, 4, 126, 2226, 34876, . . .

(97) is distances to the middle and 3 outer sub-graphs, multiplied by QTV
many vertices at each. The further terms (98) are path lengths to the new
vertices at the connections.

The Wiener index is then a recurrence

QTW k = 5QTW k−1 (99)

+ 10.2.QTV k−1.QTwC k−1 (100)

+ QTV 2
k−1

 4.2

+ 4(QTsidek−1+4)

+ 2(QToppk−1+4)

 (101)

+ 4

5QTwC k−1 + QTV k−1

 2.1

+ 2(QTsidek−1+3)

+ 2(QToppk−1+3)


 (102)

+ 4(QTsidek−1+3) + 2(QToppk−1+3) (103)

(99) is paths within the 5 sub-graphs. Paths from one sub-graph to another
must go to the connection vertex of the sub-graph. This is total QTwC , mul-
tiplied by the number of destinations QTV . Likewise at the other end so this
twice, and there are 10 pairs of the 5 sub-graphs so (100).

The paths then have a distance between their sub-graph connection vertices.
Middle to outer is distance 2 each for 4 pairs. Adjacent outers is QTside + 4
each for 4 pairs. Opposite outers is QTopp + 4 each for 2 opposing pairs. Those
distances are between QTV many vertices on each side so that number squared
for (101).

(102) is distance from the 4 new vertices to everything else, and (103) is
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between those new vertices.

The limit for mean distance between distinct vertices is the same as the area
tree (80). The number of vertices di�ers by a constant, the diameter by a linear
term, and the high coe�cient in QTW is the same.

QTW k(
QTV k

2

)
QTdiameterk

→ 4

7
same as QAW

Theorem 49. The independence number of R5 quad turn graph k is

QTindnumk =

{
1 if k=0
1
2QTV k if k ≥ 1

= 1, 2, 12, 62, 312, 1562, . . . k≥1 A125831

Proof. k=0 is the empty graph and k=1 is a 4-cycle. They can be veri�ed
explicitly.

Let QTindnumk(n) be the size of the biggest set with n many of the 4
connection vertices required to be absent. For n=2 there are two con�gurations,
either adjacent vertices required absent or opposites required absent.

Suppose then the theorem is true of some k−1 ≥ 1 and further that there

QTindnumk−1(n) = QTindnumk−1 −



0 if n = 0, 1

0 if n = 2 opposite

1 if n = 2 adjacent

1 if n = 3

2 if n = 4

(104)

This holds for the 4-cycle level k−1 = 1.
Graph k then comprises 5 of k−1 with join vertices j between.

c

c

c

c

j

j

j

j

Figure 30:

R5 quad turns graph

5 copies and

join vertices between

Each j vertex can be present only when both its adjacent connection vertices
are absent. For 2 join vertices, the middle can be an n=2 opposite and their
outers n=1 absent. These parts are all no reduction at (104), so

QTindnumk = 5QTindnumk−1 + 2 k ≥ 2 (105)

To see this is the maximum, for 3 or 4 join vertices the middle must have
n=3 or n=4 absent and per (104) this reduces the biggest there by 1 or 2 so net
the same +2 as (105).
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For 0 or 1 join vertices, the middle and outers have no reduction in (104),
but only +0 or +1 join vertices so less than (105).

To show reductions (104) hold in k, the connection vertices in k are the outer
vertices marked c in �gure 30. Take some of them absent as necessary for the n
of k. If its corresponding j vertex is present then the maximum set in the outer
is n=2 adjacent (reduction 1), or if j absent then n=1 (no reduction).

The set of j present or absent determines the type of the middle part. Enu-
merating the 16 possible j present or absent gives the reductions of (104) as the
biggest sets in k too.

The independence ratio of the turns graph exists, for k ≥ 1 which is where
it is not empty, is

QTindnumk

QTV k

=
1

2
k ≥ 1 independence ratio

In the construction at (105), 1
2 of the join vertices are included in k and the

sub-parts are 1
2 their existing vertices, so that ratio is maintained.

10 Fractional Locations

The location of a point 0≤ f ≤ 1 along the R5 dragon curve fractal is a limit

fpoint(f) = lim
k→∞

point(bf .5kc)
bk

fractional point

n = bf.5kc is the �rst k digits below the radix point of f written in base-5.
The location is then a change to powers ±bj high to low as per (14).

When f is rational, its digits are an initial �xed part then a repeating peri-
odic part (of length at most denominator− 1). The b powers are then likewise
periodic and give a location as some x+iy with rational x, y.

When taking successive digits of f written in base-5, this is the fractional
position within a sub-fractal. For rational f the denominator is unchanged
(hence eventually repeating).

10.1 Fractional Boundary

Theorem 50. The only points on both left and right boundary of the R5 dragon
fractal are curve start and end f = 0, 1.

Proof. k=4 sub-curves are as follows
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start

end

A

B

k=4 sub-curves for

right and left boundary boxes

Take bounding boxes of width Hwpf and extension Hepf from section 5. Put
bounding boxes around the left boundary segments. The curve is non-crossing
so all left boundary locations are within these boxes.

The right boundary is within corresponding bounding boxes around right
boundary segments. The boxes from A around to B are disjoint from the left
boundary boxes. So the spiralling and curling within those right boundary parts
never reaches the left boundary.

On expansion to k=5, the right boundary parts from start to A expand to
the same form as k=4, leaving only sub-curves through to a new smaller A
as possible both boundary. Repeating this excludes points at arbitrarily small
distance from the start, leaving only the start as both left and right boundary.

Right boundary parts end through B likewise on expansion.

Boundary locations A and B are chosen based on bounding boxes. The box
size means they must be after the points which are an o�set 1 segment distance
between left and right (above A and above right B).

A tighter bound on the sub-curve extents can show no overlap there either.
The 10-side hull bound ahead in theorem 52, drawn in �gure 31, is one possi-
bility. It allows a bigger A�B, or smaller k, for the same result.

Theorem 51. The R5 dragon fractal has no cut points, ie. is a topological disc.

Proof. If a cut point separates start and end then it is on both left and right
boundary, but from theorem 50 there are no such points.

Suppose a cut point separates a lobe from the boundary. If this point is
somewhere within a sub-curve then it separates start and end of that sub-curve,
but again no such point exists.

Otherwise the point is at the start or end of some sub-curve. The curve would
go to the lobe and back again so such a point would be double-visited. But by
plane �lling, a double-visited is not on the boundary, so not a cut point.

Theorem 52. Fractional f on the boundary of the R5 dragon fractal are

f written in base-5 fractional digits,

fRpred(f) = 1 i� f sans 1s none of the Rpred disallowed digit pairs

fLpred(f) = 1 i� f sans 3s none of the Lpred disallowed digit pairs

fBpred(f) = fRpred(f) or fLpred(f)
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Proof. A sub-curve which is Rpred boundary has outside points at most 1
2

√
5k

away. Any f which has strings of initial digits always satisfying Rpred is there-
fore an arbitrarily small distance from the outside and so on the boundary. Such
an f has none of the Rpred disallowed pairs.

A sub-curve which does not satisfy Rpred has 3 enclosing sub-curves on its
right side. Since they have no cut points, they enclose all of that side except
start and end.

A double-visited start is not on the boundary, since the 4 sub-curves enclose
that point per plane �lling.

A single-visited left turn is on the right boundary since it has an absent
sub-curve on its right. Rpred accepts this already too for the same reason. A
single-visited right turn is not on the right boundary by plane �lling.

Similarly fLpred .

Second Proof of Theorem 52. An upper bound for the convex hull around the
fractal can be formed by taking k=2 segments, putting Hwpf ,Hepf width and
extent boxes around them (section 5), and taking the convex hull around those
boxes. The result is a 10-side polygon.

start

end

10-side hull around

width and extent boxes

of k=2 segments

It can be noted this hull bound is wider and extends further than the plain
Hwpf box. Both the box and the bound contain the curve. Roughly speaking,
the box corners are mostly empty so having them as hull vertices goes out
beyond actual curve.

This hull bound shows that curves 1 apart and o�set do not touch. Level
k=2 boxes are used in the bound for this reason.

Figure 31:

o�set 1 apart

segments

A sub-curve m has its hull bound touched or overlapped by the hull bounds
of the following surrounding sub-curves,
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m

Figure 32:

surrounding segments

whose hull bounds

touch or overlap

bound of m

If m has all the segments of �gure 32 surrounding it then it is non-boundary
since, by construction, it does not touch or overlap the hull of any absent outside.
Conversely, if m has one or more of the segments of �gure 32 absent, then that
is some part of the hull bound of m which is outside the curve and therefore
some of m possibly on the boundary.

Segments and their hull bounds beyond �gure 32, so not touching m, can be
illustrated

m
Figure 33:

non-touching

hulls

When m is surrounded by all segments of �gure 32, the grey area here is
a minimum amount of �lled region surrounding m. The outer hulls shown are
those necessary to delimit the grey. Actually the grey may be bigger, since the
curve continues at the left and right segment ends in �gure 32 (the curve does
not start or end this way), so there is at least one vertical there also surrounding
m. But knowing that is not necessary.

A given sub-curve m has some of �gure 32 surrounding segments. The
initial single segment k=0 has none. On expansion, m is �ve new segments and
there are other new segments around. On expansion there are new segments
around the three new sub-curves. The segments of �gure 32 su�ce to determine
the corresponding set of segments around each new segment. A �nite set of
con�gurations arise and give a state machine traversed by base-5 digits of f .

A fully surrounded con�guration expands to fully surrounded for any next
digit 0 to 4. So if the digits of f ever reach fully surrounded then it remains so
always. If f never reaches fully surrounded then that is an absent sub-curve at
an arbitrarily small distance, and hence f is boundary.

fBpred(f) =

{
0 if ever reach fully surrounded

1 if never fully surrounded
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To distinguish right and left boundary, segments of the curve always turn
left or right and so divide the plane into alternating left or right side squares (eg.
as previously for area in �gure 13). The actual sub-curves are curling spiralling
shapes, but they divide into logical squares.

m

R L R

L R L

possible boundary squares,

left and right sides

Squares are shown with just the segments of �gure 32. If a square has at
least 1 of the sides segments shown, but not all of them, then this is some of its
R or L as boundary for m.

A con�guration with no R squares expands to no R again for any next digit
0�4. Similarly L.

fRpred(f) =

{
0 if ever reach no 1, 2 side R triangles

1 if always a 1, 2 side R triangle

fLpred(f) =

{
0 if ever reach no 1, 2 side L triangles

1 if always a 1, 2 side L triangle

Total 18 con�gurations arise. There are 5 with R fully enclosed and 5 with
L fully enclosed. 1 con�guration is common to these, being the full set of
segments.

Some usual state machine comparison shows R side is the same as the �nite
iterations Rpred . Likewise L the same as Lpred , and their union Bpred .

The �nite Bpred considers only the 6 segments above and below m, not the
2 horizontals before and after m in �gure 32. A full set of 6 is Bpred , which
means start and end of m have 3 segments. But that means the 2 horizontals
are also present, since the curve must arrive and leave twice (curve start and
end are not double-visited). So the presence or absence of each horizontal in
�gure 32 is determined by the other segments.

The Rpred state machine considers only the 3 segments below m. If the 3
segments below are all present then the further R squares top left and top right
can only have 0 or 2 segments, which mean not boundary, so that those squares
add nothing. Similarly left L squares.

The hulls state machine does use such considerations of 3 segments at a point,
but rather this arises from the way the expansions make new con�gurations.

The state machine also does not use theorem 50 no points on both left and
right boundary. That follows mechanically from the state machine by taking the
intersection of Rpred and Lpred . State machine manipulations show the only
arbitrarily long strings matched are f=0 digits .000... and f=1 digits .444....

The surrounding segments in �gure 33 can also be chosen further out, by
some bigger upper bound on the convex hull. For example just Hwpf ,Hepf
rectangles,
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m surrounding boxes

not touching

or overlapping m

The result of a bigger set of surrounding segments is more con�gurations.
Some may be �eventually enclosed� in the sense that more digits from f , no
matter what value, will eventually reach enclosed. Such con�gurations can
be treated as enclosed since f always has further digits (trailing 0s or 4s if
an otherwise terminating exact fraction /5k). In all cases the f bit patterns
matched by the resulting state machine are the same.

The number of f which are fNonRpred is uncountably in�nite, since once
reaching �non�, further base-5 digits of f can be an arbitrary real.

The number of f which are boundary fRpred is uncountably in�nite too.
That can be seen in the Rpred state machine (�gure 11) where there are various
di�erent ways digits of f can loop among R,X,Z so as to always stay away from
�non�. (But not Y since once there only 1s avoid non.) For example digits 20
is R→X returning to R, and 210 is R→X→X returning to R. The bits of an
arbitrary real can be coded to base-5 digits as 0→ 20, 1→ 210 so there are at
least as many fRpred as reals. The same argument holds for fLpred , and then
union for fBpred .

Theorem 53. A location in the R5 dragon fractal can be visited 1 to 4 times.
The number of visits to the location of a given f is

fVisits(f) =



Visitsk(n) if f = n/5k for integer n, k

Rsides(n) if f = (n+ 1
4 )/5k

Lsidesk(n) if f = (n+ 3
4 )/5k

and otherwise

2 if fNonBpred but sub-curve fBpred

1 otherwise

The fVisits = 2 case is where f is not on the whole curve boundary, but its
digits at some digit position and below are fBpred so as to be on the boundary
of the sub-curve there.

Proof. An exact fraction f = n/5k is a vertex of curve k and the visits there are
the same as Visitsk from (58). By plane �lling, those visits enclose the point so
no other sub-curves visit.

An exact fraction f = (n+ 3
4 )/5k is repeating base-5 digits 3 and so always

a side of the join end square per theorem 18. The number of sub-curve sides
around that square is Lsidesk(n) and each of them has a corresponding 3

4 visit.
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Similarly f = (n+ 1
4 )/5k is repeating base-5 digits 1 and is the middle square

on the right and so Rsides(n).
The claimed cases for fBpred whole curve boundary or not, and sub-curve

eventually or never fBpred are

fBpred fNonBpred

whole curve

1 2

no such 1

sub-curve eventually fBpred

sub-curve never fBpred

An f which is on the boundary of some sub-curve, meaning its digits at some
digit position and below are fBpred , might have an adjacent sub-curve like

Figure 34:

f on sub-curve boundary

and adjacent other sub-curve

If it has this further sub-curve then by plane �lling and no cut points the
two enclose the location so visits are only those arising from the two.

If no such further sub-curve then the visits are only those arising from the
f sub-curve itself. An f which is on a sub-curve boundary like this has only 1
visit because any other would be, for suitable yet smaller sub-curves, an adjacent
enclosing further sub-curve like �gure 34 and so not on the boundary. So in the
table the �rst row cases are sub-curve boundary as 1 or 2 visits according to
whole curve boundary or not.

An f which is fNonBpred non-boundary, and its digits at all positions below
are also fNonBpred , is never on the boundary of any sub-curve and so always a
non-zero distance away from any other sub-curve and so just 1 visit.

fNonBpred of a non-/5k means somewhere one of the forbidden Rpred digit
pairs (theorem 13) and also somewhere one of the Lpred digit pairs (theorem 14).
Pair 22 is common to these so 22 anywhere is fNonBpred .

The fVisits = 2 case is at least 1 each of the Rpred and Lpred disallowed, so
as to be non-boundary, but only �nitely many of one of them so eventually on
a sub-curve boundary.

The fVisits = 1 case is the converse. Either none of one of Rpred or Lpred
so as to be fBpred whole curve boundary, or in�nitely many of both of them so
never fBpred in a sub-curve.

The latter case, in�nitely many of both, can be either rational or irrational.
Requisite pairs in a repeating pattern is rational, or a non-repeating pattern is
irrational. The simplest rational is f = .222... = 1

2 which is in the middle of
the curve, then middle of the middle sub-curve, and so on, always a non-zero
distance away from any other f digits.

It can be noted fVisits is not decided by initial digits of f . Further digits
222... is fVisits = 1. An exact /5k point can be a double Visits = 2. And an
exact + 1

4 can be an Rsides = 4 visits.
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An fVisits = 3 can be excluded by initial digits of f , since it is only a + 1
4 or

+ 3
4 into a 3-side boundary square. An f sub-curve must be a boundary segment

to ensure such squares are possible.

Theorem 54. For fVisits(f) = 2 by eventually sub-curve right boundary, its
other visit fOther(f) is all 1 digits unchanged and �ip runs of non-1s by

f . . . 344...442 00...000 44...442 . . .

high low

non-1 digits

fRpred disallowed pair

fOther(f) . . . 400...000 44...442 00...000 . . .

+4 −4 +4

(106)

Runs are alternating 4442 and 0000. fOther �ips to the opposite form 4442↔
0000. Each run is ≥1 digit. Runs begin with the low digit of the lowest fRpred
disallowed pair. The high of the pair is incremented when above run 4442 or
decremented when above 0000.

For fVisits(f) = 2 by eventually sub-curve left boundary, the same but digit
patterns reversed 0↔ 4 and starting from the lowest fLpred disallowed pair

f . . . 100...002 44...444 00...002 . . .

high low

non-3 digits

fLpred disallowed pair

fOther(f) . . . 044...444 00...002 44...444 . . .

−4 +4 −4

(107)

Proof. For the right side, the 3 sub-curves on the right are calculated high to
low as per table (22). There are 3 segments on the right. A 1 digit of n is
the same s, t, e and 1 for all of them, so 1 digits unchanged and ignored for the
purpose of the segments.

For other digits, only one of the 3 segments is used. n digit 0 uses only s and
digits 2, 3, 4 use only e. So at a sub-curve f the next lower digit of f determines
which sub-curve s or e is wanted. So pairs of non-1 digits of f get the s or e
digit as output at the high position of the pair,

f pair 00 02 03 04 20 22 23 24 30 32 33 34 40 42 43 44

output 4 2 2 2 0 f3 f3 f3 f2 f4 f4 f4 f3 0 0 0

R, non-1 digits of f

(108)

When table (22) has an �n� it is a copy of f for the output. This is shown as
output f at (108) here. It occurs for the fRpred disallowed pairs so that fOther
is unchanged above such a pair.

At the lowest fRpred disallowed pair, following the pairs there onwards in f
and the output digits in (108) gives the run forms (106).

For the left side similarly, with the pairs being

f pair 00 01 02 04 10 11 12 14 20 21 22 24 40 41 42 44

output 4 4 4 f1 f0 f0 f0 f2 f1 f1 f1 4 2 2 2 0

L, non-3 digits of f
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The left side is 0↔ 4 digit reversals of the right patterns and outputs. This
is since the curve is the same in 180◦ reverse, so that 1−f measures back from
the end and then 1− fOther(1−f) measures again from the start. 1−f is a 0↔4
reversal.

Theorem 55. Di�erences
∣∣f − fOther(f)

∣∣ which occur for f eventually sub-
curve boundary or exact f = n/5k are∣∣f − fOther(f)

∣∣ =
4

5k0
± 4

5k1
± 4

5k2
± · · · (109)

where 0> k0 > k1 > k2 > · · · distinct powers

Proof. Di�erences
∣∣f − fOther(f)

∣∣ which occur for runs (106),(107) are marked
there as ±4.

4442 to 0000 with borrow −1 from below is di�erence +4 and a carry +1
above. Conversely 0000 to 4442 with carry +1 from below is di�erence −4 and
borrow −1 above. The runs are in�nite so there is always a carry or borrow from
below. At the highest run the carry or borrow going above suitably changes the
high digit of the disallowed pair.

If there is a 1 digit within 4442 then the carry into that digit would be dif-
ference +1. But instead take it as −4 and continue the carry above. Conversely
if a 1 digit within 0000 then borrow there would be di�erence −1 but instead
take +4 and continue borrow −1 above.

For exact f = n/5k, theorem 6 scaled /5k has the same sum of ±4 powers,
in similar manner, but �nite terms.

All di�erences (109) occur by choosing suitable run lengths in f . The frac-
tional base-5 digits are the 0, 4 and alternating 3, 1 of �gure 7.

11 Half Curve

Je�rey Ventrella[12] gives an R5 variant which is half the R5 curve, ie. that part
of the curve through to the midpoint 1

2b
k (half the middle curve segment).

start end

=⇒

start

end

start

end

Figure 35:

5 segments

for half curve

In the expansion, the replacement directions are by rotating the base �gure.
Each pair of segments directed towards each other is a single segment of the
R5 curve. This correspondence is maintained by the expansion of such a pair,
and the expansion of the �nal unpaired segment maintains the �nal unpaired
segment.
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start
Figure 36:

k = 5 half curve

The half curve here is taken with the start as the full curve start. It could
also be taken the other way around so the full curve middle is the half curve
start. In �gure 35 the expansion has the last segment forward, the same as the
original, so on repeated expansion each level has the preceding as a pre�x. In
this form two half curve arms directed at 180◦ �ll the plane.

Per the expansion in �gure 35, going middle as start has the end (the full
curve start) at −1−2i which is −116.56◦ around. Successive expansions are
multiples of that angle. In �gure 36 it can be seen starting from the middle
the curve spirals clockwise, and faster than the usual R5 spiral so that it makes
about 1+ 5

8 rotations relative to the initial half segment.

12 Quartet

12.1 Quartet Curve

Mandelbrot [9] de�nes a �quartet curve� by an expansion going along sides of
unit squares of a complex base 2+i.

start end

=⇒

start

end

quartet curve

segment expansion

The arrows in the expansion are orientations for subsequent expansion by
reversing the base �gure. A segment represents the square on its right. The
second segment in the expansion is reverse so its right is the middle square.
The fourth segment likewise reverse for the top square. Mandelbrot conceives
these squares as four �players� around a middle �table�, hence the name quartet
though there are 5 total parts and calculations are conveniently made in base-5.

Mandelbrot doesn't specify start and end. The start is chosen here so that
successive expansion levels extend the previous. With the initial segment hori-
zontal the curve end goes as powers of base 2+i.
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start

k=0

start

end
k=1

start

end

k=2

start

end

k=3

k=4
start

end

n = 54 = 625
at −7+24i

quartet

curve

The segment expansion is entirely within its original square, touching only
at the original start and end.

So starting from any set of segments with distinct squares on the right (in
direction of expansion) gives a non-touching curve. The expanded segments are
distinct squares too so repeated such expansions are non-touching.

A single initial segment has this form. Four arms at 90◦ likewise. Four arms
are plane �lling since each 2×2 expands to at least 1 unit square bigger.

arm 0

arm 1

arm 2

arm 3

arm 0

arm 1

arm 2

arm 3

Segments in opposite directions represent the squares on either side. Such
segments start overlapping but after the �rst expansion they are a closed non-
touching curve.

Figure 37:

k = 3

quartet curves

back-to-back

Theorem 56. Number segments of the quartet curve starting n=0 for the �rst.
Those which are �reverse� for the purpose of sub-curve expansion (or for having
their unit square on the left instead of right) are characterized by

Draft 11 page 109 of 124



QuartetRev(n) =

{
0 if LowestNon2 (n) = 0 or 3

1 if LowestNon2 (n) = 1 or 4

= 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, . . .

LowestNon2 (n) = base-5 lowest non-2 digit of n

with a high 0 understood above n if necessary

= 0, 1, 0, 3, 4, 0, 1, 1, 3, 4, 0, 1, 0, 3, 4, . . .

gQuartetRev(x) =

∞∑
k=0

x(3.5
k−1)/2 (1 + x3.5

k

)

1 + x5
k

+ x2.5
k

+ x3.5
k

+ x4.5
k (110)

gLowestNon2 (x) =

∞∑
k=0

x(3.5
k−1)/2 (1 + x5

k

) (1− x5
k

+ 4x2.5
k

)

1− x5
k+1 (111)

Proof. The base �gure has sub-parts 0,2,3 forward and parts 1,4 reverse.

start

end

0

1

2

3

4

forward

end

start

reverse

4

3

2

1

0

Figure 38

In reverse, parts 1, 4 are again reverse and 0, 3 forward, but part 2 remains
reverse. So going high to low, digits 0,3 are always forward, 1,4 are always
reverse, and 2 is unchanged from above. Hence LowestNon2 .

Each term k in gQuartetRev sum (110) is those n with k many low base-5
digit 2s, which is (5k−1)/2, and coe�cient 1 at digit or 1 or 4 above them.

gQuartetRev(x) =

∞∑
k=0

x(5
k−1)/2 (x5

k

+ x4.5
k

)

1− x5
k+1

In (110), exponent (3.5k−1)/2 is n = 122...22 with is the digit 1 above, and
then add 3 more for the 4 above.

gLowestNon2 is similarly k many low base-5 digit 2s, then above those a
non-2 digit 0, 1, 3, 4. The numerator factorizes for (111).

gLowestNon2 (x) =

∞∑
k=0

x(5
k−1)/2 (x5

k

+ 3x3.5
k

+ 4x4.5
k

)

1− x5
k+1

Theorem 57. The number of reverse segments in quartet curve level k is

QuartetRevAk =

5k−1∑
n=0

QuartetRev(n) = 1
2 (5k − 1)

Proof. Curve k comprises 3 sub-curves forward, and 2 sub-curves reverse. The
latter have 5k−1 −QuartetRevAk reverse segments each,

QuartetRevAk = 3QuartetRevAk−1 + 2 (5k−1 −QuartetRevAk)
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= QuartetRevAk−1 + 2.5k−1 (112)

(112) also follows from a new low base-5 digit on each n. A low 2 is no
change so QuartetRevAk−1, and low 1, 4 are always reverse.

The area inside the back-to-back two curves in �gure 37 is unit squares on
the left of each component curve. These are the squares associated to the reverse
segments. The curves mesh perfectly so the area inside is 2.QuartetRevAk =
5k − 1.

Theorem 58. Number points of the quartet curve starting n= 0 at the origin
so the �rst turn is at n= 1. The turn at point n is determined by base-5 digits

. . . r 22 . . . 22 t 00 . . . 00n = base-5, n ≥ 1

6=06=2

l zeros

high low

−1 +1 +1 0 r = 0 or 3 and l= 0

−1 +1 0 0 r = 0 or 3 and l≥ 1

0 −1 −1 +1 r = 1 or 4 and l= 0

0 0 −1 +1 r = 1 or 4 and l≥ 1

1 2 3 4t =

QuartetTurn(n) = (113)

= −1,+1,+1, 0, −1, 0,−1,−1,+1, +1,−1,+1,+1, 0, . . .

l is the number of low 0 digits and t is the lowest non-0 digit. Above there,
r is the LowestNon2 , with a high 0 understood for r if otherwise entirely 2s.

Proof. When l=0 so no low zero digits, t is the turns in the base �gure, but
reversed when r is 0, 3, per QuartetRev(bn/5c). Reversal means digit t taken
reversed 4 to 1, and the turn negated. Hence the two l=0 rows of (113).

When l 6=0, the further expansion replaces the directed segment with the
base �gure forward or reverse.

end-to-end
turn

unchanged

start-to-start
turn

unchanged

end-to-start

The diagram at the left is sub-curves meeting end-to-end or start-to-start.
The turn in both cases is unchanged by expansion and both become start-to-
start so are unchanged by further expansions too.

In the base �gure, the only end-to-start is at segments 2 to 3 which is a left
turn. The diagram at the right shows that changes to straight, so table (113)
has t=3 left +1 when l=0 but straight 0 when l≥ 1, and corresponding reversal
when r = 1 or 4. The new straight is start-to-start so is unchanged by further
expansions.
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A little arithmetic can be used for the reversal r if desired. This emphasises
the reversal both negating the turn of t and reversing the order.

QuartetTurn(n) = rev .

{
−1,+1,+1, 0 for t′ = 1 to 4 if l = 0

−1,+1, 0, 0 for t′ = 1 to 4 if l ≥ 1

rev =

{
+1 if r = 0, 3

−1 if r = 1, 4
t′ =

{
t if rev > 0

5−t if rev < 0

A generating function for QuartetTurn can be formed by a sum over l many
low 0s and k many 2s above t. Coe�cients are +1 or −1 as appropriate for digit
combination r and t. The extra term outside the l sum is the extras for l=0.

gQuartetTurn(x)

=

∞∑
k=0


x5.(5

k−1)/2

1− x5
k+2

(
x3
(
1 + x3.5

k+1)
− x2

(
x5

k+1

+ x4.5
k+1))

+

∞∑
l=0

x5
l+1.(5k−1)/2

1− x5
k+l+2

(
(−x5

l

+ x2.5
l

) ( 1 + x3.5
k+l+1

)

+ (−x3.5
l

+ x4.5
l

) (x5
k+l+1

+ x4.5
k+l+1

)

)


=

∞∑
k=0


x3+5.(5k−1)/2 (1 + x3.5

k+1

) (1− x5
k+1−1)

1− x5
k+2

−
∞∑
l=0

x5
l.(1+5.(5k−1)/2) (1 + x3.5

k+l+1

) (1 + x5
l.(2+5k+1)) (1− x5

l

)

1− x5
k+l+2



Number segments starting n=0 for the �rst. The net direction of segment n
is sum of the turns preceding it, with the empty sum as QuartetDir(0) = 0,

QuartetDir(n) =

n∑
j=0

QuartetTurn(j) n ≥ 0

= 0,−1, 0, 1, 1, 0, 0,−1,−2,−1, 0,−1, 0, 1, 1, . . .

Theorem 59. QuartetDir can be calculated from the base-5 digits of n,

forward reverse

start

0, 2 dir unch
3 dir +1

1 dir −1
4 dir +1

1 dir +1
2, 4 dir unch

0 dir +1
3 dir −1

Figure 39: QuartetDir
by digits of n high to low

Proof. Forward or reverse state is per QuartetRev . In forward state, the amount
added to QuartetDir for a new digit is the segment direction 0,−1, 0, 1, 1 in the
base �gure along the direction of the curve.

In reverse state, the amount is the reversed base �gure as in �gure 38. These
1, 1, 0,−1, 0 are the same as forward, but read last to �rst.
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A generating function for QuartetDir is cumulative QuartetTurn using a
factor 1/(1−x) in the usual way. The direct interpretation would be terms
putting +1, 0,−1 for the digit t at position l and forward or reverse according
to r.

gQuartetDir(x) =
1

1−x
gQuartetTurn(x)

The minimum QuartetDir in curve level k is by taking the −1 case each time
in �gure 39. This is alternating base-5 digits 1, 3.

5k−1
min
n=0

QuartetDir(n) = −k, at n = 1
3

(
5k − [5, 1]

)
= 1313... base-5 A037582

= 0, 1, 8, 41, 208, 1041, . . . A037577

The maximum QuartetDir in curve level k is by taking the +1 case each
time in �gure 39. There are two digits with +1 in each state. In forward, either
3, 4 (and 4 goes to reverse). In reverse, either 0, 1 (and 1 goes back to forward).
So repeating digit runs of the form (114).

5k−1
max
n=0

QuartetDir(n) = k

at n = 33 . . . 334 11 . . . 110 repeat base-5

≥0 3s ≥0 1s

high low

(114)

= 0 k = 0

= 3, 4 k = 1

= 18, 19, 20, 21 k = 2

= 93, 94, 95, 96, 103, 104, 105, 106 k = 3

The �rst n in direction k is base-5 all 3s staying in forward state, since a
digit 4 to go to reverse is bigger than staying.

�rst n with QuartetDir(n) = k = 3
4 (5k − 1)

= 0, 3, 18, 93, 468, 2343, . . . A125833

= 0, 3, 33, 333, 3333, 33333, . . . base-5 A002277

12.2 Quartet Tree

Mandelbrot gives a variation on the quartet curve which instead forms a tree.
The change is to the segment representing the middle square in the expansion.
This expansion is still entirely within its original square etc, so non-overlapping
etc.
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start end

=⇒

start

end

Figure 40:

quartet tree

expansion

start

k=0

start

end
k=1

start

end

k=2

start

end

k=3

k=4

start

end

quartet

tree

Theorem 60. The diameter of quartet tree k and eccentricities of its start and
vertices are

QuartetDiameterk =

{
1 if k=0

4.3k−1 if k ≥ 1

= 1, 4, 12, 36, 108, 324, 972, . . . A003946

QuartetEccSk = QuartetDiameterk

QuartetEccEk = 3k

Proof. In k=0, start to end is a single edge distance 1. Expansion replaces each
edge with 3 new edges, so a factor 3 each level and so distance 3k start to end.

This is QuartetEccE too since at the middle fork in the base �gure, the
branch to the start is the same as the branch away from the start (including
both directed towards the middle).

For QuartetEccS , the branch towards the end is the same as the branch away
from it, except the latter has an extra 3k−1 start to end sub-tree. Thus

QuartetEccSk = 3.3k−1 + QuartetEccEk−1 = 4.3k−1 k ≥ 1

This is the diameter too since all sub-trees are directed inward toward the
middle, so any path stopping in one of the non-terminal sub-trees would be
lengthened by going to the same place in the outermost sub-tree. QuartetEccSk
is greater than QuartetDiameterk−1 which would be any path entirely within a
sub-tree.

For k=0, the two vertices are both centres (middles of the diameter) and
both centroid vertices.

For k≥ 1, the diameter is even so unicentral and by symmetry the centre is
the vertex which is the degree-3 meeting of k−1 sub-trees. This is also the tree
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centroid, since the number of vertices in each direction are 1
5 ,

2
5 ,

2
5 of the total

(excluding that centroid itself).

Theorem 61. The Wiener index of quartet tree k is

QuartetW k = 5k
(
13
4915k + 7

205k + 3
35k + 377

980

)
= 1, 31, 1725, 117475, 8531625, . . .

Proof. Let WSk be the total distances from the start to all other vertices, and
similarly WEk end to other vertices.

WSk =
∑

v
distance(start , v)

= 1, 13, 179, 2599, 38549, . . .

WEk =
∑

v
distance(end , v)

= 1, 11, 147, 2117, 31317, . . .

Tree k as sub-trees k−1 gives mutual recurrences in respective directions,
and distances 3k−1 to each part and 5k−1 vertices there (that count excluding
the �rst vertex of each sub-part).

WSk = 2WSk−1 + 3WEk−1 + (1+2.2+3) 3k−1.5k−1

WEk = WSk−1 + 4WEk−1 + (2.1+2.2) 3k−1.5k−1

Some substituting or generating function manipulations gives

WSk = 53
7015k + 7

20 5k − 3
28

WEk = 43
7015k + 7

20 5k + 1
28

Wiener index total distances between vertices are then 5 within the sub-trees
and pair-wise between sub-trees. Paths between sub-trees are multiples of 3k−1

distances to the respective start or end, times 5k−1 destinations for each. There
are just 5k−1 destinations, since paths to the common vertex are included in
QuartetW k−1 for adjacent parts, or the preceding pair-wise for those further
apart.

QuartetW k = 5QuartetW k + 5k−1
(
2WSk−1 + 18WEk−1

)
+ 5k−1.5k−1 (1+1+2+1+1) 3k−1

The start and end vertices are not equivalent for k ≥ 1 and they give di�erent
WS ,WE . The di�erence between the two is

WSk −WEk = 1
7

(
15k − 1

)
= 0, 2, 32, 482, 7232, . . . 2×A135518

Second Proof of Theorem 61. Suppose a given edge has x many vertices on one
side and y many on the other, so that for QuartetW the number of crossings of
that edge is product xy. Then total

QuartetW k =
∑

edges
xy (115)
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Segment replacement means each edge becomes 3 edges across and a 2 edge
branch. In an edge of tree k−1, take x as the number of vertices at the start
and y at the end, in its direction of expansion.

x y

tree k−1

=⇒ X A B Y

C D tree k

Figure 41:

segment expansion

Segment replacement means x many vertices preceding in k−1 become X =
5x−4 in k. Similarly Y = 5y−4 following. So for example edge X�A is crossed
(5x−4)(5y−4 + 4) times for its vertex count on each side. Total crossings then,
with N = 5k+1 = X+Y vertices in k and n = 5k−1+1 = x+y in k−1,

(5x−4).5y + (5x−3)(5y−1) + (5x)(5y−4) + 1.(N−1) + 2.(N−2)

= 75xy − 25x− 35y + 3N − 2

= 75xy + 10x− 35n+ 3N − 2 (116)

To sum over all edges, the product term xy in (115) is QuartetW , but the
separate x requires a further calculation. Let WX k be its sum over edges,

WX k =
∑

edges
x

For an edge with x preceding vertices, the replacement segment directions
inward in �gure 41 give for the new 5 edges and their directions

(5x−4) + (5x−3) +
(
N−(5x−4)

)
+ 1 + 2 = 5x+N − 4

so sum over all such

WX k = 5WX k−1 + (5k+1− 4).5k−1 starting WX 0 = 1

= 5k
(
1
45k − 3

5k + 3
4

)
= 1, 7, 145, 3775, 96625, . . .

So sum of (116) over all edges is

QuartetW k = 75QuartetW k−1 + 10WX k−1

+
(
−35(5k−1+1) + 3(5k+1)− 2

)
.5k−1

Similar to page 76, the mean distance between distinct pairs of vertices as a
fraction of the diameter is, with limit from the high coe�cients,

QuartetW k
1
2 (5k + 1)5k .QuartetDiameterk

→ 39

98
= 0.397959 . . .

For a rooted tree, the width of the tree at a given depth d is the number
of vertices at that depth. Depth d=0 is the root itself (width 1). For the
quartet tree take the root as the start. Vertices at depths can be illustrated by
drawing as follows. The top horizontal is the spine continuing in�nitely, with
�nite branches from it. Those branch depths variously overlap.
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start

0 1 2 5 14 41

Figure 42: quartet tree

vertices by depths

Widths follow by considering the expansion sub-parts from �gure 40. Let
QuartetWidthSk(d) be width of tree k at depth d down from the start ver-
tex, and QuartetWidthEk(d) similarly but from the end vertex. Then mutual
recurrences,

QuartetWidthSk(d) = QuartetWidthSk−1(d) + QuartetWidthSk−1(d−3k−1)

+ 2QuartetWidthEk−1(d− 2.3k−1) + QuartetWidthEk−1(d− 3.3k−1)

−


1 if d = 3k−1 or 3.3k−1

2 if d = 2.3k−1

0 otherwise

(117)

QuartetWidthEk(d) = QuartetWidthSk−1(d)

+ 2QuartetWidthEk−1(d− 3k−1) + 2QuartetWidthEk−1(d− 2.3k−1)

−

{
2 if d = 3k−1 or 2.3k−1

0 otherwise
(118)

QuartetWidthS 0(d) = 1, 1

QuartetWidthS 1(d) = 1, 1, 1, 2, 1

QuartetWidthS 2(d) = 1, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 2, 2

Widths of depths d<0 arising are understood as 0. The constants subtracted
at (117),(118) are where sub-trees have a vertex in common. Those vertices are
to be counted just once each.

Successive k adds further vertices below the end vertex at depth 3k. So a
depth d ≤ 3k has width unchanging with bigger k. This is the width of the tree
continued in�nitely,

QuartetWidthS∞(d) = QuartetWidthSk(d) for any k with 3k ≥ d
= 1, 1, 1, 2, 2, 1, 2, 3, 4, 4, 2, 3, 4, 2, 1, 2, 3, 4, 4, 3, 4, 6, 6, 8, 8, 4, . . .

All widths are ≥1 since the tree continues in�nitely. In �gure 42 the labelled
depths 0, 1, 2, 5, . . . have width 1 vertex.

Theorem 62. In the quartet tree extended in�nitely, depths with just a single
vertex QuartetWidthS (∞, d) = 1 are at d equal to

QuartetDOne(m) =

{
0 if m=0
1
2

(
3m−1 + 1

)
if m ≥ 1

= 0, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, . . . m≥1 A007051

= ternary 111...112 for m−1 ≥ 1 many digits m≥1 A047855
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Proof. The theorem can be veri�ed explicitly for depths d ≤ 3. Suppose the
theorem is true of depths in the range 0 ≤ d ≤ 3k for k≥1 and consider then
range 3k < d ≤ 3k+1.

start

end

d = 0

d = 3k

d = 2.3k

d = 3k+1

A

B

C D

k sub-trees

Depths in the range 2.3k < d ≤ 3k+1 have parallel identical sub-trees C,D
so all widths there ≥ 2.

Depths in the range 3k < d ≤ 2.3k are sub-tree B, but it is overlapped by
some of A and those overlaps likewise have width ≥ 2. Sub-tree A extends down
to d = QuartetEccSk = 4.3k−1. So in sub-tree B seek a depth 4.3k−1 < d ≤ 2.3k

which is width 1 in that B sub-tree, so d = QuartetDOne(m) + 3k for some m.
The desired range is ternary 110...00 < d ≤ 200...00. The only suitable

QuartetDOne in that range is m=k+1 giving

d = QuartetDOne(m+1) = QuartetDOne(m) + 3k

an extra high ternary 1 digit for QuartetDOne(m+1).

A perfect matching is a matching (as from page 82) which has all vertices in
some pair.

Theorem 63. The quartet tree has a perfect matching.

Proof. Suppose the theorem is true of some k, and further that if the start and
end vertices are omitted then that reduced tree also has a perfect matching.
This is so of the 2 vertices k=0.

Tree k+1 then has a perfect matching by taking alternating both/neither
sub-trees start to end and into the branch. And tree k+1 with start and end
vertices omitted likewise but opposite start to end.

start

end

both start, end

both neither

neither
both

both

start

end

neither both

neither
both

neither

neither start, end

start

end

quartet tree k = 3

perfect matching
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Any tree with a perfect matching has independence number half its ver-
tices, by starting at any pair of vertices and working outwards taking successive
vertices present or absent for an independent set.

Theorem 64. The total domination number of quartet tree k is

QuartetTotdomnumk =

{
2, 3 if k = 0, 1

12.5k−2 + 1 if k ≥ 2

= 2, 3, 13, 61, 301, 1501, . . .

The number of total dominating sets of this size is

QuartetTotdomnumCountk =

1 if k ≤ 2

12
1
4 (5k−2−1)

if k ≥ 2

= 1, 1, 1, 12, 2985984, . . .

Proof. The theorem can be veri�ed explicitly for k ≤ 2. The single total domi-
nating set for k=2 is (black vertices in the set),

start

end

a b

cd

e

QuartetTotdomnum2 = 13

unique set

If the start vertex is allowed to be undominated then there is still a single
smallest set, being the full set less attachment vertex a. Similarly if the end
vertex is allowed to be undominated then solely e omitted. If both start and
end then solely both a and e omitted.

Suppose the theorem is true of some k−1 ≥ 2 and further that, like k=2, if
the start and/or end are allowed to be undominated then the total domination
number reduces by 1 each and the sets are di�erent but count of sets unchanged.

Tree k comprises �ve k−1 sub-trees which have one vertex common to 3
sub-trees and two vertices each common to 2 sub-trees. The common vertex
can be dominated by just one of those sub-trees each, which is start or end
undominated in the others,

QuartetTotdomnumk = 5QuartetTotdomnumk−1 − 4 k ≥ 3

The number of such sets is by choosing which sub-tree dominates the 3-
branch and two 2-branches. So 1 of 3 and two places 1 of 2 for 3.2.2 = 12
choices and product of counts of sets within the sub-trees

QuartetTotdomnumCountk = 12QuartetTotdomnumCount 5
k−1

These sets are all with the common vertices absent. To see that any common
vertex present would be bigger, if the start vertex of k=2 is present then it
dominates a. This could allow b to be omitted, but if it is then d must be
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present to dominate c. So the start is added and number of others unchanged,
giving a bigger set. Similarly at the end vertex. This increase with start or end
likewise holds for k > 2.
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1,3-side boundary squares, 27

A area, 34
abs1or2 , 57
abs2or1 , 60
AR right-side area, 34
area, 33

b base, 12
B boundary length, 25
bit twiddling, 5, 10
boundary segment numbers, 29

left, 31
right, 29

BQ boundary squares, 26
BQ1 ,3 boundary squares, 27

centre of gravity, see centroid
centroid, 61

join, 63
characteristic word, 54
Christo�el word, 54
convex hull, 55
coordinates, 12
CountTernaryTwos, 79
cut point, 100

D double-visited points, 42
digit in base �gure, 12
dir direction, 10
DirPred direction, 24
dominating set, 84
domination number, 84, 93
domination ratio, 85, 94
dpoint , 24
Dpred double-visited predicate, 43
DpredFirst , 44
DpredSecond , 44

Epred enclosure, 45

EpredL enclosure, 45
EpredL left enclosure, 47
EpredR enclosure, 45
EpredR right enclosure, 47

fBpred boundary, 100
fLpred boundary, 100
fOther , 106
fpoint fractional, 99
fractional locations, 99
fRpred boundary, 100
fVisits, 104

GJ centroid of join, 63
GJf centroid of fractal join, 64
GJmid square middle, 65
GJN segment number, 64
GJQ square number, 64
GRQ centroid right boundary

squares, 61

HA hull area, 57
HAf fractal hull area, 60
HAgrow hull growth, 57
HAgrowf hull growth, 60
half curve, 107
HB hull boundary, 57
HBf fractal hull boundary, 57
Hdigit , 53
HeN extension, 54
Hep extension point, 50
Hepf extension limit, 52
HewA box area, 53
HewAf , 53
HnumSides hull, 55
Horizontals lines, 43
Hsides of hull, 55
Hsidesf , 57
HwN widest, 54
Hwp widest point, 50
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Hwpf widest limit, 52

Ix,y,z moment of inertia, 67
independence number, 80�81, 92,

98, 119
independence ratio, 82, 93
independent edge set, 82
independent set, 80
inertia, 67

J join area, 37
JADegCount area tree degrees, 88
JAdiameter , 89
JAdiameterCount , 89
JAdiameterEnds diameter end

vertices, 89
JAdiameterVertices, 89
JAdomnum domination number, 93
JAdomRatio domination ratio, 94
JAindnum independence number, 92
JAindnumCount , 92
JAindsets independent sets, 90
JAmatchnum match number, 93
JAV vertices, 88
JN join vertex number, 38
JND join vertex o�set, 39
JNother join other vertex number,

38
join, 37

centroid, 63
join area tree, 87

length, 50
Lines, 43
lines, 43
LowestNon0 , 4
LowestNon1 , 31
LowestNon2 , 110
LowestNon4 , 4
Lpred boundary, 31
LQsides of boundary square, 29
Lsides, 32
Lucas sequence, 23

match number, 82, 93
matching, 82, 118
moment of inertia, see inertia
morphism, 6, 12

nega-base-5, 21
non-crossing, 2

Odistinct total di�erences, 21
other(n) at location, 15

P points, 42
perfect matching, 118
plane �lling, 2, 3
point location, 12
points, 40
principal axes of inertia, 69

QA quad area, 71
QADegCount area tree degrees, 73
QAdiameter , 73
QAdiameterCount , 74
QAdiameterEnds diameter end

vertices, 74
QAdiameterVertices, 74
QAdomnum domination number, 84
QAdomRatio domination ratio, 85
QAindnum independence number,

81
QAindnumCount , 81
QAindsets independent sets, 80
QAmatchnum match number, 82
QAtotdomnum total domination

number, 86
QAtotdomRatio total domination

ratio, 87
QAtotdomsets total dominating sets,

85
QATW Wiener index, 77
QAtwC at connection, 77
QAW Wiener index, 75
QAwC at connection, 75
QAwidth, 78
QHA hull area, 71
QHB hull boundary, 71
QHnumSides, 71
QHsides of hull, 71
QTdiameter , 95
QTE edges, 95
QTecc eccentricity, 96
QTindnum independence number,

98
QTopp distance, 96
QTside distance, 96
QTV vertices, 95
QTV2 , 3 vertices, 95
QTW turns Wiener index, 97
QTwC at connection, 97
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quadrant , 57
quartet

curve, 108
tree, 113

QuartetDiameter , 114
QuartetDir direction, 112
QuartetDOne depths with 1 vertex,

117
QuartetRev , 110
QuartetRevA, 110
QuartetTurn sequence, 112
QuartetWidthE , 117
QuartetWidthS , 117

R right boundary, 25
repdigit, 11, 21, 113
repunit, 37, 39
Rpred boundary, 29
RQ right boundary squares, 27
RQ1 ,3 right boundary squares, 27
RQsides of boundary square, 28
Rsides, 31

S single-visited points, 41
S(k, d) segments in direction, 22
segments in direction, 22
SM segments relative to middle, 23
SN segments in direction, 23
Spred single-visited predicate, 43
star replacement, 72�73
StarRepW Wiener index, 76
Sturmian word, 54

terminal Wiener index, 77
TernaryCountLowOnes, 91
TernaryLowestNon1 , 28
TernaryLowOnes, 91

TernaryRunOnes, 92
topological disc, 100
total dominating set, 85�86
total domination number, 86�87,

119
total domination ratio, 87
Tperm digit pairs, 48
turn sequence, 4
TurnLeft , 7
TurnLpred , 5
TurnRight , 7
TurnRpred , 5
TurnRun length, 6
TurnRuns3 consecutive turns, 36
TurnRunStart , 7
TurnsL count, 11
TurnsR count, 11

U boundary part, 25
U , R opposites, 27
uncountably in�nite, 104
unpoint , 13
UQ boundary part squares, 27
UQ1 ,3 boundary squares, 27

Verticals lines, 43
VisitNum, 44
Visits, 44

width, 50
Wiener index, 75, 115

X boundary part, 32

Y boundary part, 33

Z boundary part, 33

OEIS A-Numbers

A000007 1 then 0s, 73, 88
A000244 3n, 27, 43
A000351 5n, 84
A000689 periodic 2, 4, 8, 6, 66
A001903 periodic 1, 7, 9, 3, 66
A002275 digits 111..., 37
A002277 digits 333..., 113
A003462 1

2 (3n−1), 27, 37, 92
A003463 1

4 (5n−1), 39, 88

A003946 b4.3n−1c, 74, 114
A004278 1, 3 and evens, 55
A006495 Re (1+2i)n, 23
A006496 Im (1+2i)n, 23
A007051 1

2 (3n+1), 27, 117
A007798 1

4 (5n−2.3n+1), 34
A008776 2.3n, 26, 41
A019863 1

4 (1+
√
5), 53

A020729 2.5n, 86
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A021879 4/35, 22
A024023 3n−1, 27, 43, 74, 96
A024024 3n−n, 32
A024049 5n−1, 36, 71, 73, 95
A027471 n.3n−1, 89
A029858 1

2 (3n−3), 89
A034472 3n+1, 27
A034474 5n+1, 71, 73
A037490 base 5 digits 2121..., 64
A037495 digits 2121..., 64
A037577 base 5 digits 1313..., 113
A037582 digits 1313..., 113
A038712 MaskToLowBit1 , 6
A047850 1

4 (5n+3), 92, 93
A047855 digits 11...112, 117
A048473 2.3k−1, 25, 43
A052919 d2.3n−1+1e, 25
A058481 3n−2, 96
A070402 periodic 1, 2, 4, 3, 13
A073000 arctan 1

2 , 51
A079004 4.3n−2, 25
A081251 b 14 3n+1c, 64
A081603 CountTernaryTwos, 79
A083065 1

4 (3.5n+1), 38
A092810 6.9n, 74
A097251 base 5 digits 0 or 4, 11
A100702 b2.3n−1+1c, 25

A103457 1 and 3k+1, 89
A104743 3n+n, 33
A105199 arctan 2, 13
A105279 digits 11...110, 89
A110592 base 5 length, 25
A116178 1

2 ternary lowest non-1, 28
A117617 1

4 (7.5n−3), 39
A125831 base 5 all 2s, 11, 98
A125833 base 5 all 3s, 67, 113
A132079 1

2 (5n+3), 88
A134945 1+

√
5, 71

A135518 base 15 all 4s, 21, 115
A137410 1

2 (5n−3), 88
A140429 0 then 3k, 89
A146086 1

4 (5n+2.3n+1), 42
A175337 NextTurnRpred, 5, 6
A185981 2 2.(5n−1−1), 86
A189274 9.5n, 86
A198762 3.5n−1, 95
A198768 9.5n−1, 82
A198769 1

4 (9.5n−1), 93
A199214 3.5n+1, 95
A238366 base 5 digits 122... and 222..., 11
A253786 TernaryCountLowOnes, 91
A277543 base 5 lowest non-0, 4
A337004 turn, 4
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